THE NATIONAL EXAMINATIONS COUNCIL OF TANZANIA

CANDIDATES' ITEMS RESPONSE ANALYSIS REPORT FOR THE ADVANCED CERTIFICATE OF SECONDARY EDUCATION EXAMINATION (ACSEE) 2016

131 PHYSICS

THE NATIONAL EXAMINATIONS COUNCIL OF TANZANIA

CANDIDATES' ITEMS RESPONSE ANALYSIS REPORT FOR THE ADVANCED CERTIFICATE OF SECONDARY EDUCATION EXAMINATION (ACSEE) 2016

131 PHYSICS

Published by The National Examinations Council of Tanzania, P.O. Box 2624, Dar es Salaam, Tanzania.
© The National Examinations Council of Tanzania, 2016
All rights reserved.

TABLE OF CONTENTS

FORE	WORD	iv
1.0	INTRODUCTION	1
2.0	ANALYSIS OF THE CANDIDATES' PERFORMANCE PER QUESTION IN PHYSICS 1	2
2.1	Question 1: Measurements	2
2.2	Question 2: Projectile Motion and Newton's Laws of Motion	11
2.3	Question 3: Newton's Laws of Motion and Circular Motion	18
2.4	Question 4: Simple Harmonic Motion	23
2.5	Question 5: Rotation of Rigid Bodies	27
2.6	Question 6: Gravitation	31
2.7	Question 7: Thermometry and Thermal Conduction	37
2.8	Question 8: Thermal Radiation and Thermal Convection	45
2.9	Question 9: Current Electricity	50
2.10	Question 10: Current Electricity	54
2.11	Question 11: Electronics	58
2.12	Question 12: Electronics	62
2.13	Question 13: Telecommunication	65
2.14	Question 14: Environmental Physics	70
3.0	ANALYSIS OF THE CANDIDATES' PERFORMANCE PER	
	QUESTION IN PHYSICS 2	75
3.1	Question 1: Fluid Dynamics	75
3.2	Question 2: Vibrations and Waves	89
3.3	Question 3: Vibrations and Waves	99
3.4	Question 4: Properties of matter	108
3.5	Question 5: Electrostatics	117
3.6	Question 6: Electrostatics	127
3.7	Question 7: Electromagnetism	135
3.8	Question 8: Atomic Physics	144
3.9	Question 9: Atomic Physics	154
4.0	ANALYSIS OF CANDIDATES' PERFORMANCE PER TOPIC	163
5.0	CONCLUSION AND RECOMMENDATIONS	164
5.1	Conclusion	164
5.2	Recommendations	165
Appen	ndix	166

FOREWORD

The Advanced Certificate of Secondary Education Examination (ACSEE) marks the end of two years of secondary education. It gives a picture of the effectiveness of the education system in general and education delivery system in particular as it is a summative evaluation. The candidates' answers to the examination questions are a strong indicator of what the education system was able or unable to offer to the students in their two years of secondary education.

The candidates' items response analysis report on Physics subject ACSEE 2016 was prepared in order to give feedback to students, teachers, parents, policy makers and the public in general on how the candidates responded to the examination questions.

The report highlights some of the factors which made the candidates fail to score high marks in the questions. The factors include failure to identify the task of the question, inability to follow instructions, lack of mathematical skills, and inadequate knowledge of the topics. The views provided will help the educational administrators, school managers, teachers and students to identify proper measures to be taken in order to improve the candidates' performance in future examinations administered by the Council.

The National Examinations Council of Tanzania will highly appreciate observations and suggestions from teachers, students and the public in general that can be used in improving future examiners' reports.

Finally, the Council would like to thank the Examiners and different stakeholders who participated in the preparation of this report.

Dr. Charles E.Msonde **EXECUTIVE SECRETARY**

1.0 INTRODUCTION

This report is based on the analysis of candidates' responses to the 2016 ACSEE questions in Physics paper 1 & 2. The papers projected to measure and evaluate the skills acquired by the candidates which are stipulated in the 2010 syllabus, and it adhered to the 2011 Examination format.

Physics paper 1 comprised fourteen (14) questions which were categorized into three sections A, B and C. Section A was composed of six (6) questions and section B and C had four (4) questions each. The candidates were required to answer ten (10) questions by choosing four (4) questions from section A, three (3) questions from section B and three (3) questions from section C.

Physics paper 2 had three sections, namely A, B and C. Each section was comprised of three (3) questions to make a total of nine (9) questions. Candidates were instructed to answer five (5) questions by choosing at least one (1) question from each section.

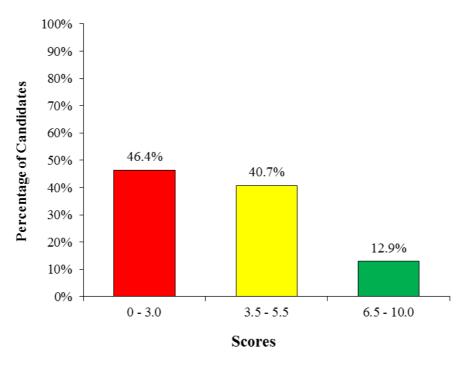
A total of 17,466 candidates sat for Physics examination of which 80.34 percent passed the examination and 19.66 percent failed. In 2015, the number of candidates who sat for Physics examination was 13,106 of which 85.7 percent passed the examination. This implies that the candidates' performance in this year has dropped by 5.36 percent.

The following section analyses the candidates' responses in relation to the demands of the questions in the course of analysis brief notes on what the candidates were required to do and the reasons for their performance are provided. The samples of candidates' responses are also inserted as extracts to illustrate the cases presented. Also graphs and charts are used to summarize the candidates' performance in particular question. The analysis categorizes the performance as good, average and poor, if the percentage of the candidates who scored from 35 percent or more of the marks allocated in the question lies in the interval of 60–100, 35–59 and 0–34 respectively. Green, yellow and red colours are used to denote good, average and weak performance respectively. The report also contains an appendix which indicates the general performance in each topic. Finally, it provides some recommendations that may help to improve the candidates' performance in the future examinations.

2.0 ANALYSIS OF THE CANDIDATES' PERFORMANCE PER QUESTION IN PHYSICS 1

2.1 Question 1: Measurements

This question was divided into three parts: (a), (b) and (c). In part (a) the candidates were required to (i) define the term dimension of a physical quantity, and (ii) find the dimensions of diffusion constant D, given that the number of particles n crossing a unit area perpendicular to the x-axis in a


unit time is given by $n = -D \frac{(n_2 - n_1)}{(x_2 - x_1)}$ where n_1 and n_2 are the number of

particles per unit volume for the values of x_1 and x_2 respectively. In part (b) the candidates were required to (i) mention two basic rules of dimensional analysis, and (ii) use dimensions to show how the frequency, f of a vibrating string is related to the applied force, F, the length, l of the string and the mass per unit length, μ . Part (c) required the candidates to (i) give the meaning of least count of a measurement and (ii) calculate the maximum percentage error in the measurement of g when the period of

oscillation of a simple pendulum is given by $T = 2\pi \sqrt{\frac{l}{g}}$ where by 100

vibrations were taken to measure 200 seconds and that the least count for the time and length of a pendulum of 1m are 0.1sec and 1mm respectively.

A total of 14,081(80.6%) candidates attempted this question, of which 46.4 percent scored from 0 to 3.0 marks. Out of these 4.8 percent scored 0. The data show that 40.7 percent scored 3.5 to 5.5 marks and 12.9 percent scored from 6.0 to 10.0 out of 10 marks allocated to this question. These data are presented in Figure 1.

Figure 1: Illustration of candidates' performance in question 1.

Figure 1 shows that the candidates who scored 3.5 marks or above were 53.6 %, this is an indication that the general performance in the question was average.

Those candidates who performed well in this question had adequate knowledge on the concept of measurements. They provided the correct definition of the term dimension of a physical quantity, used correctly dimensional analysis to find the dimension of the diffusion constant D, mentioned correctly the basic rules of dimensional analysis and used the rules to show the relationship between f and quantities F, l and μ . They were also able to define correctly the term least count of a measurement and they calculated correctly the percentage error in the measurement of g. Extract 1.1 shows the responses from the candidate who answered the question correctly.

Extract 1.1

1-	(a) (i) Dimension of a physical quantity is a power to which the fundamental quantities (Mass, length and time) have to be raised so as to represent that physical quantity. Example: dimension of area = \(\int \Lambda^2\right].
	lead to and time I have to be raised so as to
	represent that physical greantity.
	Example dimension of area = [12].
	$n = -D \frac{(n_2 - \Lambda_1)}{(x_2 - x_1)}.$
	$n = -D \frac{(n_2 - n_1)}{(n_2 - n_1)}$
	(x_2-x_1) .
	(x2-x1). Heati Required discension of D = ?! Making D the Subject;
	$D = -n (\times_2 - \times_1) \qquad (i)$ $(n_2 - n_1)$
	(n_2-n_1)
	Now,
	now; $n = N_{unber of partizles} = 1$ Area x time: $[L^2T]$.
	$[n] = [L^2T^{-1}], \qquad -$
	$[X_8-X_1]=$ distance crossed = [1].
	$n_2 - n_1 = \frac{\text{Number of fastives}}{\text{Volume}} = \begin{bmatrix} 1 & 3 \end{bmatrix}$
	$[N_0 - N_1] = [L^3]$ On plugging the values on egn (i) above.
	$\begin{bmatrix} 0 \end{bmatrix} = \begin{bmatrix} L^{-2}T^{-1} \end{bmatrix} \begin{bmatrix} LI \end{bmatrix} = \begin{bmatrix} L^{-1}T^{-1} \end{bmatrix}$
	$\begin{bmatrix} 1 & 3 \\ 5 & 7 \end{bmatrix} = \begin{bmatrix} 1 & 3 \\ -17 \end{bmatrix}$
	$[\mathcal{I}] = [L^{2}\mathcal{I}^{-1}]$

1.	(a) (ii) :. Dilicación of liffusión Constant, D = [127-17]
	diffusion Constant, U = LL 1
-	
	(b) (1) Basic rules of dimensional analysis are
	· Addition or subraction of quantities
	(b) (i) Basic rules of dimensional analysis are: Addition or subraction of quantities take place to those only having Same dimensions:
	Same dimensions.
	· An equation is dimensionally Correct
	of each and every term on either
	side of an equal sign are the
	An equation is lineasionally Correct it each and every term on either side of an equal sign are the same lineasions).
	(*)
	(ii) Given; f \preceq f \preceq \mu.
	Jarin.
	f = k F l H - (i)
	J= RF CA
	Where; K 12 divensionless constant x, y and 2 are unknown which to the are [f] = [T], [f] = [MLT ⁻²], [L] = [L]
	r is allerantes constant
	D) and tole are unknown ignating
	[1] = [+" [0] - [4] + 27 [1] - [1]
	$\frac{1}{1} \frac{1}{1} \frac{1}$
	[M] = [ML]
	On inserting the dimensions on egn (i)
	[M°L°T] = [MLT] [L] [ML']
	$\left[\mu^{\circ}L^{\circ}T^{''}\right] = \left(\mu^{\times + 2} L^{\times + y - 2} - 2x\right)$
	(M L T)
	On equating the indices;
\overline{A}	

1.	(b) (ii) for M.
	(b) (ii) for M ; $0 = x + z \cdot - (i)$
	$0 = x + \varepsilon - (y)$
	for L
	$0 = x + y - 2 \qquad(ii)$
	for L $0 = x + y - 2 \qquad (ii)$ $f_{xy} T$ $-1 = -2x$ $x = 1$
	-1 = 2X
	x= ½
	from (i)
	Z = -x.
	z = -y
	from (ii)
	Y= 2-x = 1/2-1/2
	= -1.
	y = -1
	Then; 1/2 -1 -1/2
	$y = -1.$ Then; $f = k F L \mu^{2}.$
	$f = k \downarrow F$
	\mathcal{V}^{μ}
	l V C
	f = K / F
	L N'JU
	0 0 = 1.4-1.4-
	F, land M in > f x L M.
	r, cand M in /) Ly.

1.	(c) (i) least count of a measurement in Smallest measurement that can
	Smallest measurement that can
	uade accurately by an instrum
	Fig. least count of
	Fig. least count of Vernier Calliper B 0.01 cm.
	(ii) Given; T = 2ū√y
	T = 2 ū []
	length of Pendulum! = Im.
	least count in leasth, $SI = I_{MM} = I_{N} = $
	least Count in time, St = 0-1 sec.
	Time for one Vibration T = 200 ec
	001
	= 2500
	lequired Maximum percentage error in $g=71$.
	h = 71
	Making g the Subject in given
	$1^2 = 4\overline{u}^2 \cdot \frac{t}{5}$
	<u> </u>
	$g = 4\overline{u}^2 l$
	J = 1 = 1
	Introducing In Lotte tides;
	$lng = ln \left(4\overline{u}^2 l\right)$
	T2 /
4	Differentiating both lives;

1. (ϵ) $\Delta g = \Delta l + 2\Delta T$
g = T + T
Since esselle as long with the
since errors are always maximized and the is is a Constant no dimension.
for Maximum & error;
$\frac{\Delta g}{g} \times \log_{p} = \frac{\Delta l}{l} + \frac{2\Delta T}{T} \times \log_{p} .$
Al = IXID M.
1= 1m.
$\Delta T = 0/\alpha c$
T= 2 ac
= 0.101 × mo/
$\left(\frac{bg}{3}\right)\times\omega^{2}=10\cdot1\%$
error in recentage 10-1
met of g

Extract 1.1 shows how the candidate attempted the question and provided correct responses to all the parts of the question. He/she defined the terms correctly, found the dimension of diffusion constant D and followed correctly the procedures in calculating the percentage error in measurement of g.

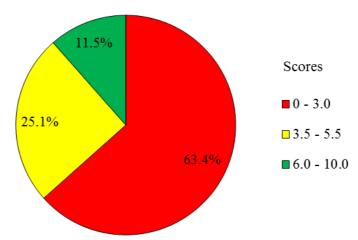
On the other hand, some of the candidates who performed poorly in this question could not define the term dimension of a physical quantity and some of them stated the dimensions of *velocity LT*^I instead of *length L*. Yet others stated the dimensions of *mass per unit length* as ML instead of ML^I. They were also unable to use dimensional analysis to find the dimensions of diffusion constant D. A few candidates were able to mention the basic rules of dimensional analysis but failed to use them in showing the relationship between f and quantities F, I and μ . They also failed to calculate the maximum percentage error in the measurement of g, implying showing that they had inadequate knowledge on the concepts of dimension of physical quantities and had poor numerical skills in parts involving mathematics. Extract 1.2 is from a candidate who performed this question poorly.

Extract 1.2

1. e. Dimension of physical quantity — 1. the quantity which is depend on the quantity physical propertie. Sug as mess, legits and volume.
- 1. the quantity which is depend on the
generatity Physical Propertie, Sug
as mess, Length and Volume
(i) here is no Unit in the dimensional
(1) the equation must be correct.
(ii) Rere is no Unit in the dimensional
analysis, is Unitless.
(11) Chues
F- frequency Leigh M- Using dimension ihm how
L- Leight
M. Using dimension show how
f 1, related + F, 1, and Wr.
J. J. C. J. J. C. J. J. C. J.
Suls
52/5 F = [M LT-1]
· ·
L 2 [MLT]
U= (MLT)
F, L, H = [MLT] [M-1] [MLT]
(ML7-1) (ML-11) (MLI-)
f = [m1-1] [m1-1] [m1-1]
J = (ML1) (ML1) (ML1)
J = [MLT-] [MLT-1]
1 - MILI) [100L [] [MLI]

	(c) in Least Count of a measurement - Is the Last Count which recented during the Experiment.
	the Last Count which recensled
	during the Experiment.
	(1) Duby Given
	Thy
	T = 211 /g
	1 = 211/9
	7 = 211 /9
	, ,
	72 = 4512 (1/3)2.
	,
	72 = 477 (1/3)2
	92 = 4113 (1/g)2
	£2
	T2 = 41,7 L
	· 3·
-	
	9x,12 = UIT? 1 ×9
	75 = 457 L.
	19 2 9(1) L.
	1/2 = 4116 F
	12 T2
	- LOII?L
	9 2 411?L
	m . 10121
	9 > 412 L
	T 2.

0 2 '4112 1
72
Δ9 = 4ΔΠ2ΔL X ΔΤ2
$\frac{\Delta_0}{9} = \frac{4\Delta \Pi^{1} \Delta L}{\pi^{2}} \times \frac{\Delta \Pi^{2}}{\Pi^{2}} \times 100\%$
$\frac{\Delta_9}{9} = \frac{4\Delta L}{L} \times \frac{\Delta T^2}{T^2} \times 100\%$
Ag 2 40 1 X (201)2
$\frac{\Delta g = 4\Delta 1 \times \Delta (z\alpha)^2}{(1\alpha)^2}$
Ag > 401 / 4000
<u>AS = 4 K4 x 100%</u>
$\frac{\Delta g}{g} = 16 \times 100\%$
<u>A9</u> = 1600 ½
1. The Mexican Revicentey error in the


Extract 1.2 shows the work of a candidate who failed to define the term dimension of the physical quantity and to find the dimensions of diffusion constant D. The candidate stated the dimensions of length as $ML^{-1}T$ instead of L and the dimensions of mass per unit length as MLT instead of ML^{-1} . Although the candidate successfully managed to make g the subject, he/she failed to calculate the maximum percentage error in the measurement of g.

2.2 Question 2: Projectile Motion and Newton's Laws of Motion

This question was divided into three parts: (a), (b) and (c). In part (a) the candidates were required to (i) mention two characteristics of projectile motion, and (ii) calculate the angle of projection and initial velocity given the range of the projectile is 120m, its time of flight is 4sec and acceleration due to gravity is 10m/s^2 . In part (b) (i) the candidates were required to state the principles on which the rocket propulsion is based and in (b) (ii) they were given that "A jet engine on a test bed takes in 40kg of air per second at a velocity of 100m/s and burns 0.80kg of fuel per second and after compression and heating the exhaust gases are ejected at 600m/s relative to the air craft". Then they were required to calculate the thrust of engine. Part (c) required the candidates to calculate the reading on the spring balance with an object of 2kg when the lift is (i) going up with the rate of 0.2m/s^2 ,

(ii) going downwards with an acceleration of 0.1m/s^2 , and (iii) ascending with uniform velocity of 0.15 m/s.

The question was attempted by 80.0 percent of the candidates, out of which 63.4 percent scored below 3.5 marks out of 10 marks. A total of 10.7 percent scored 0. The candidates who scored from 3.5 to 5.5 marks were 25.1 percent and those who scored from 6.0 to 10 marks were 11.5 percent. These data are pictorially presented in Figure 2.

Figure 2: A summary of candidates' performance in percentage.

The data presented in Figure 2 indicate that a total of 36.6 percent of the candidates scored 3.5 marks or above, which is an average performance.

The candidates who performed well in this question were able to mention correctly the characteristics of projectile motion. They used appropriate formula and correctly manipulated the data to determine the angle of projection and the initial velocity of projection. Moreover, they were able to state the principles on which the rocket propulsion is based and used proper formula to calculate the thrust of the engine. Finally, they were also able to properly calculate the reading on the spring when the lift is going upwards, downwards and when ascending with uniform velocity. Extract 2.1 shows the responses from the script of one of the candidates who answered the question correctly.

Extract 2.1

maximum percentage error of g = 0-27. 2.(a) i' CHARACTERISTICS OF PROJECTILE mo — It is a 2 dimensional motion, this means that its movement can be regarded into the vertical and Hunzontal motion — ii solndata, Given Range = 120m.	
2.(a) i' CHARACTERISTICS OF PROJECTIVE mo — It is a 2 dimensional motion, this means that its movement can be regarded into the vertical and Hunzontal motion — ii solndata, Gren Range = 120m.	
-It is a 2 dimensional motion, thus means that its movement can be regarded into the vertical and Hunicontal motion ii solndata, Green Range = 120m.	
- It is a 2 dimensional motion, thus means that its movement can be regarded into the vertical and Hunicontal motion ii solndata, Green Range = 120m.	-
- It is a 2 dimensional motion, thus means that its movement can be regarded into the vertical and Hunicontal motion ii solndata, Green Range = 120m.	TIO
this means that its movement can be regarded into the vertical and Honzontal motion ii solndata, Given Range = 120m.	
regarded into the vertical and Honzontal motion ii solndata, Gren Range = 120m.	
ii solndata, Gren Range = 120m.	
ii solndata, Gren Range = 120m.	•
Range = 120m.	
Range = 120m.	- 4
T (Time of flight) = 4 secs	
Q = 1	
g = 10 m/s.	
40 = 7,	
from	
R = 402 sin2Q	
9.	
T = 2 uosina	
q.	
T2- 211,251,20 - 41)	
$T^2 = 2 uo^2 sin^2 Q(i)$	
9-	
ir - Dros dus 2 on 8 = 2	
9 ′	

providing the equations itil
T'= \$4402 sin 20 x g
$\frac{T^2 = \frac{4}{9} u o^2 s in 20}{2} \times \frac{9}{2}$
$\frac{T^2 - 2 \tan Q}{R}$
12 9
but == 4
but \$= 4 R= 120.
42 - 2 tano
120 10.
120
42 x10 = tana.
120×2
120), 2
-
$\alpha = \tan^{-1}\left(\frac{4^2 \times 10}{120 \times 2}\right)$
7.7.10
(120×1
Q = 33.69°
Q = 33.64
fritial veloub=1
from.
T= 2 mosing
uo= Tg
zane
No= 4x10
2×5×(3)-(9°)

m = 36.1 m/s.
,
Fritial reloub = 36.1 m/s
2- (b) i. The principle states that, "In an isolated
system the total momentum of the system
remains constant!
·
2 (b) ii sulndata.
Grive n.
dmi = tokg
dt /s
4i = 100m/s.
46 = 10011/3.
dm, Diftar
dmf = 0.8 kg/.
115 = 60000
uf = 600m/s.
Thrust = Uf (dmi + dmf) - dmi yo
= 600 (40 to.8) - 100x40
= 20480N·

Extract 2.1 shows a sample of responses from a candidate who answered correctly a large part of the question but only failed to state the principles on which the rocket propulsion is based.

On the contrary, some of the candidates who performed poorly failed to mention the characteristics of projectile motion. For example, one of the candidates mentioned "neglection of air resistance and acceleration is directed towards fixed point" as the characteristics of projectile motion. The candidate should have mentioned *constant horizontal motion* and

vertical motion assumes a constant acceleration due to gravity. The majority gave the characteristics of the projectile motion as the motion is horizontal as well as vertical. Likewise, they failed to calculate the angle of projection and initial velocity of projection as they used the incorrect formula. They also failed to state the principles on which the rocket propulsion is based and consequently they failed to calculate the thrust of the engine. The candidates who scored average marks were able to mention the characteristics of projectile motion and they determined correctly both the angle of projection and its initial velocity of projection. They also performed well part (c) of the question but failed to do part (b) which involved the concepts of rocket propulsion. Extract 2.2 shows a sample of responses from a candidate who performed poorly.

Extract 2.2

2. (a) i) Charactersties of Projectile motion
- A body must be more due to the Under the
granty force. - A body must occur at a certain angle
- A body must occur at a certain angle
11/ Data given
Ray: = 120 m
Time of Plight = 4 see
Time of flight = 4 see Acc due to gainty = 10 ms 2
Anale of Projection = ? required
Initial valuety of Proportion = Regimed?
V= U+at
V= U+at Vy= Usne+ at ²
Bud a=-9
Vy= Usinon y ot 2
But.
republica
Max my U2
9
120=42
4 :0
U2=1200
4= 51200
U=34.64m/s'

(b) 12/ Data given		
- 401G		
Vi= Juoms-		
Mz= 0.80Kg		
Vz= Cocons		
 that = ? Required		
= MIVI - MIVI		
 V2-V		
40×100-0.60×600	6	
Gen-100		
_ 4000 - 480		-
500	To and only	
= 7.04		
. That of the engine is . 7.04.		
Jun 13 1.00.		
10 Dastagives		
Mass of Objects = 2kg		
17.1/-		
ii/ V=ma		
ae V	100	
	1	
a=0.2		
2710-2		
a= 100 m.		
 C(TOAW		

2.	(a) ii/ Then from Vr= Usinco - 19t2	
	Vr= Usinco -9t2	
	Velousy = 346pm,	
	Velous = 3464M, 24.69 - U.RAD - 10x42	
	_	
	34 96 9 = '	
	Initial Velocity = 2464mls	
	,	
	Vy = Uninco - st2	
	-	,
	Un= O	E. X. ()
4	Vy= -9t2	
	V= -10×42	y
	_	
	V=-80mi	
	Vy= Usin @ - St2	
	+80 = 34.64 sing _ 10 x42	
	+ 80 = 3464ding - 80	7
	80+80=34.645ma	
	160 = 34.64 Sino	
	Sin Q = 160	1-13k
		2.737.9 (2)
	SPnQ=4-618939644	
	Q = 59n-1 (4618937684)	
	Q = d	19/
	is The angle of Propertion is a	and the Initial relocation
	13 34.64m/1:	<u> </u>
		<u> </u>


In Extract 2.2 the candidate provided incorrect responses to all parts of the question. He/she failed to mention the characteristics of projectile motion. The candidate failed to relate the formula for time of flight and range in projectile motion to obtain the angle of projection and its initial velocity of projection. He/she applied the ratio of the change in momentum to the change in velocity to calculate the thrust instead of using the rate of change of momentum (Newton's 2^{nd} Law of Motion) to get it.

2.3 Question 3: Newton's Laws of Motion and Circular Motion

This question had three parts, namely (a), (b) and (c). In part (a) the candidates were required to (i) define the term inertia and (ii) explain why Newton's first law of motion is called the law of inertia. In part (b), the candidates were required to calculate (i) the minimum speed of water from the hose, (ii) mass of water leaving the hose each second and (iii) the force on the hose due to the water jet when a jet of water from a fire hose is

capable of reaching a height of 20m given that the cross sectional area of the hose outlet is 4.0×10^{-4} m². In part (c) the candidates were required to (i) calculate the tension in the string and (ii) state one assumption taken to reach the answer in (c) (i) given that "A boy ties a string around a stone of mass 0.15kg and then whirls it in horizontal circle at constant speed. If the period of rotation of the stone is 0.4sec and the length between the stone and boy's hand is 0.50m".

A total of 12,924 (74.0%) candidates attempted the question, out of which 56.3 percent scored below 3.5 marks out of 10 marks, and 9.6 percent scored 0. The candidates who scored from 3.5 to 5.5 marks were 24.7 percent and those who scored from 6 to 10 marks were 19.0 percent. The candidates' performance was average because 43.7 percent scored 3.5 or more out of 10 marks. A graphical representation of these data is shown in Figure 3.

Figure 3: The performance of the candidates in question 2.

Figure 3 shows that 19.0 percent of the candidates scored 6.0-10 marks.

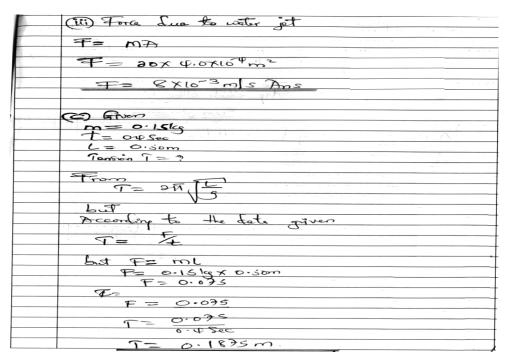
The candidates who performed well in this question were able to give the definition of the term inertia, explain why Newton's first law of motion is called the law of inertia and calculate correctly the minimum speed of water from the hose, the mass of water leaving the hose each second and the force on the hose due to the water jet. Some of the candidates confused the concept of conical pendulum with a planar circular motion of an object

and therefore they were unable to calculate the tension in the string. Extract 3.1 shows a sample of good responses from one of the candidates.

Extract 3.1

i
h
to of ving
ine
2
0
n
[B.
und
una tre
34
-

250	When
3(0)	The fe centripetal bure.
	wer heartly and a sound the second and the second a
	Taso - Dig - (1)
-C.J. \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	fe = Jano
4747	
	my fe = prof
100	The contract of the second second
	AND STATE OF THE S
	The wind of the same within the man
	but from the first equerpms
	Tring = my
	/F
	Time = mult
	me stayers
	from the broughe tac
	Sma = T
	't= Lsina
trus telá	Tet TSIYO = mul LSIYO
	T = mwl L
	T = tent m = 0.15 kg
	1=0.486
	20 10 10 10 10 10 10 10 10 10 10 10 10 10
	The state of the s
	1 - 0.12 x (2 x 3.14) 2 x 0.5
	T = 0.15 x(2x3.14)2 x 0.5 = 18,49 N
	= 18.49 N

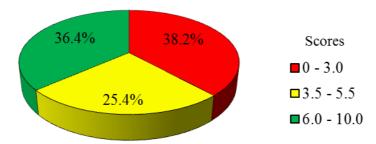

3 (c) (ii		
the	re centripetal years vergund to	0
beef	He contripotal years vergund to	A
13	provided by the tension in the st	-

Extract 3.1 is the work of the candidate who provided the correct answers as required. He/she defined the term inertia, explained correctly why Newton's first law is called the law of inertia and used correct formula in all calculations.

The candidates who performed poorly had inadequate knowledge on the concepts of Newton's laws of motion and circular motion as they failed to define the term inertia. In explaining why Newton's first law of motion is called the law of inertia most of the candidates were unable to recognize that every body has a tendency to maintain its state of rest or uniform motion hence it is inertia. Some of the candidates used incorrect formula and others substituted wrong data in formula or equations and hence failed to calculate the minimum speed of water from the hose, the mass of water leaving the hose each second, force on the hose due to the water jet and the tension in the string. Other candidates were able to write the required formula but failed to make substitution hence scored low marks. Extract 3.2 shows a sample answer from one of the candidates who answered the question incorrectly.

Extract 3.2

Extract 5.2
2 (DI section also state where a body tend to move in
a line of motion after abrupt step.
in Penton's bitst law of motion is called the law of mertia simply because it explain how mertia and
mortia Simply because it explain how mertia and
its moment can occur.
N. C.
(b) Given,
h = 20m x = 40x16 4m ²
y = 4.01(6, m.
(i) Minimum Speed
Spent - Ata
Speed = somx 4.0x10 m2
Minimum Speed = 8x10 3m
,
· Minimum Speed = 8x10-3m2
,
(ii) mass of water leaving
() For all
mass (m) = Fora(F)
m= 8x10-3m2
F6) = 6 2 (C m
4.0×10-3m2
m = 20 lg
· Mass = volca Ans



In extract 3.2 the candidate provided wrong answers to all parts of the question. The candidate wrongly calculated the speed using the formula for finding volume (Ah). He/she also calculated the mass flux as pressure, and force as a product of mass and area. Furthermore, the candidate confused tension with period of simple pendulum then expressed it in a metre which is the SI unit of displacement and not tension.

2.4 Question 4: Simple Harmonic Motion

This question required the candidates to (a) explain the terms (i) damped oscillations and (ii) undamped oscillations. In part (b) the candidates were required to (i) sketch the waveform diagrams that represent the terms in (a) (i), and (ii) show that the total energy of a body executing S.H.M is independent of time. In part (c) the candidates were required to calculate (i) maximum speed of the mass and (ii) the kinetic energy of the system when the displacement is 2.0cm given that "A mass of 0.5 kg connected to a light spring of force constant 20Nm⁻¹ oscillates on a horizontal frictionless surface if the amplitude of the motion is 3.0cm".

More than two thirds (68.2%) of the candidates attempted this question, of which 38.2 percent scored below 3.5 marks including 16.3 percent scored 0 marks out of 10 marks. The candidates who scored from 3.5 to 5.5 marks were 25.4 percent and those who scored from 6.0 to 10 marks were 36.4 percent. The candidates' performance was good because 61.8% of them scored above 3.5 marks. These data are shown in figure 4.

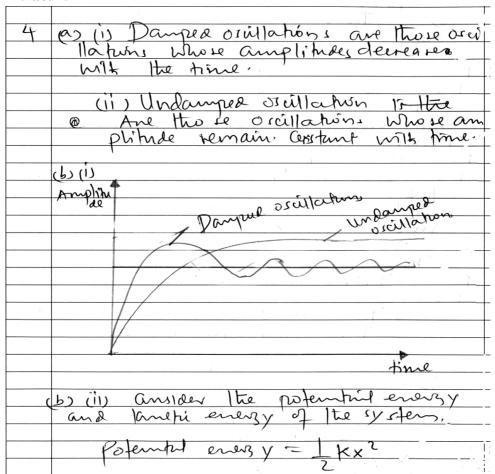


Figure 4: Illustration of candidates' good performance in question 4.

Good performance in this question was contributed by the candidates' good understanding of the concepts of simple Harmonic Motion. Therefore they were able to explain the meaning of the terms damped oscillations and undamped oscillations, to sketch the waveform diagrams to represent the terms damped and undamped oscillations, and to calculate the maximum speed of the mass and the kinetic energy of the system.

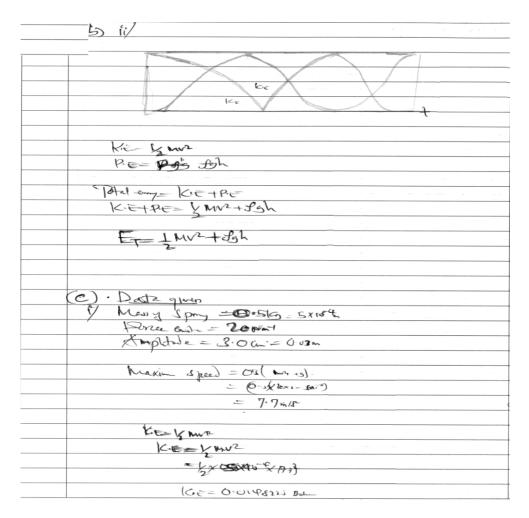
Few candidates failed to score full marks because they confused the terms overdamped with critical damped. Due to this confusion they failed to sketch correctly the required waveform diagrams. Extract 4.1 shows responses of a candidate who scored high marks.

Extract 4.1

4 b(11) where 1c - spring writers ful 1/2 m w
Pie = /mwix2
$\int M d d d d d d d d d d d d d d d d d d $
pre = 1/2 mw A singut
Also ansider the prinche energy
the v = Awaswt K. e = 1/m w2 A2 as wt
Then total energy = P. e + t- e BET = / mwl p2 (sm2w+ + 6x2wx)
true sim2 wt + an 2 wt =1
energy is independent of the time.
o mens of body = 0.15kg spring astront = 201/m Amphibade = 7x162m
(1) Merkinnans spied when y =0 John Ver Z W A2 + y2 At Vonex y =0 Then Vonex = WA
Vmex = WA
-30

40 à trut
form must = k
form must = k
$w^2 = k$
$w^2 = \sqrt{k}$
1×2 1×1
W Z Ky
lh en
Then Vonex 2 to A. Jeym
l'm
Then Vmex = 6 A. 16/ = 3x102 20 0.5
3/10 20
50.5
Vmerx = 0.1897 Ms.
from the perputer of known energy
form the permiter of kniehi energy
C-e = 1 m V2
V = & w2 (A2 - 52)
= 1 mw2 (A2 - 52)
2
that w= Km
$= ((V_1, h(A_1 - h_1))$
= 1/2 kg; y (A2 - 52)
$= 1.15 (A^2 - h^2)$
= 1/16 (A2 -132)
= 1/ x 20 (() x1 2) 2 - (2 x1 22)2)
7, 100

Pu(1i) K.c = 5 x 1 63 T

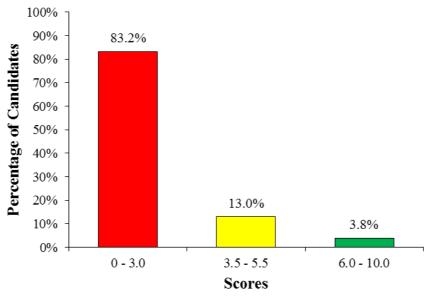

Extract 4.1 shows the responses of a candidate who provided the correct answers to almost all parts of the question. However the candidate confused the waveforms for damped and undamped oscillations and therefore sketched an incorrect waveform diagram.

On the other hand, the candidates who performed poorly in the question lacked knowledge on Simple Harmonic Motion. The analysis shows that the candidates failed to provide correct answers to most parts of the question. They were unable to explain the terms damped oscillations and undamped oscillations. For instance, some of the candidates defined damped oscillations as "torsional oscillations", and damped oscillations as "the type of oscillations where vibrations overlap each other". Similarly, most of the candidates could not sketch the correct waveform diagrams that represent damped and undamped oscillations. These insufficient responses indicate lack of knowledge.

Only few candidates were able to write the formula for total energy of the system but failed to obtain the required total energy in the system because they did not recognize that the total energy of the oscillating system is found by taking the sum of the kinetic energy and the potential energy. These candidates also failed to link the concepts between trigonometric functions and the derivatives of quantities like velocity which could help to show that the total energy of a body executing S.H.M is independent of time. Extract 4.2 shows the sample of incorrect response from one of the candidates.

Extract 4.2

4	(1): 97 Danger Juliation
1	- Isthe oskullation in which their waters are
	like a took forsional
	11/ Undanger oraldon
	- I the type of oscillation in which a body
	have found and backend.


Extract 4.2 shows that the candidate failed to define the required terms. He/she was unable to show that the total energy for a body executing SHM is independent of time. Instead, he/she answered that the total energy is the sum of kinetic energy and pressure due to height. He/she also used incorrect formula to calculate the values of maximum speed and kinetic energy.

2.5 Question 5: Rotation of Rigid Bodies

The question had three parts: (a), (b) and (c). In part (a) the candidates were required to (a) (i) define moment of inertia, and (ii) mention two factors on which the moment of inertia of a body depends. In part (b) the candidates were required to find the moment of inertia on the plane of a thin sheet of aluminium of mass 0.032kg with the length 0.25m and width of 0.1m, about an axis parallel to the (i) length and passing through its centre of mass m, (ii) width and passing through the centre of mass m in its own plane. In part (c) they were required to (i) define the term angular momentum, and (ii) show how the final angular velocity of the rotating

wheel relates with the mass m of a thin circular ring of radius r rotating about its axis with constant angular velocity ω_1 if the two objects each of mass m are attached gently to the ring.

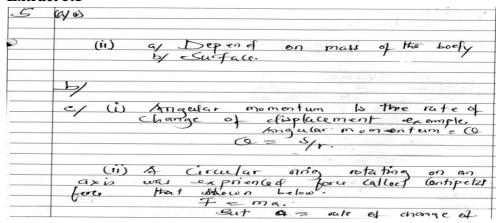
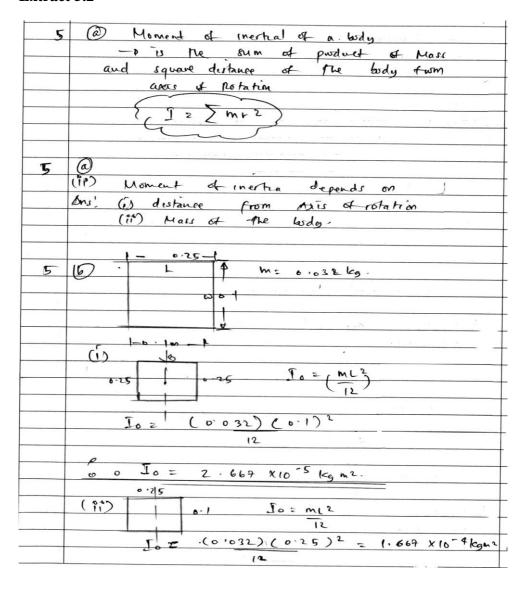

A total of 7673 (43.9%) candidates attempted this question, out of them 25.3 percent scored 0, 57.9 percent scored from 0.5 to 3.0 marks, 13.0 percent scored from 3.5.0 to 5.5 marks, and 3.8 percent scored from 6.0 to 10 marks.

Figure 5: Percentage of candidates' performance per score in question 5.

Figure 5 shows that the performance was poor as 83.2% scored below 3.5 marks. The candidates who did not perform well had inadequate knowledge on the subject matter. Most of them were not able to calculate the moment of inertia on the plane of a thin sheet of aluminium. They used incorrect formula and did poor substitution and manipulation of data. The analysis also noted that most of the candidates were unable to calculate the angular velocity of the rotating wheel. It was revealed that some of them calculated the angular velocity as a quotient of mass and the radius instead of rate of angular displacement. They were supposed to use the law of conservation of angular momentum to find the angular velocity of the rotating wheel. Extract 5.1 shows a sample of an incorrect answer from one of the candidates.

Extract 5.1


59	hence,
	/ Hence,
137 19	
	G = Vsing - (-Vsing)
	2/dt.
	a 2Vsma
	dt
	d +
	બા
	a = Vsinda
	CIE.
1 1-	Sib = 1.
	a= Vda
	ctt
	a = v da cot do = w cot
	Cl+
_	0 - 440
	But we cop = V/r.
-	BUT (I) - CO () V/C
-	W=04.= V/1.
	$a = V \cdot V$
	9= N
	7.
	I- ma.
	F= ma. F= m/vj
_	F = 1/2
-	7 2
	· F= mv2 this force was
	exprienced by the wheb
	during it motion.

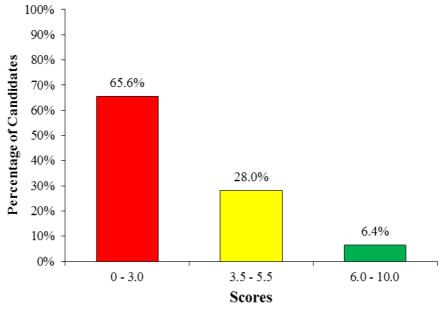
In extract 5.1 the candidate failed to give correct responses to all parts of the question. He/she described the surface of a body as a factor that affects moment of inertia of the body rather than the position of an axis of rotation and the mass distribution about such an axis. He/she also defined velocity instead of angular velocity.

The candidates who performed well were able to define moment of inertia, and mentioned correctly the factors on which the moment of inertia of a body depends. They also used the required procedures and formula to

calculate the moment of inertia on the plane of a thin sheet of aluminium. Most of the candidates were able to define the term angular momentum and they used correctly the law of conservation of angular momentum to calculate the angular velocity of the rotating wheel. Extract 5.2 displays the work of a candidate who performed the question well.

Extract 5.2

5 (ii) The Moment 64 inertia is 1.667 × (0-9 kg m 2) 5 (O) Angular Momentum' is the product at the Linear Momentum and its distance from axis strotation E = P.V. = mv·r. = mv·r. L = mr²w = Iw (Angular Momentum) 5 (O (ii) In at ring (4thin cirater ring) To = Mr² by Io = Mr² by Frequired by Mr²ws = (Mr²+2mr²) P The angular velocity o = w? by Mr²ws	5	(°°) D. More I
1.667 × (0 T Rg m 2 1.667 × (0 T Rg m 2 The Linear Momentum and the Linear Momentum and the Linear Momentum and the distance from axis of rotation E P. V. = MV. V. = MV. V. = MV - V. = MV - V. L = MT 2 W = I W (Moular Momentum). 5 (0 ("ii) Io a ring (Ahin ciralor ving) Jo = MR 2 Wg. Jo = MR 2 Wg. Io = Mr 2 I = Mr 2 + 2mr 2 From Jo W = I = W 2. required W2. My 2 W = (Mr 2 + 2mr 2) W 2 (Mr 2 + 2mr 2) P The angular velocity O = Will be	-2	(1) The proment
5 (CO) Angular Momentum! is the product of the Linear Momentum and its dustance from axis of rotation E = P.V. = MV.Y.		1 LLD VID TA Kom 2
its distance from axis of rotation E P.V. EMV.Y. EMV.Y. EMV.Y. L=Mr2W= IW (Angular Momentum) To = Mr2W= IW (Angular Momentum) Jo = Mr2 Wy. Io = Mr2 Wy. Io = Mr2 Wy. From Jo Wy = Iz Wz. required wz. Mr2Wy = (Mr2+2mr2)wz Wy2Wy = (Mr2+2mr2)wz Mr2Wy = (Mr2+2mr2)wz P The angular velocity O > will bp		1.667 X10 1-gm2
its distance from axis of rotation E P.V. EMV.Y. EMV.Y. EMV.Y. L=Mr2W= IW (Angular Momentum) To = Mr2W= IW (Angular Momentum) Jo = Mr2 Wy. Io = Mr2 Wy. Io = Mr2 Wy. From Jo Wy = Iz Wz. required wz. Mr2Wy = (Mr2+2mr2)wz Wy2Wy = (Mr2+2mr2)wz Mr2Wy = (Mr2+2mr2)wz P The angular velocity O > will bp		
its distance from axis of rotation E P.V. EMV.Y. EMV.Y. EMV.Y. L=Mr2W= IW (Angular Momentum) To = Mr2W= IW (Angular Momentum) Jo = Mr2 Wy. Io = Mr2 Wy. Io = Mr2 Wy. From Jo Wy = Iz Wz. required wz. Mr2Wy = (Mr2+2mr2)wz Wy2Wy = (Mr2+2mr2)wz Mr2Wy = (Mr2+2mr2)wz P The angular velocity O > will bp		
its distance from axis of rotation E P.V. EMV.Y. EMV.Y. EMV.Y. L=Mr2W= IW (Angular Momentum) To = Mr2W= IW (Angular Momentum) Jo = Mr2 Wy. Io = Mr2 Wy. Io = Mr2 Wy. From Jo Wy = Iz Wz. required wz. Mr2Wy = (Mr2+2mr2)wz Wy2Wy = (Mr2+2mr2)wz Mr2Wy = (Mr2+2mr2)wz P The angular velocity O > will bp	5	(OU) Angular Momentum! is the product
From Jo W = J w W2 W2 Tequired W2 My2W1 = (My2+2my2) W2 Profile (My2+2my2) My2W1 = (My2+2my2)		of the Linear Momentum and
E = P.V. $= mv \cdot r$. $= m v \cdot r$. $L = mr^2 w = Iw$ (Amgular Momen fum). $= Iv = mr^2 w = Iw$ (Amgular Momen fum). $= mr^2 w = Iw$ (Amgular Momen fum).		its distance from axis
E = P.V. $= mv \cdot r$. $= m v \cdot r$. $L = mr^2 w = Iw$ (Amgular Momen fum). $= Iv = mr^2 w = Iw$ (Amgular Momen fum). $= mr^2 w = Iw$ (Amgular Momen fum).		of notation
$= M \omega r \cdot r \cdot r$ $L = Mr^2 \omega = I \omega (Migular Momentum)$ $= I \omega (Migul$		E= P.V.
L= $m_1^2 \omega = I \omega$ (Mysular Momentum). 5 (O (ii) In at ring (thin circular ring) Jo = $M_1^2 \omega_2$ From Jo $\omega_1 = I_2 \omega_2$. Required ω_2 . $M_1^2 \omega_1 = (M_1^2 + 2m_1^2) \omega_2$ $\omega_2 = M_1^2 \omega_2$ $(M_1^2 + 2m_1^2)$ P The angular velocity $\omega_2 = \omega_3 = \omega_3$		E MV. F.
L = $m_1^2 w = Iw$ (Myselar Monon fum) 5 (O (ii) In at ring (thin circular ring) Jo = $M_1^2 w_2$ From Jo $w_1 = J_2 w_2$. Required w_2 . $M_1^2 w_2 = (M_1^2 + 2m_1^2)w_2$ $w_2 = M_1^2 w_2$ $(M_1^2 + 2m_1^2)$ P The augular velocity $w_2 = w_1 w_2 w_3$		= Mwr.r.
5 (O (ii) Io at ring (thin circular ring) To = MR ² ω_1 . To = Mr ² ω_2 . From Jo $\omega_1 = J_2 \omega_2$. required ω_2 . $M_r^2 \omega_1 = (M_r^2 + 2m_r^2) \omega_2$ $\omega_2 = M_r^2 \omega_1$ $(M_r^2 + 2m_r^2)$ P The angular velocity $\omega_2 = \omega_1 + \omega_2$		L=mr2w= Iw (Angular Momentum).
	5	(a) (ii) [a rise (this availar no)
From $J_0 W_1 = J_2 W_2$. Required W_2 $M_{V^2W_1} = (M_{V^2} + 2m_{V^2})W_2$ $W_2 - M_{V^2W_1}$ $(M_{V^2} + 2m_{V^2})$ P The angular velocity $G_0 = W_1 + W_2 = W_2$		C (a) 10 to the
From $J_0 W_1 = J_2 W_2$. Required W_2 $M_{V^2W_1} = (M_{V^2} + 2m_{V^2})W_2$ $W_2 - M_{V^2W_1}$ $(M_{V^2} + 2m_{V^2})$ P The angular velocity $G_0 = W_1 + W_2 = W_2$		1 MR2 1.
From $\int_{0}^{\infty} \omega_{1} = \int_{2}^{\infty} \omega_{2}$. Required ω_{2} $M_{V}^{2}\omega_{1} = (M_{V}^{2} + 2m_{V}^{2})\omega_{2}$ $(M_{V}^{2} + 2m_{V}^{2})$ P The angular velocity $\omega_{2} = \omega_{1}$ $\omega_{3} = \omega_{1}$		5 - M 2
Mr2 ws (Mr2 + 2 mr2) P The angular velocity 6 2 will be		102 THE ALL POINTS AND THE STATE OF THE STAT
Mr2 ws (Mr2 + 2 mr2) P The angular velocity 6 2 will be		
Mr2 ws (Mr2 + 2 mr2) P The angular velocity 6 2 will be		$\omega_1 = \omega_2$
Mr2 ws (Mr2 + 2 mr2) P The angular velocity 6 2 will be		1 A 2 (A 2)
P The angular velocity 6 5 will be		ILINEMI = (MILLEWIE) ME
P The angular velocity 6 5 will be		A A 2
P The angular velocity 6 5 will be		ω2 - Mr. ω1
be will be		(Mr2 + (mr2)
be will be		
$\omega = \frac{Mr^2 \omega_2}{(Mr^2 + 2 \ln r^2)}$		P The angular velocity
$\frac{Mr^2 \omega_2}{\omega_2 = (Mr^2 + 2 \ln r^2)}$		co will be
Wz = (Mr2+2mr2)		p Μr² ω1
R.		0 WZ = (Mr2+2mr2)


Extract 5.2 presents a response from a candidate who managed to provide correct answers to all parts of the question.

2.6 Question 6: Gravitation

This question was divided into three parts: (a), (b) and (c). Part (a) required the candidates to (i) mention one application of parking orbit, and (ii) explain how parking orbit of a satellite is achieved. Part (b) required the candidates to calculate (i) the velocity of the satellite and (ii) the period of the satellite if the earth satellite revolves in a circular orbit at a height of 300km above the earth's surface. In part (c) the candidates were required to (i) explain why the space rockets are usually launched from west to east, and (ii) calculate the additional velocity that has to be imparted to the spaceship in order to overcome the gravitational pull given that, the spaceship is launched into a circular orbit close to the earth's surface.

The question was attempted by a total of 9,289 (53.2%) candidates of which 26.3 percent scored 0, 39.3 percent scored from 0.5 to 3.0 marks, 28.0 percent scored 3.5 to 5.5 marks and 6.4 percent scored 6.0 to 10

marks. Generally candidates' performance in this question was average because 37.4 percent of them scored from 3.5 to 10 marks. Figure 6 provides the graphical presentation of these data.

Figure 6: Percentage of candidates' performance per score in question 6.

The candidates who performed well in this question had good understanding of the concept of gravitation and therefore were able to give the application of a parking orbit, to explain how parking orbit of a satellite is achieved and to calculate the velocity of the satellite and its period. Moreover, most of these candidates were able to explain why the space rockets are usually launched from west to east and to calculate the additional velocity that has to be imparted to the spaceship in order to overcome the gravitational pull. Extract 6.1 presents a sample of good response from one of the candidates

Extract 6.1

C	(0) (1) application of Parking Ortat.
	· Placing satellites which are used
	In communication existens:
	Blim
	, d = d
	(11) - Orbit corplanar with the equator
	thus should be restricted above
	the equator !
	- when a satellite is lounded in
	parking orbit with the same period as
	that of earth rotation 24 hos
	_ when a satellite is lounched in
	same direction us the watchen of
	the parth.
	01

G	(b) h = 300 ×103 m.
	(1) orbital releasy
1	from a
	mv2 2 GMem.
	(Teth) (reth) 2,
W.C.	
	V2 2 GMe
	(reth)
	but GMe 2 gre?.
	<u>የ</u> ዲ ተ
	re - ordins of the earth.

66 (n
V = gre2
V (re+h)
V Z 9.8 x(6.37 x 106) 2
V Z 9.8 x(6.37 x 106) 2 (6.37 x 106 + 300 x 103)
. ,
v = 7221.28 m/s
V = +#21.20 m/s
(11) from V z Wr
7721.28 = W × (6.37 × 106 + 300 × 103).
W = 1.1576 x10-3
W = 21T
T 2 217
T = 5424.95 Secondos.

6 (c) (D) They are launched from west to east
in order to increase velocity which is due
to earth notation thus added as a vector
to relocity of a rocket.
Vnet z Ve + Vr
Ve -s velocity of the earth voterhour.
Vr - relocity of rocket.
Vr - velocity of rocket
Tocket.

6 (0) (1)	from	
	vo 2 sgre	
<u> </u>		
: 	but	
- 17	Ve = 2 gre,	La colonia
	Ne 2 J2. Vo,	
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	en e	
	Vo 2 7901.012.	, A.
	and the second s	-vitanisis
	but Ve = Ja. vo	
	re = 11173.72.	
	Thus velocity to be mereased	ي، لح
		The state of the s
	11173.70 - 7901.012	<u>. 1 </u>
	AV = 3272.7 m/s.	1.10
		1,000
	The velocity should moreuse by 3272	.7 m/c.

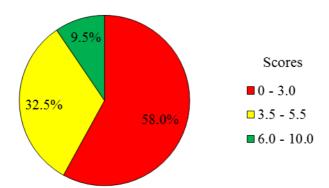
In extract 6.1 the candidate provided the correct responses required by the question. He/she mentioned an application of parking orbit and explained correctly all parts which required explanations. He/she also used correct formula in calculating velocity, period and additional velocity.

On the other hand, the candidates who performed poorly in this question had very little understanding of the sub-topic of gravitation as they failed to explain how parking orbit of a satellite is achieved. These candidates used wrong procedures and formula in calculating the velocity, period and additional velocity that has to be imparted to the spaceship in order to overcome the gravitational pull. They also failed to explain why the space rockets are usually launched from west to east. Extract 6.2 shows a response from a candidate who scored poorly in this question.

Extract 6.2

6	a, i, Application of parting orbit,
	a, i, Application of parking orbit. - It is applied in launching of the satellite in thesky
	i)
6	b, soln
	Data
	$h = 300 \text{km} = 300 \times 10^3 \text{m}$.
	$r_0 = 6.31 \times 10^6 \text{m}$
	m 6 x 10 m
	Me = 6 × 10 ²⁴ kg G = 6.67 × 10 ¹¹ Nm ² kg ⁻²
	G = 6.61 × 1011 Nm kg
	mom (
	1 = (m/Mg (1)
	((th))**
	From $F = GmMe (i)$ $(\Gamma + h)^{2}$ $Fc = m\sqrt{2} ii$
	F = Fc. GranMe = MV ² (r+h) ² T.
	Ctth Me = MUL
	(rah)c
	V2 = GMere
	(Te +h)?.
	V = VGMele
	re th.
	,4
	$V = \sqrt{6.67 \times 10^{11} \times 6 \times 10^{4} \times 6.37 \times 10^{6}}$
	6.37×106 + 300×103m
	$V = 5.049 \times 10^{10}$
	$V = 5.049 \times 10^{10}$ 6.67×10^{6}
	V = 7569 8 mb.
	Volocity of the satellite is 7569.8mb
	The state of the s

6	b, ii, Poriod of the vaterlite
	from period law
	$T^2 \propto R^3$.
	$\tilde{I}^2 = \mathbb{K} \left(\Gamma_0 + h \right)^3$
	lef $k = 0$.
	T2 = (1e+h)3.
	7 - VITE + h)3?
	$T = (6.31 \times 10^6 + 300 \times 10^3)^3$
	T = 1.723×10'09c
	The period of ratellite is 1.723 x 10 ucc.
	The pence of salemire is 1/123×10 dec.
	c, i, Space rockets usually launched from east to west been because the earth revolve the sun from west to east the same disection hence the rockets has to follow the direction of earth revolving around the sun.
	ni solo
	10 - D
	le.
	from: $F_c = \frac{mv^2}{r}ui$
	F = GmMeii
	MV ² = GmMe
	(r4h)2.
6	Gii , $MX^2 = Gidh Me$ $Given (Reh)^2.$
	when on eath surface A12 = GrhMe E TE.
	MYZ = CANIME
	1 1041
	Vo = GMe.
	112 - GMOTO
	$V^2 = GMer_e$. $(r_e h)^2$
	V = GMele,
	(1/0 +6)2
	. Ve (escape o velocity) = (GMe/re has to be imparted.


Extract 6.2 shows the work of a candidate who performed poorly in this question. The candidate was able to write the formula for calculating the orbital velocity of a satellite but failed to substitute data correctly.

2.7 Question 7: Thermometry and Thermal Conduction

This question required the candidates to (a) explain why (i) a body with large reflectivity is a poor emitter, and (ii) the earth without its atmosphere would be too cold to live. In part (b) the candidates were required to (i) identify two factors on which the coefficient of thermal conductivity of the material depends, and (ii) estimate the temperature of the part of the flame

in contact with the brass boiler given that the brass boiler has the base area of $50 \times 10^{-1} \text{m}^2$ and thickness of 1.0cm that boils water at the rate of 6.0kg/min when placed on a gas stove. In part (c) the candidates were required to (i) briefly describe the working principle of a thermocouple, and (ii) calculate neutral temperature of thermocouple thermometer of e.m.f $E = a\theta + \frac{1}{2}b\theta^2$ where θ is the temperature of hot junction, $a = 10 \text{mV}^0 \text{C}^{-2}$, $b = -\frac{1}{20} mV^0 C^{-1}$ and the cold junction is at 0°C .

A total of 12,131 (69.5%) candidates attempted this question, of which 6.9 percent scored 0, 51.1 percent scored 0.5 to 3.0 marks, 32.5 percent scored 3.5 to 5.5 marks, and 9.5 percent scored 6.0 to 10 marks. These scores imply that the candidates' performance was average because 42.0% of them scored 3.5 or more out of 10 marks. The pie chart in Figure 7 depicts the data analysed.

Figure 7: Percentage of candidates' performance per score in question 7.

The analysis indicates that the question was averagely performed by most of the candidates. The candidates who scored good marks (6-10) had adequate knowledge on thermometry and thermal conduction. These candidates were able to briefly explain why a body with large reflectivity is a poor emitter and why the earth without its atmosphere would be too cold to live. Most of them were able to identify factors on which the coefficient of thermal conductivity of the material depends. They were also able to use correct formula to calculate the temperature of the flame in contact with the boiler and to describe the working principle of a thermocouple. Extract 7.1 shows the work of one of the candidates who gave correct responses required by the question.

Extract 7.1

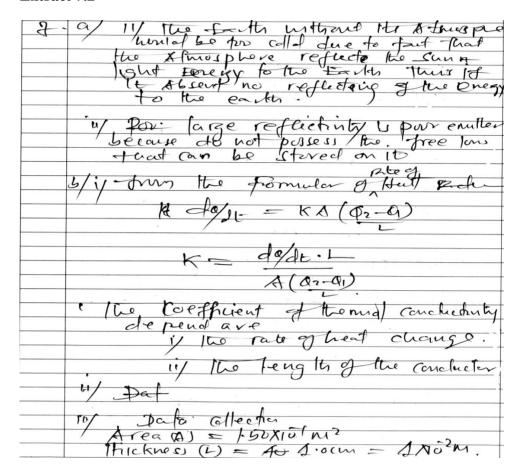
7. (a) i/ A body with large reflectably is a poor emitter due to the fact that a body radiates or emits what it
a poor emitter due to the fact that
a body radiates or enuts what it
has absorbed, one it is a good
reflector then it absorbs less beat
therefore poor end Hen.
ii , the Earth without its almosphere
would be for cold to line due to
the veasor that all the vadiant
energy from the sun incident to the
earth after reflection by the ground
earth after reflection by the ground would be lost to the outer space hence
making the earth very cold.
, and the second
(b) i / factors on which thermal conductivity Coefficient depends and I. Temperature gradient of material II. Cross sectional anea of the material
Coeffeent depends and
I . Tenperature gradient it in a toma!
IT c Cross sectional one of the
me la al
, and the same of

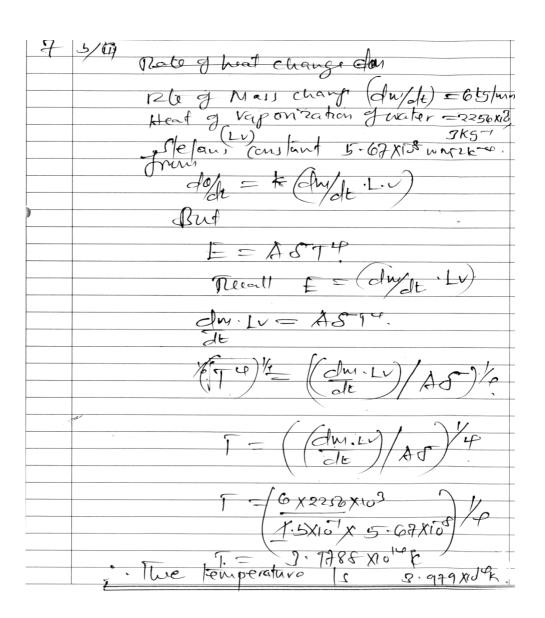
+	D = Lv. V (dm) from
	$\theta = \frac{2256 \times 10^{3} \times 10^{-2}}{1.5 \times 10^{-1} \times 10^{-2}} \left(\frac{6}{60}\right) + 100$
	D = 15040 + 100
	But the value of K is not prouded Temperature of the flowe is
	0 = (15040 +100)°C
	where K is the theme conductivity of book

(c) Worlang of Thermocouple
Thermicouple is the Instrument used in
measuring of temperature by vering the
variation of emf with temperature as its
thermometre paperty.
counder the figure below
V /
cold and Hot function
2

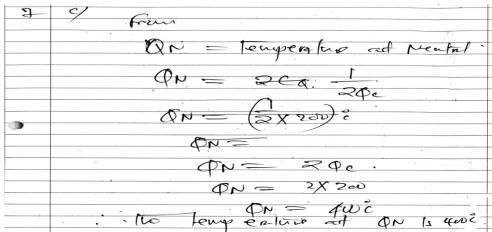
7 (b) in 1 Regard the temperature of the fram	ę,
Data que	1
Aver of brans (A) = 1.5 × 10-1 m2	
thukness of boars (X) = 1x10-2 m	
Pate of venter boiling dm = 6 kg/min	
dt	
$d_{\rm m} = 6 \mathrm{kgl}_{\rm c}$	
dt 60	
Consider the figure belin	
U	
\	
Parameter A.	
_100°(
Ø,	
	-

	Becall from Q = KA do
	Also Q = L dm
	Sime heat conducted by the brans (Q2) is whole used to boil the water than (A (0-100) _ Lv day X
	$B-100 = Lv \cdot x / dm$ $KA (At)$
	$\frac{0 = h \cdot x}{x} \left(\frac{dm}{dt} \right) + 100$
	One terminal of the theomorphe is wainfamed at cold function (one)ting ice) and the other is mainfamed at hot function (boding water) the femperature difference vessills to the flow of emf whose variation is given by Leve a and be one constants
7c	i' / Regard the Neutral temperature gue that = a0 + 1 b0 2
	$a = 10 \times 10^{-3} \text{ V°c}^{-2}$ $b = -1 \times 10^{-3} \text{ mV°c}^{-1}$ $= -2 \times 10^{-3} \text{ mV°c}^{-1}$
	at neutral temperate, whose employed at / = 0 de/ = 0 for = ao +1 bo 2
-	dE = a + b0
	b = a+50,
	On = -a/
	D = -10 mV° c-2
	··· Neutral taperatue is 200°C


In extract 7.1 the candidate was able to explain correctly the parts which required explanations and identified factors on which the coefficient of thermal conductivity of a material depends. He/she also used correct procedures in calculating the value of neutral point.

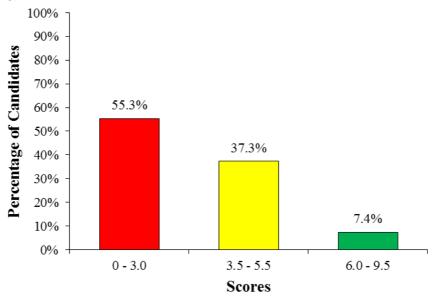

The candidates who performed poorly had inadequate knowledge of the concept of thermometry and thermal conduction. These candidates failed to discover that bodies which are poor absorbers of heat are good reflectors. Consequently they failed to explain why a body with large reflectivity is a poor emitter and that the earth without its atmosphere would be too cold to live. Moreover, they could not identify factors on which the coefficient of

thermal conductivity of the material depends. It was noted that some of them stated "thermometric property and fixed point" as factors that affect the thermal conductivity.


Most of them used incorrect procedures and wrong formula to calculate the temperature of the part of the flame in contact with the boiler and the neutral point. Extract 7.2 shows responses of a candidate who performed poorly in this question.

Extract 7.2

	y celu
0	VIII mas comple make up the Boursel
	y The mo comple with In the frameple principle of when the to liquid 15 at not and cold Junction
	[] fru. E = 00-12502
	2.
	At Old Junction Q = 01
	$E = 100 + \frac{1}{2}(-\frac{1}{12})0^2$
	E = 100-0.02502
	de= 10-2(0.021)a.
	de/do = 10 - 0.050.
	but Sof maximi point retail peut pui
	de = 0
	/40
	0 = 0 - 0.050 $0 = 0 - 0.050 $ $0 = 0 - 0.050 $
	0.05 0.05
	0 = 2000
-	



Extract 7.2 shows that the candidate failed to provide correct answers to all parts of the question. The candidate mentioned the length of a conductor and rate of heat change as factors that affect thermal conductivity instead of cross-sectional area of the material and the temperature gradient across the conductor. He/she also used an incorrect formula to calculate the values of temperature of the flame and neutral temperature.

2.8 Question 8: Thermal Radiation and Thermal Convection

In part (a) of this question the candidates were required to (i) define the term thermal radiation, and (ii) briefly explain why forced convection is necessary for excess temperature less than 20K. Part (b) required the candidates to (i) give reason why the energy of thermal radiation is less than that of visible light, and (ii) calculate emissivity of the body with a surface area of 5.0cm^2 and a temperature of 727°C that radiates 300J of energy in one minute. In part (c) the candidates were required to (i) state Newton's law of cooling and (ii) calculate the time it takes a body to cool from 50°C to 20°C at the surrounding temperature of 10°C if it cools from 70°C to 40°C in 5 minutes.

The question was attempted by 92.4 percent of the candidates, out of which 55.3 percent scored 0 to 3.0 marks, including 16.9 percent who scored 0. The candidates who scored 3.5 to 5.5 marks were 37.3 percent while those who scored 6.0 to 10 marks were 7.4 percent. Generally, the performance of the question was average as 44.7% of the candidates scored 3.5 to 10 marks. The graphical presentation of the data analysed is shown in Figure 8.

Figure 8: Percentage of candidates' performance per score in question 8.

The candidates who performed well in this question had enough knowledge to define the term thermal radiation, and briefly explain why forced convection is necessary for excess temperature less than 20K. They also used correct formula to calculate emissivity of the body. They were also able to state Newton's law of cooling and to use it to calculate the time

taken by the body to cool from 50° C to 20° C. Extract 8.1 is a response from a candidate who performed well in this question.

Extract 8.1

89, Thermal radiation; Is the transfer of head	
through electromagnetic radiation.	
ly forced convection it works under Law of	_
Memtors of cooling where Pts necessari	L ₇
For the excess temperature less than 20	k.
so rewtons Law of woling It work und	
Low excess temperature.	
by v Energy of thermal radiation is less than to	ot
of visible light dere to that the energy	~
which gives out by thermal is intrared	
radiation which it has high wordlength	'n
so the energy received will be Less the	2
that of vaible Light with Low were Ling	<i>(</i> n
by but higher energy.	
Exi	
$\overline{\lambda}$.	
1/ A = 5 x 10 4 m 2	
T=(727 +273)= 1600 K	
P= 3000/min	
P 2 5 3 sec.	
From P = Ae & T4	
S= 5.67 X10-8 Wm-2 x-P	-
e = P	_
4579	
5x10-9x 5.67x103x11000)4 = 0.176	

States that the rate	
States that the rate	of change of heat
is directly proportions	L to the excess te
mpcrature.	
do . (0-0)	10 1
do x (0-01).	n = 5
94	5 , w 8 1
Dafa	
91= 70°=	
Q22 40°C	
time (t) 2 5 minutes	8 8 8 E E E E
45 2 10°C	teary sto i
62/2	Fine Priorities
912 50°C	extension property for
9222°C.	g or a season of think?
	in the part of
trom $da = -k(e-e)$ $da = -kdt$ $e = -kdt$	
e, at	
(do = - Kdt	
Q-Q0	-7
η (α- φ.) φ1 = -kt.	
(h (α-φο)φ ₂	## ## ## P
In (0, -02)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
\n\(\frac{\rho_1 - \rho_0}{\rho_2 - \rho_0}\) \geq - Kt.	-,10,8
(42 &8)	est, e
h (70-40) z-k5	* 1
40 -10	
0.69314 2 -K5 -	D
No. 1	
also two	
In (50-10) = -Kt.	а
50-107	1
1.38629 = -kt @	
divider egn O with egn	Ų.
0.61314 = -125	
1:38629 -Kt	

 dividee egn D with egn (D
0.61314 = -125
 1.38629 -Kt
, 6.93144 = 0.69314 F
0.64316 0.04316
tz 10 minute.
 The time taken is sommetes.

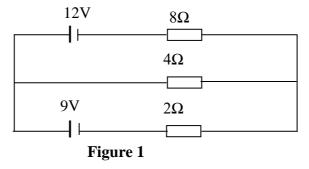
In extract 8.1 the candidate provided the correct meaning of thermal radiation and correctly explained all parts which required explanations. He/she followed the right procedures to derive appropriate formula and used it to calculate the time taken by a body to cool.

However, majority of the candidates scored low marks because of inadequate knowledge and poor mathematical skills in solving heat

questions specifically on the applications of Newton's law of cooling and thermal radiation. These candidates failed to provide correct answers to most parts of the question. Most of them failed to define the term thermal radiation. Some of them defined thermal radiation "as the form of heat transformation of energy". They failed to recall that thermal radiation is "the amount of radiant energy emitted by the body solely on account of its temperature". They also failed to explain why forced convection is necessary for excess temperature less than 20K. Some of the candidates were able to recall and write the formula for calculating the emissivity of the body but failed to calculate its value because of wrong substitution of data values. Extract 8.1 is the response of a candidate who performed poorly in this question.

Extract 8.2

80 (1) Thermal rediation is defined as the heat transfer though empty space celled ozone. This is examplified as the rediation from the sunon earth.
(ii) Cornection is the heat transper which does not require medium on heat transper for example, heating a metal on fire or flame. - Forced connection is necessary because
(ii) Connection is the heat transfer which does not require medium of heat transfer for example, heating a metal on fire or flame. - Forced connection is necessary because the heat most transferred from high range to the lower range and after reaching to the meximum print both conditions become at equilibrium position ine the heat and heated object or nod-like metal.
80 (i) Newton's law of cooling states that, "At physical conditions like temperature and pressure, heat loss in the cooling system is equal to the heat gain to that system".
(ii) Date given Book temperature from FOC to 40°C in
Temperature of the Summiding = 10°C Coquired to calculate time taken to coof from 50°C to 20°C.


80	(ii) from the equation. $0 = (0_0 - 0_s) e - 0_s$
	- let
	$\theta = (0, -0, 0) e^{-t^2} - 0$
	Where 0 = 700 400
	$0 = 70^{\circ}C$ $0 = 10^{\circ}C$
	0 = 102
	t = 5 minutes
	Then = (70-10) e - Lt
	40 = (70-10) e - 10
	, -let
	40 = 60e -10
	But t=5 minutes
	1 -5k
	40 = 60 e - 10 But t = 5 minutes 40 = 60 e - 10
	-5h
	40+10 = 60e
	50 = 60e-6k
	, 50 = 60e
	Introduce log both sides log 50 = -5klog 60e log 50 = -5k log 163.1
	09.50 = -5klog 60e
	log 50 = -5k log 163.1
	tence 1c = -0.0613
	Again 1 7-kt
	From $Q = (Q_0 - Q_1) e - Q_7$
	Hence $C = 0.0615$ Again From $O = (0_0 - 0_1)e^{-kt}$ Where
	D=20°C
	D= 50°C
	8 = 10°C
	$0 = 20^{\circ} C$ $0 = 50^{\circ} C$ $0 = 10^{\circ} C$ $1 = 7$

8 (c)	(i) 20 = (50-10) e - 10
8 (6)	25
	20 = 40e -10
	20+10 = 40 e 0.0613t
	30 - 400-06/2t
Introduce	Introduce log both sides
	log 30 = 0.0613t log 40e
	log 30 = 0.0613t log 108.93
	t= 0.7 minutes or 42 seconds
	Hence the time will be or 7 minutes
	or 42 seconds.

In extract 8.2 the candidate defined incorrectly thermal radiation as the method of heat transfer in empty space called ozone and thermal convection as method of heat transfer which does not require medium of heat transfer. He/she also failed to state Newton's law of cooling and hence failed to apply it to calculate the time taken by the body to cool from 50° C to 20° C.

2.9 Question 9: Current Electricity

Part (a) of the question required the candidates to (i) define the term junction as applied in electrical network, and (ii) state the physical significance of Kirchhoff's first law. Part (b) required them to (i) explain why Kirchhoff's second law is sometimes referred to as the voltage law, and (ii) list five points to be considered when applying Kirchhoff's second law in formulating analytical problems or equations. In part (c) the candidates were required to study the circuit diagram provided and then to (i) mention the number of loops in the circuit and (ii) find the current flowing through the 2Ω , 4Ω and 8Ω resistors.

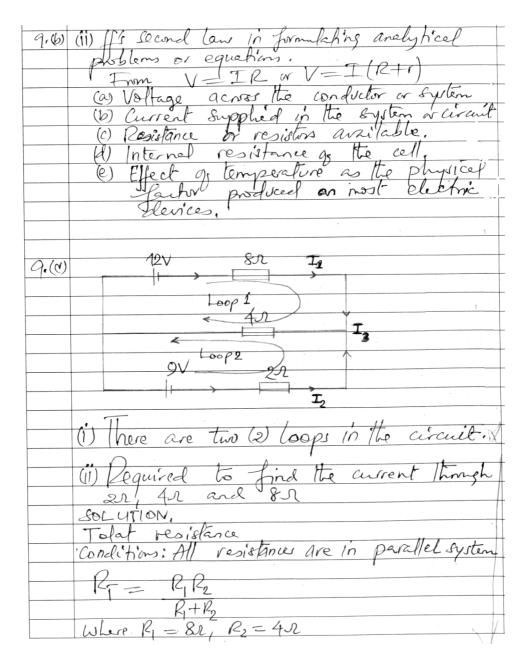
About ninety percent (89.7%) of the candidates attempted this question, and their scores were as follows: 42.5 percent obtained below 3.5 marks, including 12.5 percent who scored 0; 31.3 percent of the candidates scored 3.5 to 5.5 marks; and 26.2 percent scored 6.0 to 10 marks. This analysis shows that 57.5 percent of the candidates scored from 3.5 to 10 marks, which implies that the question was averagely performed. Figure 9 is a graphical presentation of this analysis.

Figure 9: Percentage of candidates' performance per score in question 9.

The candidates who scored high (6-10 marks) in this question demonstrated a good mastery of current electricity as they were able to define the term junction as applied in electrical network, state the physical significance of Kirchhoff's first law, and explain why Kirchhoff's second law is sometimes referred to as the voltage law. Most of them were able to study the circuit diagram provided and they correctly calculated the required values of currents through the resistors. Extract 9.1 shows a sample of a good answer.

Extract 9.1

Qc	C) T
- [4]	O) Junction - With a point where by various reconnections Meet, It sometimes called node
	-17 the boint music of ranger works od?
	10, 66£ It sometimes called kape
	0.114 0.11
	(11) It show Law of consensation of charge
(7)	(1) It's because it consist of extention doop
(3)	(1) It's pecans It consist of schenting geob
	across the whole circuit and electrom's
	tive Force of a circuit
9(4)	a) Indicate direction of current
	(2) Indicate number and direction of
	Loop
1 1	O) consider direction of concent in which!
	a) When pireston of carrent and loop arether
	same extensed george a socitive
	as a good last the size to artesis and loop are
	opposite putential from u neactive
	(4) Consider termined or gower Eugsly
14.	0) When termino ore in same direction
	resultant electromotive Force is obtained
	by summing volts of individual.
	(1) When termind are in opposite kirection
	the resultant electromotive Force u
	Obtained by different between
	electromotive Force of the supply
(C)	(1) Those are three (3) Loops
	(11) Consider Figure below
	124 80
	7 1
	A LA LLO
	I of dr sal
	From Eirchhoff's current law
	TET+T
	Consider loop A and Eirchhoff's
	Voltage Law
	Jon Je www


L	
9(4)	(1) 2 = 1 + 8(1 + 1)
	12 V = 47, +87, +87,
	12V=1212+81, (1)
,	Now consider way and brethoff wHageland
	9/= 4/2 - 2/1 (1)
	dolving equally and all
	I = -1.07148A I, = 1.714A
	$I = I + I_{I}$
	I = 4.071428A + 1.71428 A
	I = 0.6428A
	carrent through 20, 40 and 30 resistor
	are 1.071428 A 1.71428 A, and 0.6428 A
	respectively
-	

In extract 9.1, the candidate gave correct responses to all parts of the question.

The candidates who scored low marks in this question lacked knowledge on current electricity as they failed to provide correct answers to almost all parts of the question. They failed to define the term junction as applied in electrical networks. Some of them defined the term junction as "a point where all currents originate". Others defined junction as "the gap which inhibits the flow of both electric current and charge". The correct response should have been "junction is a point in an electric circuit that joins three or more branches". They also failed to state the physical significance of Kirchhoff's first law and to explain why Kirchhoff's second law is sometimes referred to as the voltage law. Some candidates explained the significance of Kirchhoff's first law as "it implies the conservation of mass" instead of "conservation of charge as no charges accumulate at any given point in the electric circuit". Furthermore, they failed to use Kirchhoff's laws of electric network to calculate the value of the currents through resistors in the circuit. Extract 9.2 shows the sample of the candidate who performed poorly.

Extract 9.2

9(a) (1) Junction in electrical network is defined as the gap which can resist the flow of electric charge. This happens when it becomes wider. For
as the gap which can resist the
flow of clerkic charge his happens
when it becomes mider. For
example from the comparison of
example from the comparison of conductors, Semi conductors and insulators.
(ii) Physical Significance or Kirchhoffs
First law is to determine the conservation
of energy and electric current in a.
(ii) Physical Significance of Rirchhoffs first law is to determine the consentation of energy and electric current in a circuit or system.
9.6) (i) Ceasons for Kirchhoffi second law to
be referred as voltage law is that the
majoring charges supplied are potential
9.6) (i) Reasons for Kirchhoff's second law to be referred as voltage law is that the majority charges supplied are potential differences or volts.
(4) Points to consider when applying Kirchho-

In extract 9.2 the candidate failed to define junction and to state the significance of Kirchhoff's first law. Also he/she wrongly calculated current in the loops using Ohm's law instead of Kirchhoff's laws of electrical networks.

2.10 Question 10: Current Electricity

This question required the candidates to (a) give the definitions of the terms (i) phase of alternating e.m.f and (ii) the root mean square (r.m.s) value of alternating e.m.f. Part (b) required the candidates to calculate the (i) current flowing in the circuit and (ii) the power dissipated in an a.c circuit that consists of a pure resistance of $10~\Omega$ which is connected across an a.c

supply of 230V, 50Hz. In part (c) the candidates were required to determine the (i) frequency of the e.m.f and (ii) the net reactance of the circuit consisting of a $25\mu F$ capacitor, a 0.10H inductor and a 25Ω resistor that are connected in series with an a.c source whose e.m.f is given by $E = 310\sin 314t$ volt.

The question was answered by 48.3 percent of the candidates, out of which 51.0 percent scored below 3.5 marks out of 10 marks, of which 33.4 percent scored 0. The candidates who scored 3.5 to 5.5 marks were 24.4 percent while those who scored 6.0 to 10 marks were 24.6 percent. The candidates who scored from 3.5 to 10 marks were 49.0% indicating that the performance of the question was average. The graphical presentation of these data is shown in Figure 10.

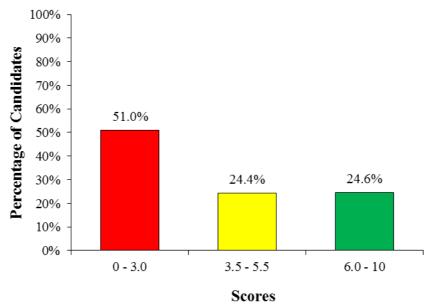


Figure 10: Percentage of candidates' performance per score.

The majority of the candidates who scored good marks (6.0-10) were able to give the definitions of the terms phase of alternating e.m.f and the root mean square (r.m.s) value of alternating e.m.f. They were also able to use the required procedures and formulae to calculate the current flowing in the circuit and the power dissipated. Extract 10.1 shows a typical answer.

Extract 10.1

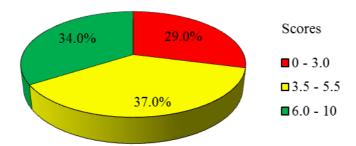
10 @ O sphace afatteragle end in which the cornert buttage or lags behind t	- C tH ago
in which the amost	is beone to
cuttage or lags behind T	4 witage.
(ii) Rout men Square (ros) of the conact of the sl which will per anuit ord Course the effect or that produces whose thrugh the some	fa gic — D
the conact of the s	trady wottige dic
lottage which mi po	a thrugh to
anuit of Cours tel	some healing
effect or that promises	by the are
whage through the same	Grant.
(b) Cenader the are consid	below
Los jump	
	No. 1
A	8 1.7
	* 1
R300, SOUL	*
6 Chrot Floury MD anut	* 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
EZTA	*
	* N. A.
7 = 7 2 (290) X	*
1 7 R3A	•
to and though the	anul will be 23A
	*
1 pour chiscapater	
	Y 4
p - 2 ((68) 5× (0) m	
p-2 ((28)/2× (0) W	8.3.2
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	

In extract 10.1 the candidate provided correct answers to most parts of the question but failed to correctly define the phase of alternating e.m.f.

On the other hand, most of the candidates with low scores (0-3.0) failed to give the definitions of the term phase of alternating e.m.f. One candidate defined it as "the phase that occurs due to variation of time". Others wrote the phase of alternating e.m.f as "the angle that the alternating e.m.f. subtends to the horizontal". The correct response of the term phase of alternating e.m.f is "the fraction of the time period that has elapsed since the e.m.f last passed its zero value in the positive direction". They also failed to define the root mean square (r.m.s) value of alternating e.m.f and to calculate the current flowing in the circuit. Most of them confused the

r.m.s values with instantaneous values of voltages and currents. Extract 10.2 shows a sample of a poor answer.

Extract 10.2


10	(Data guen:
	Resultance (R) = EDB
	Voltago (V) =. 230V.
	Leguney (1) 50Hz
	Required (1) lewest
	(11) Power alypated
	from Impedance, for R-Clinus
	t = TR/X+ Xil
	VIZ V P. VR. VIZIR P. XX. VK E VIL V JSHIME HILLE CZ 4 PELSO
	VI = VR + VR.
	V1 = 1R AXX.
	VICE VILL Assume that C= 4 #15
	E = 100) 4. (1) 1000
	7 3 1-83/52
	Impedance (2) = LDR.
	Their from
	No II.
	7 - 1/
	7 - 1/2
	7 = 1302
	LED 31831
	Je 31091
	7 - 2 W A = 0.00
	7 = 28 A, =007,
	tactari to o o i i
910	
	Prover dest juted
	PZ I2R.
	12
	P= 6.07) X 10
	2/0/09/7
	=, 0,0491,
	power duri puted zoro497

In extract 10.2 a candidate was only able to write correctly the expression for finding power dissipated in the wire.

2.11 Question 11: Electronics

Part (a) of the question required the candidates to (i) mention the importance of doping as applied to semiconductors, and (ii) mention three differences between n-type and p-type semiconductors. Part (b) required the candidates to explain (i) why transistors are used mostly in common emitter arrangement and (ii) the condition necessary for a transistor amplifier to work as an oscillator. In part (c) the candidates were required to (i) explain the use of an op-amp as a summing amplifier and (ii) calculate the output potential V_0 given that the input voltage $V_1 = 4.0V$, $V_2 = -2.5V$ and $V_3 = 1.5V$ and the resistances are $R_1 = 39\Omega$, $R_2 = 4.7k$ Ω , $R_3 = 10k\Omega$ and $R_4 = 2.7k\Omega$.

The majority (92.1%) of the candidates attempted the question, out of which 29.0 percent scored below 3.5 marks, including 3.8 percent who scored 0. The candidates who scored 3.5 to 5.5 marks were 37.0 percent and those who scored 6.0 to 10 marks were 34.0 percent. The statistics show that the majority (71%) of the candidates scored 3.5 to 10 marks, indicating that the topic was well understood by most of the candidates. The data are pictorially presented in Figure 10.

Figure 10: A summary of candidates' performance in percentage.

The candidates who did well in this question, (34%) were able to mention the importance of doping as applied to semiconductors and to differentiate between n-type and p-type semiconductors. Most of them were able to explain the use of an op-amp as a summing amplifier and to calculate correctly the output potential V_0 of a circuit. Extract 11.1 shows a sample response from one of the candidates who performed well in this question.

Extract 11.1

11.	a) (i) The doping used to increase the number of carrier charge cowines in semiconduitos
	(is sleen and (remarker). So this leads to
	Increase the oletical conductivity of the
	Semicondutor
	(i) . I ference & look wen n-to pe on & p- ty pe during
	n-tope Semiconduitor P-tope Semiconduit
	(9) They are formed by doping (9) They are formed with pentanalent atoms by a doping with this value atoms
	(b) The electrons are majority change (b) Then have holes
	(b) The electrons are majority charge (b) They have holes Councie while holes are minet; which are majority
	charge carrier while electrons are minority
	EXECUSION SAND TOURS MINOUNT
11	(9) (1) N-tope Sanicondutos P-tope Sanicadutos.
	(c) They have donor (c) They have acceptance energy level just energy level just below conduction above covalence band in energy energy (band) in level diagram,
	(b) (i) The Following cure Reasons (G) The Common emitter arrangement has greater current gain, p
	(b) if has high voltage and power gain than other our vangements,
	(c) if has greater temperature range of operation.
	(i) The terminator work as oscillator, when the Industor is connected as as the Load,
	nears, the load resistor should be
11.	(e) (i) Opomp used as Svemming amplifier when the small imput voltages in are applied at once as single input Voltage during amplification pricess.

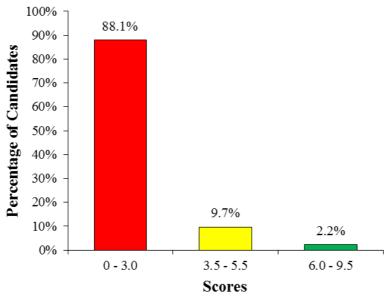
Criver, Py = 39 km, V, = 4 V Pa = 4.7 km, V2 = -2.5V Pa = 10-R, V3 = 1.5 Py = 2.7km Frem Lytto
Ry = 10-R, V3 = 1.5 Ry = 2.7km Frem
Ry = 10-R, V3 = 1.5 Ry = 2.7km Frem
Prem Trtte 0
Frem Tythe O
Frem Tytle 0
Tc T-
++ 2 +.
But Fo - Vo
But Ip = Vo
F = 412+ Is
It = 1 + 12 + 12
No = 1= - (N1 + N2 + N3)
129 1 (14)
Vo = -R4 (V1 + V2 + V3)
10 = 12 (P)
= -2.7 (4 - 2.5 + 1.5)
$=-2.7\left(\frac{4}{39}-\frac{2.5}{4.7}+\frac{1.5}{10}\right)$
No = 0.754V.
(e) (ii) The output potential, vo = 0.754V

Extract 11.1 shows that the candidate managed to meet the demands of the question by giving the correct answers as required. However, he/she failed to explain how a transistor can work as an oscillator.

Conversely, the candidates who scored low marks in this question lacked both mathematical skills and basic concepts on electronics. They failed to mention the importance of doping as applied to semiconductors. For instance one of the responses from the candidates was: "the importance of adding impurities in the pure intrinsic semiconductor are due to allow the semiconductor to function from positive to negative". The correct response should have been "the importance of doping is to increase conductivity of semiconductor by increasing the number of charge carriers". Some mentioned the differences between n–type and p–type semiconductors but in reverse order and others used the formula for potential division to calculate the output potential V_0 of a summing amplifier. Extract 11.2 is a sample of a candidate's poor answer.

Extract 11.2

	INDEA NOMBERS.
11a1 1/10 Increase the Condu	dust of the Substance.
and the second s	* * * * * * * * * * * * * * * * * * * *
(11) n-type	P-type.
(11) n-type 1 Contain the frivolent element 11 Inwor clopping	/ Centain the pentucions
element	-element
11/ nulve clopping	if andre the temperature
	i i i i i i i i i i i i i i i i i i i
Its () Because the transisters when It arranged to to that are consumed in order to do not	have high Whage therefore
when It arranged to	the base can burst due
to that are corres	reged to the emmeter
Inorder to do not	destry.
16 (10 Because transister at Jubitance due to fl late place in the	so can ascillate the
substance due to fl	ie amplification which
late place In the	Oscillation.
C(U / The Op-comp used	as dumming amplifier
by Increase the	Mage and minimize
C(U) / The Op-comp used by Increase the 1 the Current the very high Curp coperate Inthe	What Used Is
very high Cump	in to the Whago
operate Inthe	Circul'
) v	


1101 Goven:	
R1 = 39 KR	
li= 4.7 Kn	
L3 = IOKA	
R4 = 2-7 KN	
$V_1 = 4V$	
$V_1 = -2.5 U$	
$V_3 = 1 - \Gamma V$	
leguired;	
V₀ ¹	
from (D)	
$V_0 = \begin{pmatrix} R_t \end{pmatrix} V_t$	
Vi '	
$R_{+} = 56.1 \times 10^{-3} \text{n}$	
V ₁ = 36.1710 Jt	
$\frac{v_{i}!}{v_{i}!} = \frac{3w}{1000}$	
UU = (Seixio3n) Impu	
$U_0 = \left(\frac{S_{\text{CIXIO}^3}n}{3n}\right) 1000\nu$	
= 1-87V	
1. Vo = 1.87V.	

In extract 11.2 the candidate provided incorrect responses to all parts of the question. For example in differentiating types of extrinsic semiconductors, the candidate wrote that the n-type contains trivalent element and p-type contains pentavalent element instead of n-type is formed by adding pentavalent while p-type is formed by adding trivalent.

2.12 Question 12: Electronics

Part (a) of the question required the candidates to name three electronic circuits in which multi vibrators can be constructed. Part (b) required the candidates to (i) list down three types of multi vibrators and (ii) briefly explain the applications of multi vibrators listed in 12 (b) (i). In part (c) candidates were required to (i) mention two characteristics of op-amps and (ii) briefly explain why op-amps are sometimes called differential amplifiers.

The question was attempted by 4,923 (28.2%) candidates, out of whom 46.8 percent scored 0 marks, 41.3 percent scored 0.5 to 3.0 marks, 9.7 percent scored from 3.5 to 5.5 marks, and only 2.2 percent scored 6.0 to 10 marks. These scores imply that the performance of the question was generally poor.

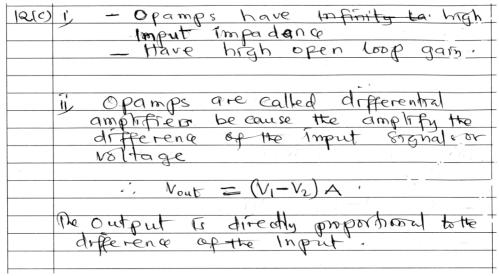
Figure 12: Illustration of candidates' performance in question 12.

Figure 12 shows that, the candidates who scored 3.5 marks or above were 11.9 %, implying that the general performance in the question was poor.

The candidates who performed poorly in this question (88.1%) lacked basic knowledge on multivibrators and op-amps hence they provided incorrect responses to most parts of the question. For example, one of the candidates mentioned types of multivibrators as "weight multivibrators" and "unweight multivibrators" instead of "astable, bistable and monostable" other listed "fixed circuits and integrated circuits" as part of the circuits where multivibrators can be constructed. Extract 12.1 presents a sample of a poor response.

Extract 12.1

12 (O ii/ Opaupe are sometimes called applemental anyther
	because it undergoes both mathematical and
	electrical analysis such addlarmal, mulliplicating
	differentiation and Integration.
	(1) Two Characteristics of Gauge.
	-> luptil durateristics> Output characteristics
	-D Output characteristics
	Types of nultitudentine.
12.	5/ P Decillator multiplications
	-P Integrator multinbrations
	+> Fixed nullivalrators,


9/ Three destrome crawl in which multimbrate can be
Circ/nutecl
9. fixed comil
9. Oscillator crawt
111. Integrator cerant

In Extract 12.1 a candidate mentioned "fixed circuit, oscillator circuit and integrator circuits" as three types of multivibrators instead of "astable, bistable and monostable multivibrators". The candidate also mentioned "input and output" as characteristics of op-amps instead of "very low output impedance and very high input impedance".

The candidates (2.2%) who performed well in this question were able to list three types of multi vibrators and to explain the applications of multi vibrators. Most of them were also able to mention the characteristics of opamps and to explain why op-amps are sometimes called differential amplifiers. But some of these candidates failed to name three electronic circuits in which multi vibrators can be constructed. Consequently they failed to score all marks in the question. Extract 12.2 is a sample answer from a candidate who answered this question well.

Extract 12.2

DATIACI	. 12.2
1260	· - Capacitors Resistors
	- Capacitors
	- Transistors.
100	
(b)	1 Types OF MULTIVIBRATORS.
	- A stable multimbrator.
	- Bistable multivibrator
	- monostable muttivibration.
_	
	ii Application
	- Brotable multivibretures used as frequence
	divider and also as binary convertor
	- Monostabable Can be used to
	generate signals of various
	have form c.
	- Astable is used to produce output
	- Astable is used to produce output voltage / signals of different wave
	forms,
	0011113

Extract 12.2 shows the work of one of the candidates who scored high marks. Though the candidate provided correct responses to most parts of the question, he/she failed to name the types of electronic circuits in which multivibrators can be constructed. He/she mentioned *transistors*, *capacitors* and *resistors* instead of *junction/field effect transistor*, *logic gates* and *operational amplifier*.

2.13 **Ouestion 13: Telecommunication**

Part (a) required the candidates to discuss the mode of action of each of the following sensors (i) Thermistors (TH) and (ii) Light Dependent Resistor (LDR). Part (b) required the candidates to give symbols, expressions and truth tables for (i) NAND gate and (ii) exclusive NOR gate. In part (c) the candidates were required to (i) explain why NAND gate is considered to be basic building block for a variety of logic circuits, and (ii) produce the truth table for the gate provided in Figure 3 and show that it behaves as an AND gate.

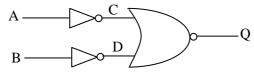
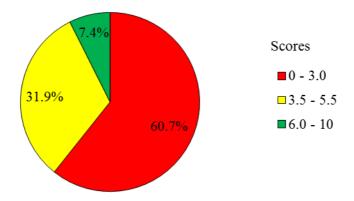



Figure 3

The question was attempted by 96.3 percent of the candidates, of which 60.7 percent scored 0 to 3.0 marks, including 18.1 percent who scored 0. The data further indicate that 31.9 percent scored 3.5 to 5.5 marks, 7.4 percent scored 6.0 to 10 marks. This analysis shows that 39.3 percent of the candidates scored from 3.5 to 10. These scores imply that the question was averagely performed. These data are pictorially presented in Figure 13.

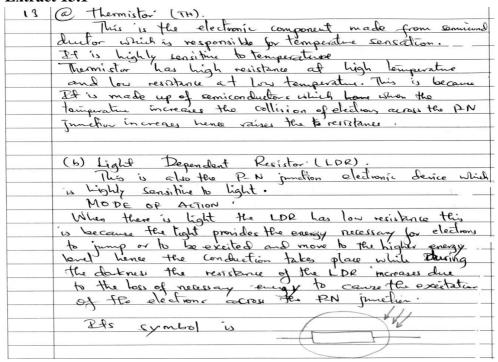


Figure 13: A summary of candidates' performance in percentage.

The data presented in the Figure 13 indicate that a total of 39.3 percent of the candidates scored 3.5 marks or above, which is an average performance.

The candidates who performed well were able to discuss the mode of action of a thermistor (TH) and a Light Dependent Resistor (LDR). Most of the candidates responded correctly by constructing truth tables for NAND gate and Exclusive NOR gate. They were also able to explain why a NAND gate is considered to be a basic building block for a variety of logic circuits. Extract 13.1 shows a sample answer given by a candidate who performed well in this question.

Extract 13.1

13	(5) (1) NAND gate.						
	(5) (1) NAND gate. (3) Symbol.						
	(i) Expressions of the NAND gate (i) $\overline{A \cdot B} = Z$. (ii) $\overline{A} + \overline{B} = Z$.						
		(11)	ATB	= 2.			
			1	1		4.	77
	(76)	The	truth ter	Ы.			
	(71i) The truth table. In Putz. out Put.						0. (Ver - 2x - 2 × 2 - 4 - 1
		A	B	AB	AB = 2	Ζ.	
		0	0	0	1		
		0	1	0	1		y
		1	0	0	001	1.17.1	
		l	11.	1	0.		
	- vi -						
- <u> </u>							
	(11). Exclusive NOR gate.						
	(5) Symbol.						
	X - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 -						
	8						
	(11) Expression.						
			A (B) =	2 7,			

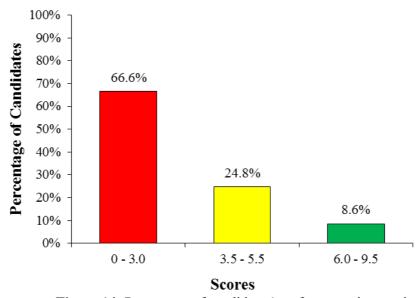
t3	the furth table.
	In puts output.
	A D Z.
	0 0 1
	0 1 0
	1 0 0
	1 1 1
	- <u> </u>
(UDNAND gate is considered as a basic building block of all other gates because it has the ability of forming all offices basic logic gates for example OR gate, Not gate, AND gate and office gater.
	block of all other cater because it has the ability
	of forming all ofther basic logic gates for
	Exemple OR gate, NOT gate, AND gate and
	ofter gater
	3
	example. Not gate
	A —)o— & ·
	(1). The truth table.
	A B C D Q.
	0 0 1 1 0
	0 1 1 0 0
	1 0 6 1 0
	1 0 0 1.
	Also the truth table for AND.
	Ano
	A- 4
	0 1 0 0
	1 0 0
	1 1 1
	Since the toth table of AND anti is circles
	Since the touth table of AND gate is similar to that of the logic arount then it is similar to
	10 mus of the logic circuit Then It is should no
1 2	AND gate'

In Extract 13.1 the candidate answered correctly all parts of the question.

However, some of the candidates performed poorly in this question because they had inadequate knowledge on concepts of logic gates. They could not discuss the mode of action of thermistors (TH) and that of Light Dependent Resistor (LDR). Most of them gave incorrect symbols, expressions and truth tables for NAND gate and exclusive NOR gate. Extract 13.2 shows a sample answered by a candidate who performed poorly in this question.

Extract 13.2

13.	(a)	The	1	v de	of Actio	is of the following
					mis for (7	
	743	13	1 te	type	of diod	o which work
	und	ler,	/te	eve	se bias	where by it
	dep	pend	02	7 th	e amoun	t of heat applied.
	The	an	DUV	of of	heat a	letermine its
	Con	rdurt	svity	to 6	e high o	or low. Inorder to
81.43	M	inim	120	the for	bizlen g	up to allow the
en e	1	you o	7 0	wrrew	t at th	e Junction.
	1 2 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	173 . 183				
		6	54	ght 1	Dependent	t Pesistor (LDR)
	Is	1 to	di	de	which a	vorte in a reverse
122	bia	o W	her	e it	Conduct	ivity depend on
	lig	Lt e	ixh	ich	smile on	n Hat Junction -
	12	100	H	0 /1	21+ 11	stensity high
	Con	duzti	ivi,	ty	Continue type indexts agricum	
			-39	mbol		OUT O AUSSIGNATION SERVICES OF CONTRACT OF
	del his			·		<u> 1909 - Erri Maria II. erri Anna II. Erri II. e</u>
1 1/		1. 1.		7	7	
1.7						en la companya de la
	(6)	is ~	AN	D G	ATE	
	1	A				e, ili de trajal. Persipa <u>palacut sanata e la la la la la</u>
	le ji je sa)	
	N. 1 1 1	15 0-				
			In	s the	ta 56.	und Montal des
			In	put	Output	
			A	B	c.	NAND GATE is the
	1 1		0	0	٥	gate which whole
-		jide abati	0	e Hiji	6	is high only when
100			1	D) 3 AV 0	the staput are high
					1	other wise low.


13-	(b) Exc	LUSI	VE N	ORGATE	St. 52 o. 12	Trial Co	
					one output	where	
	by outpe	t is	his	il on	y when be	he	
	Input o	100	is dil	Genet.	state.		
			Syms		To the second se		
		X X X 1.3					
	A)			
	BO		1)_		and the first transfer of the second		
						A 12 1	
1	Tooth table						
	1 2 2 1 2 1 1 10	Inp	ut	output	1 10	2 2 2 2 2	
			B		Action of the Control		
	les la La	0	D	0		W.S.	
	1 3 Su Su Su	U	21.00	1			
	e V 0 0	1	0	1	1 20 0 = 0 30 july		
	Record of the Company	1	1	U		3 4 12	
8							
	(e) is A NAND GATE 15 considered as the						
	building block for variety of logiz						
	gat circuit because a NAND GATE						
	show ligh output only when to						
	both input are high. Where there						
	15 no any confision.						
	A THE RESERVE OF THE PARTY OF T						

Extract 13.2 shows a sample given by a candidate who performed poorly in this question. Although, the candidate drew correctly the symbol for Exclusive NOR gate, but he/she produced the truth table for Exclusive OR gate instead of Exclusive NOR.

2.14 Question 14: Environmental Physics

In part (a) the candidates were required to (i) define the term aerial environment and give two examples and (ii) describe three ways at which the aerial environment is threatened. In part (b) they were required to (i) briefly explain three major concepts on solar wind and (ii) mention four points on how soil environmental components influence plant growth.

A total of 14,570 (83.4%) candidates attempted this question. The data shows that 29.2 percent scored 0, 37.4 percent scored 0.5 to 3.0 marks, 24.8 percent scored 3.5 to 5.5 marks, and 8.6 percent scored 6.0 to 10 marks. These scores imply that the performance of the question was poor as 66.6% of the candidates scored below 3.5 marks.

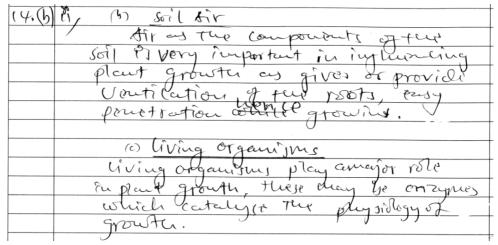
Figure 14: Percentage of candidates' performance in question 14.

Figure 14 shows that the candidates who scored 3.5 marks or above were 33.4 %, implying that the general performance in the question was poor.

The candidates who scored low marks (66.6%) provided incorrect answers to most parts of the question as they lacked knowledge on basic concepts on Environmental Physics. They failed to define the term aerial environment and give its examples. For example one of the candidates defined aerial environment as "the environment which consists all things that are found on the earth's surface example schools and JKT". The correct response should have been "the atmospheric zone in which every living organism depends; examples are air, water vapour, dust, ozone layer and bacteria". Furthermore, the majority could not explain the major concepts on solar wind. Extract 14.1 is a sample of a candidate's poor response.

Extract 14.1

14. (a) (i) Aprial	environment is the Upper surface
of the earth	
	and scape and Land or sand within
The own of	(vater bodies)
(ii) 1. M	ining processes
1	imping or du garbages
_	th quaker.
(b) (i) 1. W	es unid to produce electricity.
da Éle	the It is a renewable source of
	energy
3. MJ	echanical energy charges to electrical
ere	echanical energy changes to electrical
(i) 1. Provid	de necessary nutrients example,
1	nonutrients and macronutrients.
2. Provid	u fertility to the soil
1	ort a plant on searching of
trate	,
4. Provid	e the necessary pH for the plant.


In Extract 14.1 the candidate failed to provide the correct answers to all parts of the question. For example he/she defined the aerial environment as the upper surface of the Earth's crust, that is, landscape and land within the ocean.

Conversely, the candidates who did well (8.6%) demonstrated mastery of the concepts of Environmental Physics as they were able to define the term aerial environment and give examples. They were also able to describe three ways in which the aerial environment is threatened, explain major concepts on solar wind, and mention points on how soil environmental components influence plant growth. Extract 14.2 shows a good response from one of the candidates who scored high marks in this question.

Extract 14.2

1418/ Acrial ouriron mont.
The 9s the ouriron mont of the
The estue ouvironment of the atmosphere, le the convironment above the cortes surface.
apore the corte's surface.
Examples of acriel ouriroupouts are;
· The ozont layer. · Mixture of gases in the
atmosphere.
II The actived our roument to threatened
by the pollowing;
· Building of large industries
Building of large industries and exposing the weste products
from ferom It the atmosphere.
The presult to excessive soft in
The posult to excessive soft in The stay which may cause said
rain
· cutting down of trees.
By calting Down trees unch heat will fall directly to earth's surjace, and may fail to absorb all this.
will fall directly to earth's surgall,
and they fail to absorb all this.
The reflected sunlight energy will
result to agribal war rung.
9
· Bistruction of the Ozone layer.
The Grone layer Ps districted by
· Distruction of the Ozone layer. The ozone layer is distructed by Several ways but the major ones.
may be due to juriouse in grown
house gases in the atmosphere.

Election W. 1611 > 415 00 - 11 or of P (1 married)
4.(4) 11, 1200 110 8 cone (aggr & con 110 9ed,
a ugut and cospin c range will
fall difectly to living organism
on the perties surgeled Conting
Heal is, Illhe the orone layer to destroyed, whight and cornic rays will gall directly to living organisms on the centre's surged conting health problems like skin ander.
The state of the s
(b) 3/ Solar winds are awing electrons
and protony resulted your tens
flave of tur Jun.
The diajor Concepts of solar wonds are,
- The Objerved thoring olectrons -
protons which atrongs termselves
onder ten enjunce of earth's
magnetic/electric field to form
Jose ore tue rosult of flare or eraption of the Sure of the rosult of the Belts.
These are the hosult of place or
craption of the sun.
mequal houting of the sun.
unequed houting of the Jun.
influence plant growth russe components are:
influence plant growth russe
components ari.
(a) Suil Water.
soil water 92 very important in
plant growter as Vit lay droly 1+ trus
(a) Soil Water. Soil Water 92 very important in plant growth as lit hydrolyse two seed tester incorder for seed to germinate ensily.
germinate outily.
Also provide busic medium for ouryres.

Extract 14.2 shows a candidate's good responses to the question. The candidate was able to give the correct answers to most parts of the question but he/she failed to mention one of the ways which threaten aerial environment.

3.0 ANALYSIS OF THE CANDIDATES' PERFORMANCE PER QUESTION IN PHYSICS 2

3.1 Question 1: Fluid Dynamics

This question had four parts, namely (a), (b), (c) and (d). In part (a) the candidates were required to (i) distinguish between static, dynamic and total pressure as applied to streamline flow and write their respective expression in terms of fluid velocity v, fluid density ρ, pressure P and height h of the point with respect to a datum and (ii) calculate the flow velocity and volume flow rate in the pipeline in which the static pressure is 4.3 x 10⁴ Pa, total pressure is 4.7 x 10⁴ Pa, the area of cross–section is 20 cm² and the density of a non-viscous fluid is 1000 kg/m³. In part (b) the candidates were required to (i) state the Newton's law of viscosity and hence deduce the dimensions of the coefficient of viscosity and (ii) calculate the coefficient of viscosity of motor oil from the given experimental measurements; when the mass of glass sphere is 1.2 x 10⁻⁴kg, diameter of sphere is 4.0 x 10⁻³m, the terminal velocity of sphere is 5.4 x 10⁻²ms⁻¹ and the density of oil is 860 kgm⁻³. Part (c) required them to (i) explain briefly the working of a car carburetor by applying the Bernoulli's theorem, (ii) find the pressure across the first capillary in a system of three capillaries whose internal radii are 3R, 4R and 5R connected in series when the pressure across the third capillary is 8.1mm of liquid. In part (d) the candidates were required to give reasons on the following observations: (i) A flag flutter when strong winds are blowing on a certain day, (ii) a

parachute is used while jumping from an airplane, and (iii) hotter liquids flow faster than cold ones.

The question was attempted by 83.6 percent of the candidates, out of those 5.0 percent scored a 0, 64.8 percent scored from 0 to 6.5 marks, 29.1 percent scored from 7.0 to 11.5 marks and 6.1 percent scored from 12 to 20 marks. These score indicate that the question was averagely performed. The performance of the candidates in this question is also depicted by the histogram in Figure 15.

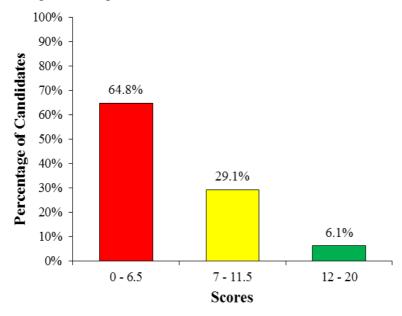


Figure 15: The candidates' performance in question 1.

The candidates who scored 12 - 20 marks had a good conceptual understanding on the fluids dynamics. They were able to distinguish between static pressure, dynamic pressure, and total pressure and use the knowledge to calculate the numerical value of flow velocity in a pipe. Furthermore, they calculated the coefficient of viscosity of oil, pressure across a capillary tube and managed to explain the given observations in fluid dynamics. Extract 1.1 shows the answers given by a candidate who performed well in all parts of the question.

Extract 1.1

ω^{ν}	(a) (static bushes is the bushes
1	which does not change whon
	fluid is flow in a cross-section
	al area of pipo while dynamic
	bessur is too bessay in whilp
	those of the fluent flow in a constant of the fluent of th
	flow in a Pine while
	to tel pressure 's the sum of
	gludinic burine ang itatic hun
	ne of the things flow in a
	Pire of coss-section grea
	CLO 47 21017
	relocity (v) consity (g)
	(4) 2 nstan
	consity (8)
	ton bernoutis Principo
	P+ sgh + Lev2 - Constanst
	I ×
	Expression Mill pe
	P+ (Ob 1 to 2 Constant
	P+ 19h+ 1 gv2 = @nstank
00	~
Op	101 001
1	(a) (io) (a)
	status pressur (P) = 4.3 ×10 pa
	Signer prosection of the pa
-	MHELL BURSSUM (PT) -AMXIOTES
	\$ LEO (Y) = 500ms
	2011

Ma	
i	(n) (11) density (g) = 1000100/m2
	1001ty =), Volumo rate = 3.
	From
	From bernoulis theorem
	P+ sgh + 1 gv2 = c.
	Pi + 59h, + 1 gu, 2 = Po + 59hz
	+ 1 8/2
	but flups is a tlgv?
	IN COM CLEZSI PO
	P1 + 1 81/2 = B + 19ho+ 25/2
	9 + 1 + 12 - B + 1 5 v2
	5 3412 - 1 500 - 1B-R)
	= 1 8 (V12 - V02) = 1 PD-P3)
	5 8 (N2) = (4.7-40 t 4.9 x10t)
	5 × 1000 (NS) = 4000
	2001 = 4000

Ø	
1	(a) (b) 12= 14000 \
	$\sqrt{2} = 4000$
	800
	NS- 8WP
	V= [8n]
	n6/06/ph (1) 1] 8.838 m/7
	(1) Notumo rato
	10/h
	trom 10/h
	71011
	Q = V \$ xre9
	1 - relienty and 4 - Area
	0= (D+2+ x 20x10)
	A = (5.4.38 & 20110)
	0 = 5.656rib m2/
	13
	5, Colum How res A Col 13 5, Column How res A Col 13
	330,100 103/2
(D)	the second of law of the
1	(b) Newton law of law of viscosits star that three exist between the layer of the flupt per unit after per unit velocity gradient
	the layer of the flups per unit
	area per unit velocity gradient

\mathscr{O}^{ν}	
7	(b) (1) always is constant
	DIMPRISONS
	trom
	F= 1 x dv
	24
	1=[ML7-2]
	X 2V/ 2x [43 = L2
	dv 7 10
	Land = [ray]
	1 - 1
	[N] = [MT La]
	0717
	Fralla.
	1 1 2 1 -1 -17
	[n] - [M - 1 - 1]
	Dimonsion of 1 1 LML7]
	5 (WOT 3 (O. 1 O) 1 1 1 1 1 1 1 1
0	10 l
<u> </u>	(II) DOH
	MC10 - 1.0 41 A 100
	D101110 10 (00)
	MG15 = 1.8 x 10 + 109 - 0 MG15 = 1.8 x 10 + 109 - 0 Terminal volocity = 54 x 10
	16, elling 16,0011 & = entx(0,11)

WN	17 V DAH
	(B) (B) = 2601cg/m2
	N = 10
	trom
	NOIMMO = Ah -0
	from volume of
	3 040+6
	N= 4 TRO
	R=(P2)=(40010)
	R= 210410
	7 = 4 TT (Dx 10 2) 3
	NOTUMO = B.B. XID MB
	trom
	gowilloto - man

Oh .
(h) (h) t- 110 m (ca)
(11) J= 110410/1cg
3.32 M2 W3
3 = 0520,99100/m2
+ mm
VT = Q 128 (U-e)g
9 -
Υ Υ
47 - 8120105-6)
12-8150 (Q-3)
9
-01
(5,4×10) = 2 (2×10) × 9.8
1
(2500199-860)
15. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10
(5,000) = (0,000)
, ,
1-10.0001101
5.440

12 0.7738d how_5 Coefficity of histority of old
of the flurd varies with velocity of the flurd varies with velocity of the flurd varies with velocity of the flurd varies with velocity
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

-	
9h	
1	(()
	D= 17 P(3P)4= 17 P(4P)4=
	101
	s. (n)
	TP (5R)
	801
	Q = (BQ)4 = (5P)4
	P18184 = 256 R2 P2 =
	Pg (605 P)
	RIP1 = 056P0=605P0
	SIPI = 625 Pg
	Pg=811mmH9
	\$1 P1 = (6057811)
	817-506215
	P1= (5060,E) mm Ho
	PI = 60 EMM HO

- T	(c) pressure of the first
	aprillanty is 60 EMM HO
Or.	(4) (Lessance was a fact of different
	Solut of flag to the sure of different was than to the flag to the fitterent
St. 11.87	CITATION MUST TIME
	Decause Parachute hou
	Mara surface area this mass to
	ing
	(iii) Due to force of viscosity which exist in holder liquid
	13 CM GICI COM POINT 10
	CO19 OM7

In Extract 1.1 the candidate managed to answer correctly all parts of the question.

On the other hand, the candidates who performed poorly, particularly those who scored zero in this question lacked conceptual understanding in fluids dynamics and had poor numerical skills in questions involving mathematics. Most of them could not distinguish the pressure terms in fluid flow: the static pressure when fluid is at rest, the dynamic pressure when the fluid is flowing and the total pressure which is the sum of static and dynamic pressures. Furthermore, they failed to calculate the pressure in capillary tube and to give explanations of the given observations in fluid dynamics. Extract 1.2 indicates the answers of one of the candidates who performed poorly.

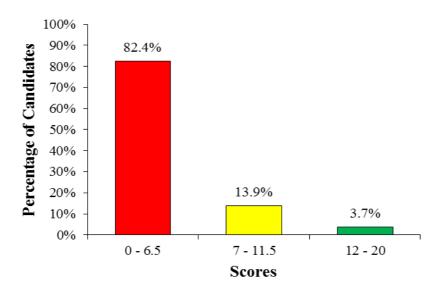
Extract 1.2

uac	1.4
1.	(a) P/ Static pressure
,	C = fgh
	Where, e = constant
	J = density fluid.
	Where, e = constant f = density fluid g = accelention due to grant h = height v a fluid
	h= height va fluid
	Dynamic presture
,	
	e = 1/28 v2
, 1°	
	Ulese, e= constant
	P= density y a fluit
/	V2 = velocity y/a fluxy
	Uhere, e = constant g = density y a fluid v² = velocity y a fluid. fluid.
	total pressure
	C-P1+P2
	C=P. Where, c=constant p=pressure
	where, c = constant
	p = prestrue
	if from the formular
	A1 [2.42]
_	$V = 2 A_1^2 g$ $V = A_1^2 A_2^2$
\rightarrow	V 1 (A 1 - A2)

1	(a) 11/ N= 2A,2 9
	(a) $ii/$ $N = 2A_1^2 g$ $g A_1^2 - A_2^2$
	β A ₁ 2-A ₂ 2 V2 = 2 A ₁ 2 g
	8 A12 - 2 A12g = A22 N2
	9 13-12 2g = A22 V2
	$g - 2g = A_2^2 V^2$
	f-19 - V2
	$\sqrt{2-\frac{\beta-2g}{A^2}}$
	$V = \sqrt{\frac{\beta - 2q}{\beta - 2q}}$
	, V Azz
	$V = 1000 - 2 \times 98$
	V= 782.78 mls The flow y rebuilty is 782.78 m/s.
	To find volume rate
	V/t = 11 14 AP 87.L

 6.1.27
 (a) ii/ Area = Tr2
 0.04 = Dr2 T P rl = 10.0121
 T V
 r(=10.0121)
r=0.113.
 but
 length, L=r+r
= 0.113+0.113
= 0.726.M.
 4 = 11-4 P1-P2
8 · 7 · L
but
 (- 0
 $f = \frac{1}{V \cdot g}$
but I = p.A F = 4.9×104.0.04 F= 1860 N.
F = 4.2×104.0.04
 F= 1860 N.
F= 7/ Vig
Vig
1880 = 7,
 1880 = 7
7= 1.47 xw8 Nms-1
V/t = 11r4 fgh = 17.0.1134. 4.2x104 8.7.L 8.1.47x106.0.226 = 8.28x10-6
 8,7.L 8.1.47 X106, 0.226
= 8.28 ×10-6
Volume flow rate y 8.28 x10 dm35.
. , volume flow the g & le xio and 3.

1	(b) if Newtons law of wscosity state that
	the flow of a highest to the substance
	is traversely proportion direct proportional
	to the applied force and Inversely to the
	helocity terminal and their radius.
	VTT 61TVTT
	Dimension
	F= 611 2 r V7.
	$\frac{1i}{6\pi} = f$
	611 r.V1
	La chiana han and a company of the
	F= Mg
	F= 1.2 xw 4 x 9.8
	F= 1.2 xw 4 x 9.8
	J = (.176 x00-3
	617 · 2x10-3 × 5·4×10-2
	n= 15.59 N m-25-1
	:. Coefficients of NSW citis of a oil is 15:59 Nm 13
	(d) i/ belower on the aero fort, the upper layer having high rebouts Itan the lower part.
	ii) belowse the grantation force approach to zer
	iii/ Belonge the density was decreesed by
	tempendure, due to that fact the nove fast.


Extract 1.2 shows the response of a candidate who failed the whole question by using incorrect responses to the tasks given. For example, in part (a) (ii), the candidate applied the Poiseuille's formulae, $\frac{V}{t} = \frac{\pi \, h \, \rho \, g \, r^4}{8 \, \eta \, l} \quad \text{to find the volume flow rate in the pipeline instead of using the simple relation, volume flow rate = area × velocity of flow in the pipeline.}$

3.2 Question 2: Vibrations and Waves

This question had four parts, namely (a), (b), (c) and (d). Part (a) required the candidates to define the terms (i) intensity of sound, (ii) beats (iii) ultrasound and (iv) overtones. In part (b), the candidates were required to calculate the fundamental frequency emitted by a vertically hanging steel wire of length 1.5 m and diameter 0.5 mm if it is plucked while supporting a weight of 80N. In part (c) they were required to (i) give any two applications of ultrasonic as applied to sound waves (ii) calculate the blood

flow velocity and volume flow rate of blood if the ultrasound of frequency 4.0Hz is incident at an angle of 30⁰ to a blood vessel of diameter 1.6 mm, and that the speed of ultrasound 1.5 kms⁻¹ and a Doppler shift of 3.2 kHz is observed. In part (d), the candidates were required to (i) determine whether the galaxy is moving towards or away from the observer on the earth, and (ii) determine the speed of a faint galaxy relative to an observer on the earth if in its absorption spectrum one of the lines identified as calcium H line is 478 nm and that the same line has a wavelength of 397nm when measured in a laboratory.

The question was attempted by 30.7 percent of the candidates whose scores are as follows: 82.4 percent scored from 0 to 6.5, including 19 percent who scored 0, 13.9 percent scored from 7.0 to 11.5 marks, and 3.7 percent scored from 12 to 20 marks. Only one candidate managed to score full marks. These scores indicate that the question was poorly performed. The following chart presents the above data in percentages.

Figure 16: Performance of the candidates in question 2.

The candidates who performed poorly (82.4%) had inadequate knowledge on mechanical waves as they failed to provide the correct responses to most parts of the question. Most of them appeared to lack knowledge on normal modes of vibrations and consequently failed to calculate the fundamental frequency on a plucked steel wire. Also, the concept of Doppler effect as applied in light seemed to be unfamiliar to most of them as they failed to find the apparent change in wavelength that would have helped them to identify the direction of motion of a moving galaxy. Extract 2.1 is a sample of a poor answer taken from the script of one candidate.

Extract 2.1

On 2	
	Intensity of lound: 11 the fitted pouts of the Jount in
	a molecum.
îr	Boats: 11 the regular sound which are produced by the
	defferent instrument of the sumegrequency and hood.
lii	Ultraionic: 18tho were form while our produced
	by the rala office.
12	Overtone It the multiple of the funtamental
	frequency.
(5)	Datagiven
-	worght = 80H
	knyth (L) = 1.5 m
	Dieumeter = 0.3 mm = SXLo4m.
	$1m = 1000 mm$ $X_1 = 0.5 mm$
	X. = 6.5mp
	Wavelongthas longth afthe wirt (L)
	Uluvolongth = 1.5m
	fundamental frequency (fa) = Velouty
	wavelonyth.
	111111111111111111111111111111111111111
	1.5 m
	\(\)
	my = \$0N

57	
₹n a	V - Day
lь	V = Pg/L
	100 - 0 0 11
	mg = 80 H
	9.8 m = 80 N
	A 0 / S/2 / .
	Mail (m) = 80/9.8
	mass(m) = 8:16327 kg
	Rocall Donsity (1) = mass
	Volume
	Volumouftho sphoro (V) = 411r3
	$=4 \times 3 \cdot 14 \times (\frac{5 \times 10^{-4}}{2})^3$
	100000000000000000000000000000000000000
	Volume of the sphortly= 1.9625 x w 10 m3
	2.1/2=7
	$\Delta tonstby = 8.16327$ 1.9625×10^{-10}
	Density = 4.1596 XWIO 109/m3
	A sea cue to do a
	V Z 41596xw0 x98 5:xw4m
	V Z 28.53 x W 6 mls.
	fundamental frequency - Velocity
	in a voto noth
	Funta montral excession 28.55 XW
	funta montal frequency 28.55 XW 5. XIO-4
	: funtamental frequency = 5.7xww Hz.
	Tildery

Qu s	
ci	Application of Utrasonic
1	Corec in hospital to charact the internal Barrer in the buly
	Wed in traphic to movement the velocity of the moving
	Car.
2	wied to messure the see depth of the ocoah.
(ris	hata given
	frequency 40MHz
	VELOUBY OF EXTRASONOL (V) = 1.5Kmls
	Boot frequency = 3.21cHz.
	Diameter of the 1.6 mm
	1 m = 1000 mm
	X = 1.6 mm
	1.6x w m.
	From
	Vewwhy (v) = Afc
	2 <i>f</i>
	NOWSKIEN = 3.2 X 3× 108
	2 x 4.0 mHz
	frezuency (6) = 40 m Hz = 4.x 103 Hz.
	Bout from (bt) = 3.2 kHz = 3.2 x w 6 #z
	1-5×10-6 mis = Volouty of utrajonic
	,
	C (telocity of Sunt) = 2Vf
	V thousey of lount (c), = 2 x 1.5 x w 6 x 4 x po 3 3.2 x w 6
	3, 2 X W &

on a.	
	Volunty (C) = 3.75×10-3 mus.
	V Z C- U0
	V = 3.45xw-3-1.3xw-6
	Volovity of blood is 3.7485xw-3 m.ls.
<u>d</u> ·	
i_	The galax is moving toward the observer on the Earth
it	
,	Wavelength(ki) = 478nm = 8.853 x 65 m
	Lawolongth (x2) = 347nm. = 7.352XW5m.
	Robothous
	frequency = V
	brozaenysty = Volouty of wight
	warok nyth (li)
	frequency 2 3x108 mis
	8.853×105
	C
	frequency (fil = 338.87 Hz.
	7.352xws
	4.322XW
	trozuoniy (f) = 408 Hz.
	गण्यकाषु ६ मण्ड तर्
	$\mathcal{D}_{\text{flations}}$ was supposed $\mathcal{D}_{\text{flations}}(f) \geq (f - f)$
	Robative # roqueny (f) = (for - f,) = (408-338,87) Hz.
-	- (402 - 2) 114.
Q. d	Pelatur type () = (e 12 4)
2	Rehitar + rogging (F) = 64.13 HZ

On a.

2. 2	Relution + rogging (7) = 64.13 HZ
	Froquency = velouty
	wavolength
	Spool = 69.13 X 3977.352 X 105
	. speed of the galoxy 11 50.82xw6 mbs.

In Extract 2.1 the candidate failed all parts of the question. The candidate confused Doppler shift with beat frequency and used the two phenomena interchangeably. Also he/she used an incorrect formula to calculate the velocity of wave on a plucked string.

On the other hand, a few (3.7%) candidates who scored high marks had sufficient knowledge on vibrations and waves. They managed to define the terms intensity of sound, beats, ultrasonic and overtones. They also managed to calculate fundamental frequency emitted by a plucked wire,

give applications of ultrasonic as applied to sound waves, calculate the blood flow velocity and volume flow rate of blood, determine that the galaxy is moving towards the observer on the earth and correctly determine the speed of a faint galaxy relative to an observer on the earth. Extract 2.2 is the work of a candidate who managed to provide the correct responses to most parts of the question.

Extract 2.2

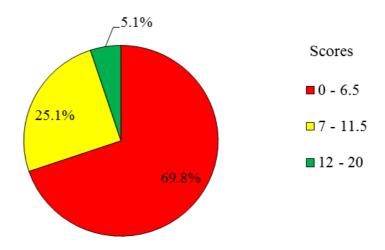
2	(a) (i) Intensity of sound is the measure of
	amount of energy per unit areas per
	unit time in propagating the cound
	waves:
	- Wyvej i
-	(1) Beat Is the periodic rise and fall of
-	sound intensity (variation in sound into
	nsity) observed when two cound
	Sources of nearly equal frequency
	are sounded simultaneously.
	an zonigea simulaneosty,
	12 1111
	(11) Ultrasporic, These are waves whose
	frequency 11 greate than 20 KHZ
	herce They are inaudible.
-	(N) Overlones These are notes whose
	frequency is higher than that
	of fundamental frequency
	of fundamental frequency of the vibrating instrument
2	(b) Data
	T= 80N
	L= 1.5m
	diameter (d) = 0.5mm.
	CHAMPLE (CI) - (B. 2 LI LI)

2 (b) from fundamental frequency
fundamental frequency
fu =
D 1
But $y = mass = f \times sollump$ Length
Leigh
= PAL PA
X
Area = T12 4 1 = radias
14 (z radia)
fo = 1 T T FMY2
2L JAHr2
80 - 412
$\int_{0}^{2} \frac{80}{2 \times 1.5} \frac{80}{7800 \times 3.14 \times (2.5 \times 10^{-4})^{2}}$
N
f = 76.201/2
To 10 - 17
fundamental frequency = 76.20 Hz.

—	
2	(c)(i)
	- Used in determation of the depth of
	the sea or any water bodies
	- Used in cleaning sugical instruments
	6: appaiatinalso for treatment of vanious
	diseases in medicine field such as concer.
	(11) Data
	frequency (f) = 4:0 × 10 Hz
	0 = 30°C
	framete = 1.6mm
	Sf = 3,2kHz
	Speed of ultrasound = 15km/s,
	Now from
	' XF 1/
	$U = \frac{xf}{2fG_0}V$
	·
	where sf = dopple shift
	V = speed of ultrasound
	U= speed of blood
	, ,
	$U = 3.2 \times 10^3 \times 1.5 \times 10^3$
	2× 4×10 × (0130 m)
	2× 4×10 × (6)30
	U = 0.69 m/s
	Speed of blood flow = 0.69m/s
	Volume flow rate = Aleax speed
	= 11/2 × 0.69m/s
L	

	$= 3.14 \times (0.8 \times 10^{3})^{2} \times 0.69 \text{m}^{3}/\text{s}$
	= 1.39 m ³ /s x 10 m ³ /s Speed of 6100d flow = 0.69 m/s Volume flow rate = 1.39 x 10 m ³ /s
	Speed of blood flow = 0.69 m/s
	Volume flow rate = 1.39x10 m3/s
6	
	(d) (i) The galaxy is moving away from the observe on the earth since it true wavelength 397mm measured in the
	wavelength 397mm measured in the laboratory is loss than the observed
	Wavelength, 478nm,
	(1) pata
	observed wavelength $\lambda = 478 \text{ nm}$ Its true wavelength $\lambda = 397 \text{ nm}$
	Required speed of the galaxy,
,	But $\lambda = \frac{\text{volouty of toght relative}}{\text{to the source}}$
	frequency of the source
	$\lambda' = \frac{\left(u+c\right)}{4} = \frac{\left(u+c\right)}{c}\lambda$
	$\lambda^{\dagger} = (\frac{1}{2} + 1)\lambda$
	$\frac{\lambda^{1}-\lambda}{\lambda}=\frac{\lambda^{2}}{\lambda}$

2 (4)
1-) = 4/
31 = 4/C
$u = \frac{s\lambda}{\lambda} \times c$
$U = \lambda^{1} - \lambda \times c$
<u> </u>
$\frac{U = 478nm - 397nm}{397nm} \times \frac{3 \times 10^{8} \text{m/s}}{397nm}$
$U = 6.12 \times 10^{7} \text{m/s}$
Speed of galaxy relative to observe
speed of galaxy relative to observer on the earth is 6,12×10 m/s.


Extract 2.2 shows the correct responses from the candidate who managed to perform the question as per its demand.

3.3 Question 3: Vibrations and Waves

This question had four parts, namely (a), (b), (c) and (d). In part (a) the candidates were required to state the principle of (i) superposition of waves, and (ii) Huygens construction of wave fronts. Part (b) required the candidates to (i) calculate the spacing between fringes observed on the screen if a monochromatic beam of light of wavelength 450 nm is incident parallel on two slits A and B whose centers are 0.3 mm apart and that the screen is placed 2.0 m from the slits, and (ii) suggest the change on the pattern of fringes when the slits A and B are each made wider. Part (c) required the candidates to describe the formation of interference patterns by using Newton's rings experiment. Part (d) required the candidates to calculate the radius of curvature of a Plano – convex lens used to produce Newton's rings with a flat glass plate and the diameter of the twentieth bright ring if the diameter of the tenth dark ring is 4.48 mm and viewed by a normally reflected light of wavelength 5.00 x 10⁻⁷m.

A total of 6,976 (40%) candidates attempted this question. Out of them 69.8 percent scored from 0 to 6.5 marks, 7.8 percent scored 0, 25.1 percent

scored from 7.0 to 11.5 marks and 5.1 percent scored from 12 to 20 marks. These scores indicate that the question was poorly performed. The following pie chart divulges the information given above.

Figure 17: The candidates' performance in question 3.

The data presented in Figure 17 indicate that 69.8 percent of the candidates scored below 3.5 marks, which is poor performance.

The candidates who performed poorly (69.8%) in this question were not able to state the principle of superposition of waves and Huygens construction of wave fronts. Also they could not calculate the spacing between fringes observed on the screen due to monochromatic beam of light incident parallel on two slits. For example, one of the candidates interchanged the distance between the slits and the screen D and the separation of the slits d in calculating the fringes width. He/she used the formula $\beta = \frac{\lambda d}{D}$ instead of $\beta = \frac{\lambda D}{d}$. Similarly, these candidates could not describe the formation of interference patterns by using Newton's rings

describe the formation of interference patterns by using Newton's rings experiment. They also failed to calculate the radius of curvature of a Planoconvex lens used to produce Newton's rings with a flat glass plate. Extract 3.1 is a sample of a poor answer given by one candidate.

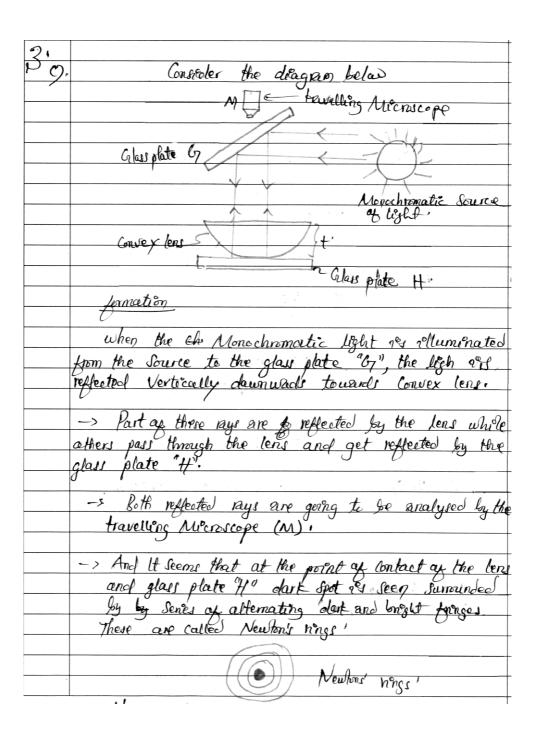
Extract 3.1

	1
On 3	
@	The said of the many and the said for a state which
i	The principle of Superposition State that lacouslight
	of the same progressing are superposed when the light
	are monarcromatic light and alsol are Cohorout light.
	A CONTRACTOR OF STATE OF THE ST
,	202
Ñ	whon the light of mono cromatic are passing through
	ha small hole of the superated in small distance
	the tringe are arpera on the suran.
	The state of the s
	A Section 1
b.	Salagivon
	Lauro longth 450nm = 8-334 X W m
	Arametor on 3 mm
:	1m = 1000 mm
	X = 0.3mm
	Blamotor 23 X W 4 m
	Dutanco at the I crown (ym) = 2.0 m
(I)	Frum diagram
	A A
	brozuony = 1 = 119.99 x 119
	B 30 ym

	Space between Observor utthe surcen Cw
	From ym = \$D = 119x18 3xw4
	2.
	ym = 2·m ym = 1·7985xio" m. puvth derferency (P) = Mx. for
	Mr.
	4m = 2·m 4m = 1.79985x10" m.
	parth differency (P) = Mx. for
N.	
*******************************	$a = 8.334 \times 10^6 \times 3 \times 10^4$
	à :
	a = 1250 1 mitur.
	- Tho space between Fringer 11 1. 79985 X Will m.
ii	whon parton I and B are each Change with It wast
	the fringes in the jure on to be unusen.
3	The two wave light should be of the same troyuchay The two wave light should be of the same troyuchay The two wave should be of different vewity The wave ligh should be of moving in apposite
	dwrockwar bu tach other.
5	The light wave should be two total internal reflorts
1	on,
-	
8	Outu given
	Ovumotor (D) = 4.48 mm
	1m z 1000 mm X = 4,88mm
	anomotur (b) = 4.88 xw3 m
* 407	Leavelongth 8.00 x w 7 m
	number of bright ring (m) = 20

On 3	ymz mad
C	Frum
	$y_m = p_D$
	a
	$p = m \lambda$
	· · · · · · · · · · · · · · · · · · ·
	9m=mlb 0
	Ym = mlb
	For dauc
	er, dili 1
,	mx+%,
	ym z po
1 2	
	ym = (mx+3)0 0
	ω
	Compare bluston ounted
	mas (mx+ 1/2) s
	a a.
	mxas = (xx+x/2) sa
	$m_{\lambda} = m_{\lambda} + \gamma_{\lambda}$
	. The first properties of A is a positive of the A is a A in A in A in A in A in A
	$y_m = (10 \times 5 \times 10^{-7} + \frac{5 \times 10^{-7}}{2}) 4.48 \times 10^{-3}$
	78
	5m = 2.352 x 10-8m.
	$y_m = mx_0$ for bright rings $2.352xw^{-8} = 20x_0x^{-7} x_0$
	3.382 X M3 = 20 X SX 10 + XD
	Signotor $D = 2.352 \times 10^{-3} \text{m}$.
	. The diumeter of bright fing is 2.352x 603m.

In Extract 3.1 the candidate failed to answer correctly all parts of the question. He/she gave incorrect and incomplete description about producing Newton's rings and poorly performed calculations by employing incorrect formula.


A small number of candidates (5.1%) who performed well this question managed to state the principle of superposition of waves and Huygens construction of wave fronts. Also they were able to calculate the spacing between fringes observed on the screen when a monochromatic beam of light was incident parallel on two slits A and B and they suggested correctly the change on the pattern of fringes when the slits A and B are each made wider. However some of them were not able to describe the formation of interference patterns by using Newton's rings experiment. Nevertheless the candidates managed to calculate the radius of curvature of a Plano–convex lens used to produce Newton's rings with a flat glass plate.

Extract 3.1 is the work of a candidate who managed to provide correct responses to most parts of the question.

Extract 3.2

3. 2) 17 & franciple of Superposition of waves states that; "When two as more waves travell simultane at a point the resultant displacement of at that point is equal to vector sum due to individual displacement?
that:
" When two or more waves travell simultary
at a point the resultant displacement at
at that point is equal to vector sum due
to individual displacement?
7
Principle ax:
y. Hugens Construction of white fronts. States that
=> " Each point on a wavefront octs as a fresh
Source of secondary wavelets which spread
Source by Secondary wavelets which spread out with the speed of light in that medium:
=> "The new wave front at any letter time god
=> "The new wave front at any letter time port given by the forward envelope of the seconda wavelets at that time?"
usivelets at that time?
<u> </u>
Data!
wavelength, $\lambda = 450\eta m$
Slote separation diskace & = 0:3×10m
Slife separation diskage $\Omega = 0.3 \times 10^{\frac{2}{3}}$ Distance cet the Screen, $\Delta = D = 2M$
sheep .
=> Let the spaning between frages be

3,	5) Solution Carrotte de la company
-	9%
	14
	a = 0.3 mod
	4.
	- Ray Lypidal C
	D=2m -)
	Anny O. A.
	$\chi = \frac{\lambda D}{2}$
	a
	$\chi = 45n\eta \times 2M$
•	0.8×103
	$X_{7} = 3 \times 10^{-3} \text{m}$
	/ m - 3 × (t) m.
	: The spacing between fringer al 90 3x103m
	10 3X10 III
	The Committee of the Co
	ii). when the slets A and R are made untder
	when the slits A and R are made untiler then there will be no interprense pattern and hence prince separation disrapears.
	hence pronce separation dispassed.
	0.7

3.	d) · Data ·
	-> Radias cy. the tenth 10th dark non; 4.48xxx
	10 = 2.24×103m.
	-> Wavelength, & = 5x10-2m
	Solution,
	- let the radious of Curvatury of a lens by
	thes)
	=> from
	The River
	=) lm
	$\frac{1}{R} = \frac{L_2^2}{R}$
- T	K :
	$R = \frac{r_0^2}{\eta A}$
	R = (2.24x103)2

3 •	d) R= 1.003m
	:. Radius of Cuwature 29 1.003m
	Asain
	- let 27 be drameter of 20th
	bright ning.
	then was placed by
	then Creven:
	-> uavelenth, $\lambda = 5 \times 10^{9} \text{m}$
	-> vavelentle, $\lambda = 5 \times 10^{7} \text{m}$ -> Paderus of Cumulture, $R = 1.003 \text{m}$.
	Shitison.
	= Der bright fringes
	$(n+x)\lambda = r^2$
	R.
	but 0=20 -1 = 19.
	n=19,
	Hence ·
	1.003m X (19+0-5) X 5x109 = 12m
	$Y_{\text{post}}^2 = 9.799 \times 10^{-6} \text{m}^2$
	$V = 3.13 \times 10^{-3}$
,	$2r = 3.13 \times 10^{-3} \times 21$
	The diameter of the twentieth bound my is 6.

Extract 3.2 shows the correct responses from a candidate who had good knowledge on physical optics and Doppler effect and thus correctly responded to the question requirements.

3.4 Question 4: Properties of matter

This question had four parts, namely (a), (b), (c) and (d). Part (a) required the candidates to define the terms (i) free surface energy, (ii) capillary action, and (iii) angle of contact. In part (b) the candidates were required to explain the following observations: (i) soap solution is a better cleansing agent than ordinary water, (ii) when a piece of chalk is put into water, it emits bubbles in all directions. Part (c) required the candidates to (i) show that $3P_aV + 4AT = 0$ if two spherical soap bubbles are combined where T is the surface tension, Pa is the atmospheric pressure, V is the change in volume of the contained air and A is the change in total surface area; and (ii) calculate the final pressure of air in the cylinder which contains a soap

bubble of radius $3.6 \times 10^{-4} \text{m}$ if the air in the cylinder is compressed isothermally until the radius of the bubble is halved. The initial pressure of air in the cylinder is 10^5N/m^2 . Part (d) required the candidates to give the meaning of strain energy and to determine the point of suspension of weight on the weightless bar of length 1.05m whose ends are supported by wires Q and P such that the cross section area of P is 1mm^2 and that of Q is 2mm^2 if (i) equal stresses are produced on P and Q (ii) equal strains are produced on P and Q given the Young's modulus of wires P and Q as $2.4 \times 10^{11} \text{Nm}^{-2}$ and $1.6 \times 10^{11} \text{Nm}^{-2}$ respectively.

The question was attempted by 55.9 percent of the candidates whose scores were as follows: 88.5 percent scored from 0 to 6.5 marks, out of which 11.7 percent scored 0. Only 9.1 percent scored from 7 to 11.5 marks and very few 2.4% scored from 12 to 19. These scores suggest that the question was poorly done. These data are pictorially presented in Figure 18.

Figure 18: The candidates' performance in question 4.

The data presented in Figure 18 indicate that a total of 88.5percent of the candidates scored below 3.5 marks which is an indication of poor performance.

The candidates who performed poorly had inadequate knowledge on the concepts of surface tension and elasticity. They failed to define the phenomenon of surface tension and to explain their respective observations. Some candidates used the concept of diffusion to explain why a piece of chalk emits bubbles in all directions when put in water. These candidates were supposed to use the concept of capillarity to explain the action. Other candidates used pressure law instead of Boyle's law to show that

 $3P_aV + 4AT = 0$. Moreover, these candidates could not determine the point of suspension of weight on the weightless bar whose ends are supported by two wires Q and P such that equal stress and strain are produced on P and Q. Extract 4.1 shows a sample of a poor response from one of the candidates.

Extract 4.1

	JE CLION B
ψ.	(a) (1) Pree surface onenry
	(u) Cap Hary action 15 His althor ben the surface energy and another of contact.
	(ru) Angle of Confact Li the angle 18th between the Mormal area to the holght.
(b)	Recourse the Goap Colution is greter than ordinary
(u)	Chalk 15 Small area It take place and then the
(0)	breignu = 102 MW Laguer = 2x 8 aco_6M
	brecture of the wire?
	fre (
	D THOM
	7°
	P = 4 1008
	breature of the on 11 /180103 H/ms

4(3)	Strain thereby of our thange length to the original length to reggy.
(0)	data given
	Area of Q = 2 xw cm² Equal Stress of P and or
	Area of Q = 2 xw cm
4	Equal Ofress of P and or
	EP = 2 1 4 QUOTH
	EQ 2 116 aloublim
	Meo M
	Epz Fl
	At
	A E E Q Z F L A E
	MC .
	FLP = FLO
	ne ne
	tp z ft
	DIVINOUS FXL
	1 dio-e d e
	DIY YWH X TAWFEZ PL
	$\overline{}$
	fp = 240 awg = -(1)
	For z lib x will & s x w to
	divided Ban 1
	1 220 00036 = 5 560 0036
	MANUAL NAU C
	1320 mil 2 240 mil x
	l l

In Extract 4.1 the candidate failed to define various surface tension phenomena. He/she also failed to determine the point of suspension of weight on the weightless bar.

The candidates who performed well (2.4%) in this question managed to define the terms free surface energy, capillary action and angle of contact. Also they were able to explain physical observations based on surface tension and show that $3P_aV + 4AT = 0$ when two spherical soap bubbles are combined. They gave the meaning of strain energy and determined the point of suspension of weight on the weightless bar whose ends are supported by two wires Q and P when equal stress are produced on P and Q and when equal strain are produced on P and Q. Extract 4.2 is a sample of a good answer taken from the script of one candidate.

Extract 4.2

	JE CTION B
Ψ.	(1) The surface anemy
	(u) Cap Hary whon IS the whon ben the surface onegy and another of contact.
	(IN) Anylo of Confact Li the angle 1844 between the Mormal area to the holght.
(b)	Recourse the Goap Solution Is greter than ordinary Weber.
(u)	Chalk 15 Small area It take place and than the water 18 Cargo Eurbace area.
(0)	ratus = 105 NM Prestur = 105 NM
	precture of the wire?
	P Z 48
	P = 4 0105 1.6004
	breams of the on 11 /180103 H/ms

4	(b) (11) Bubbles in all direction are objected beca
	Use of surface fersion force which
	tend to make the liquid contact to the area to be mainized therefore its with autor results into distribution of chalk pieces and bubbles are formed?
	area to be mainized therefore its work
	action results into distribution of chalk
	pieces and bubbles are famely
	(c) let the radius of the two spherial bubbles
	(c) let the radius of the two spherial bubbles be Ri and Ri and that of the resultant bubble formed be R
	resultant buble formed be R
	Pressure inside the bubble of radius RI
	, ,
	$P_1 = P_0 + \frac{4T}{P_1}$
	Volume of this bubbe VI = 4/ TRI 3 where T = Surface tension
	10 laws of 110 purson 1- 1/1/KI
	/3
	where T = Surface tension
	Pressure inside the bubble of radius Rz
	$P_2 = P_a + \frac{47}{R_2}$
	<i>K</i> 2
	Volume V2 = 4/11R2
	/3
	for the bubble formed
	VolumeV= 4/11P3
	/3 //-
	Pressure inside this bubble P = Pa + /2TIK

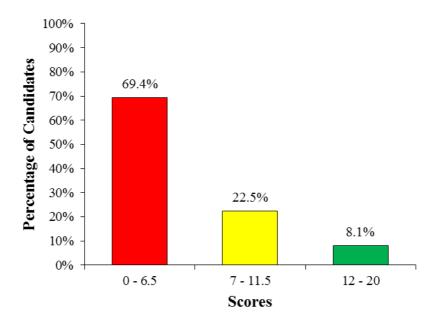
((()())
Radius of somp bulble Ri= 3,6x10 m
'
Original pressure P1 = 1051V/m2
)et
final radius = RZ
final radius = RZ afte compression final pressure = Pz
J. 1 p 3) (c) = 12
Now (0, 47) 4/7103 (0, 45) 4 3
$\frac{\left(P_{1}+\frac{47}{R_{1}}\right)^{4}\sqrt{7}R_{1}^{3}-\left(P_{2}+\frac{47}{R_{2}}\right)^{4}\sqrt{7}R_{2}^{3}}{\left(P_{1}+\frac{47}{R_{2}}\right)^{4}\sqrt{7}R_{2}^{3}}$
$10 + 47 \times 3 \times 10^{-10}$
$\frac{\left(P_1 + \frac{47}{R_1}\right)R_1^3}{\left(P_2 + \frac{47}{R_2}\right)R_2^3}$
P 47 (0.13 (
$\frac{P_2 + \frac{47}{R_2}}{R_2} = \frac{\left(R_1\right)^3}{R_2} \left(\frac{P_1 + \frac{47}{R_1}}{R_1}\right)$
R_2
$g_{n} \uparrow R_2 = R_1$
$= \left(\frac{2R_1}{R_1}\right)^3 \left(\frac{P_1}{P_1} + \frac{41}{P_1}\right)$
R_1 P_1
= 8 (P, + 4T)
R_1
P2 = 8/P1+4T -4T
$(1, R_1)$ R_2
•
$P_2 = 8\left(10^5 + \frac{4\times0.08}{3.6\times10^{-4}}\right) - \frac{4\times0.08}{1.8\times10^{-4}}$
3. 6×10 1 1.8×10 7

1.	(1)
4	0 1 - 0.32 \ 0.32 \
	$P_2 = 8/10^5 + \frac{6.32}{7.6 \times 10^{-4}} - \frac{0.32}{1.8 \times 10^{-4}}$
	PZ = 8,05 X 10 5 N/m2
	Pressure of air = 8.05 × 10 5 N/m2
4	which required to produce change in dimension of the body (length, volume or shape) due to the appli
	which required to produce change
	in dimension of the body (length,
	volume or shape) due to the apple
	eation of dress
4	18)
	T
	TP P TO TO
	Xm 1.05-Xm
	109-XM
	111
	W .
	(1) for equal stress
	, Te/
	Ag

4 (A)(1) TP = TQ
AP AQ
$\frac{\int P}{\int Q} = \frac{AP}{AQ} = \frac{Imn^2}{2mn^2}$
ZTP = TP
$\mathcal{F}_{pX} = \mathcal{F}_{Q}\left(1.05 - X\right)$
TpX = 2Tp(1.05-X)
X = 2(1.05-X)
$3 \times = 2 \cdot 1$ $\chi = 0.7 \text{m} = 70 \text{cm}$
Now The paral three the mass should
to equal stress, the mass should be applied 70 cm from P

4 (d) (11) for equal stain from Y = FL
from Y = FL
$\frac{\Delta L}{L} = \frac{T}{AY}$
$\frac{T_{P}}{Z_{P}X_{Q}} = \frac{T_{Q}}{A_{P}X_{Q}}$
APYP AGYQ. TP APYP
Tq Aq Jq
10 - 1000 × 2.4×10 11 N/m² 70 - 2000 × 1.6×1011 N/m²
TP = 0.75 Tq
But $TPX = TQ(1.05-X)$
0.75 Tq X = Tq (105-X)

4 (AXII) 0.75X = 1.05 - X
$1.75 \times = 1.05$
X = 0.6 = 1.05 = 0.6m
X = 60 cm 1.75
For equal strain, the mass should
be applied at 60 cm from P


Extract 4.2 is a sample answer from one of the candidates who managed to give the correct answers but failed to explain the observations 'soap solution is a better cleansing agent than ordinary water'. He/she used the concept of capillarity instead of surface tension. He/she also used the idea of surface energy instead of capillarity action.

3.5 Question 5: Electrostatics

This question had four parts, namely (a), (b), (c) and (d). In part (a) the candidates were required to (i) state Coulomb's law of electrostatics, (ii) define electric field strength E at any point and (iii) mention two common properties of electric field lines. Part (b) required the candidates to calculate the charge on either of the two balls each of mass 0.8kg carrying identical

charges supported by two threads of equal length and that at equilibrium the balls are separated by a distance of 1.2 cm. In Part (c) the candidates were given the following problems, "Two capacitors C_1 and C_2 each of area 36 cm^2 separated by 4cm have capacitances of $6\mu\text{C}$ and 8μ . The capacitors C_1 is charged to a potential of difference of 110V whereas the capacitor C_2 is charged to a potential difference of 140V. The capacitors are now joined with plates of like charges connected together". Then they were required to (i) calculate the loss of energy that is transferred to heat in the connecting wires, and (ii) the loss of energy per unit volume transferred to the connecting wires.

A total of 10,981 (62.9%) candidates attempted this question, and out of them 69.4 percent scored from 0 to 6.5 marks, including, 5.8 percent who scored zero; 22.5 percent scored from 7.0 to 11.5 marks; and 8.1 percent scored from 12 to 20 marks. Only twenty five (0.1%) candidates scored full marks which is 20 out of 20 marks. The above data are summarized in the chart below.

Figure 19: The candidates' performance in question 5.

The candidates who performed poorly failed to give correct responses to meet the requirements of the question. They failed to state Coulomb's law of electrostatics, and to define electric field strength E at any point. Some of them could not mention common properties of electric field lines. For example, one of the candidates stated Newton's law of gravitation instead of Coulomb's law of electrostatics, and another candidate defined magnetic field strength instead of electric field strength. Furthermore, these

candidates failed to calculate the charge at equilibrium on either of the two balls each carrying identical charge.

They were also not able to calculate the loss of energy that is transferred to heat in the connecting wires and the loss of energy per unit volume transferred to the connecting wires when two capacitors initially charged to their respective potential differences are connected in parallel. These candidates were supposed to use the principle of conservation of charge to get the common potential difference across the two capacitors and the difference between the energy before connection and that after connection to obtain the loss of energy transferred to heat in the connecting wires. To state the coulomb's law of electrostatics, the candidates had to recall that in electrostatics, the force of attraction or repulsion involves the product of two point charges and that it obeys an inverse square law. Some candidates employed the use of an inverse square law only when stating the coulomb's law of electrostatics. Extract 5.1 shows a sample of a poor response given by one of the candidates.

Extract 5.1

	a) 1) Reverins law State Het
	the force of attraction or repulsion between two Charges the 1st Investigation proportional to the Square of
	betien two Charges de 13 investin
	proportional to the square of
	its vading
	11) Electric field Strength In the regime There by Electron Paperience to
	Where by electron experience to
	be found.
	111) 7, must have charges
	111) 7, must have charges by must have elistence
5	b) · Data
	hp= 0.8
	v2 1.2 Cm
	from
	from From En = K O1 O2
	γ L

—	
5	5) F= Mg, F= 0.8 x 9.8 F= 7.84M.
	F. 0.8 X 9.6
	F= 7-84N.
	50
	F= KO, Oz
	γ ² .
	784 = 9×109 × Q1 02
	2 x10-5
	0.1568 = 9x109 x Q, Q2
	2 x10-2 0.1568= 9 x109 x 0,02 9 x109 9xx109
	1.742 X10-11 = Q, Q2
	7' 3
	Q = \(1.74x10^{-11}
	0 = 4.17×10-6 C.
	· Su because them have equal
	A and B = 4.12 ×10-6 C.
	A good 12 - A 12 x10-6 C
	KI 5014 B _ 4(1) 110 C.
5	C) Date Sten
	C) Date Sten
	$c_1 = QAC$ $c_2 = SAIC$
	1 2 5 MC
	M= 36×10-4m2 12 4×10-2m
	V 2 4X10 M
	V1 = 1100
	V2 = 14w
	Requed to find your of heat the.
	// OSS OF ACT THE.

5	() from
	() from
	0 = C,V;
	0 - 4
	Q1 = GX 110
	Q = 660c.
	and
	Q ₁₂ C ₂ V ₂
	$Q_{2} = C_{2} U_{2}$ $Q_{2} = 140 \times 8$
	02 = 140% & 02 = 1120C
	but
	from
	E= / C,v,2
***************	/ 2
	E= 1/x 6x(140)2
	2 - 588 X1095 36.2 X1035
	() () X 8 X () 1 L U) 2
	2 / 2 / (140)
	F2= 7-84 X10-4J
	1 9710
	Enesy (01) = 7.84 x104 - 36.3x103
	Energy 1011 = 7.44 x104 - 36.3x103
	42165
	i thegy 1011 = 421005.
	2

S C) FZ V'
of.
F= 110
4x10-2
E, = 0.275 V/m.
Se 2 V2
12 2 V2
P1 = 140
4x10-2
= 0.35 Uln
1017 of electro = 0.72-0.517 = 0.012
- C 1000 7 7
Energy 1011 = 0.071.
$S(c) (1)$ $S = \frac{1}{2} Cv^2$
$\frac{c}{v} = \frac{1}{2} \times 6 \times (110)^2$
VE AL
2 1.X 6 x(110) 2
V= 2x 36x10-4 x 4x10-2
72600
5 = 2.52X10×Jlm3
2.52X108Jlm3
: Volumo Energy por volume: 2.52×10€

5	
	() 114) & = 1 (v,2
	V
	E = 1/x 8x(140)2
	36 X10 7 X AX10-2
	1764w
	2 2 6.125 XLOP () m3
	V
	011 = 8 - 2
	~ · · · · · · · · · · · · · · · · · · ·
	Energy 1011 = B. 12 J X108 - 2.52 X106
	in Energy loss per volume = 3.608 x 10 + 5/m2.

In Extract 5.1 the candidate failed to provide the correct answers to all parts of the question. For example, he/she failed even to state Coulomb's law of electrostatics.

On the contrary, the candidates who performed well (8.1%) in this question were able to state Coulomb's law of electrostatics, define electric field strength E at any point, and mention two common properties of electric field lines. Moreover, the candidates managed to calculate the charge on either of the two balls, each carrying identical charges supported by two threads of equal length at equilibrium. Also they managed to calculate the loss of energy that is transferred to heat in the connecting wires and the loss of energy per unit volume transferred to the connecting wires when two capacitors initially charged to their respective potential differences are connected in parallel. Extract 5.2 shows a sample of a good response from one of the candidates.

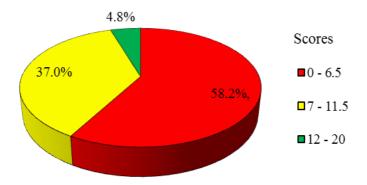
Extract 5.2

T 0 0 C A A 1 1 A
5 1 Contout's law, State That
The electrostatic force of attraction between two Changes
to alrectly proportional to the products of the Charges and
Towesty proportional to the Square abstance apart"
The electrostatic force of attraction between two Charges is affectly proportional to the products of its charges and finesty proportional to the Square distance apare". For 21/2
Ls
#. Flection hield Strength: Is the Lone regulared to bring
#. Flectric field Strength: Is the force required to bring a unit charge form Enterity to an electric field
11. Electric gield Strength. Is the June expresioned by
ii. Electric field Strength. Is the form experienced by a unit Charge to that point.
F - F/
E=F
ille - It done not come and other
iii - It does not cross each other - come from positive charge toward negative charge
- Crim Pasitive Change County herent Change
b) Gruen: Tcoso Tcoso
Library Tcoso Tcoso
Tstno T + Tstno
600
F 60 60 0 0 0 F
uq
but 9=92=9
sho = lig (i)
Fo = TOSO (ii)
fe = Tcoso (ii) divide egn (i) and (ii)

5	b) Tolow = Mg
	Johns = My Tosso F
	tano = rig
	E
	But, Fe = 92
	₹1186 Г2
	$\Gamma_0 = 9 \times 10^9 9^2$
	$ \frac{\sqrt{1165}\Gamma^2}{\Gamma^2} $ $ \frac{\sqrt{1165}\Gamma^2}{\Gamma^2} $
	1 200 /49
	$\frac{1}{4 \times 10^{14}} = \frac{10}{4 \times 10^{14}}$
	1×10 1
	fano = lyr2
	9 × 10992
	9_/4952
	9 = / reg r ² 9x10 ⁹ tan O
	9
	$Q = \sqrt{\frac{0.8 \times 9.8 \times (1.2 \times 10^{-2})^2}{9 \times 10^9 \times \tan 60^\circ}}$
	9 x 109 x tan Co°
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	9-2.69 X10-70
	9=2.69 X10-7c
	Charges 9s 2.69 X107C

-5	C) aluen:
	Acea (1)= 86 cm2 = 86 x 15 4m2
	Assance (d) = 4 cm = 4 × 10-2 M
	Capacitance (G) = GUC
	(C2) = 8 UC
	$(C_2) = 8 \text{ LC}$ $Voltage (V_1) = 110V$ $(V_2) = 140V$
	$(V_2) = 140V$
	P. loss of energy = Energy before - Energy after johrad johned
	loss of energy = therety before - therety after
	$E_{165} = E_b - E_a$
	E _b = \(\frac{1}{2} \cdot \f
	= /x6x10-6 x 1102 + /x8x10-6 x1402
	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	= 0.0363 + 0.0784
	Eb = 0.1147 J
	Ea = KC1V2 + KC2V2
	$= \sqrt{\frac{1}{2} \left(c_1 + c_2 \right)}$
	· ·
	But $C_1 \vee_i + C_2 \vee_2 = (C_1 + C_2) \vee$
	$V = C_1 V_1 + C_2 V_2$
	$V = \frac{C_1 V_1 + C_2 V_2}{C_1 + C_2}$
_	V = Cx10-6x 110 + 8x10-6x140
	6×10-6 +8×10-6
	V=127.14V
	Ea = 1/27.142 (6x10-6+8x10-6)
	2

5	C) 15 4 1422T	
	c) = 0.1132J	¥ .
	Elou = Eb - Ea	()
	= 0.1147-0.1132	111
	$= 1.5 \times 10^{-3} \text{J}$	/
	. Fregy loss Ps 1.5×103J	2 parce
		v (12 for a contract
	injection in the second of	- 300 mg / 8 6 1 1
	11. Energy loss per unit. Volume	
	Volume = Area X distance	
	= 36×10-4× 4×10-2	
	Velune = 1.44 × 10-4 m3	
	Eloss = 1.5 × 10-3	XX
	per value 1.44×10-4	-
	= 10.42 3/12	1111.0
	= 10.72 7/4	() III () come
	Energy loss per Volume is 10	12 TAIS


Extract 5.2 shows how the candidate managed to respond to the question. The candidate managed to attempt many parts of the question. Nonetheless, he/she provided an incomplete definition of the electric field strength E at any point.

3.6 Question 6: Electrostatics

Part (a) of this question required the candidates to define the terms (i) capacitance, (ii) charge density, and (iii) equipotential surface. In part (b) they were required to use coulomb's law of electrostatics to derive an expression for the electric field strength E, due to a point charge if the material is surrounded by a material of permittivity ϵ , and to show how E relates with charge density δ . Part (c) required them to describe the structure and the mode of action of a simplified version of the Van de Graff generator. Part (d) required the candidates to (i) identify any three factors on which the capacitance of parallel plate capacitor depends, (ii) determine the time of fall of a proton of mass $16.7 \times 10^{-28} \text{kg}$ through a distance of 2.5cm in a uniform electric field of magnitude $2.65 \times 10^4 \text{V/m}$ if the effects of air resistance and gravity were neglected, and (iii) determine the length of a paper sheet required to construct capacitance of $15 \mu \text{F}$ for a parallel plate capacitor made of paper of width 40 mm, thickness $3.0 \times 10^{-2} \text{ mm}$ and relative permittivity of 2.5.

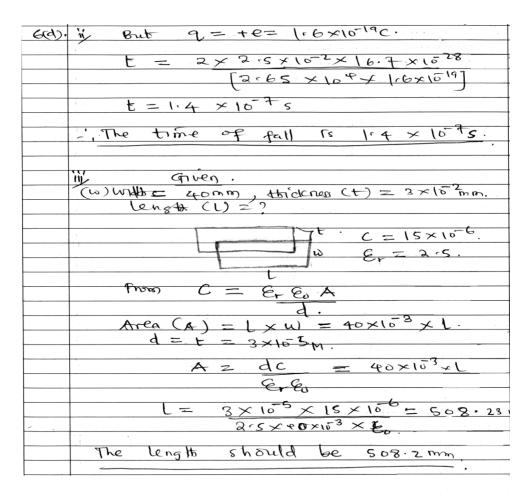
The question was attempted by 47.4 percent of the candidates, with the following scores: 58.2 percent scored from 0 to 6.5 marks, with 4.1 percent scoring zero; 37.0 percent scored from 7.0 to 11.5 marks; and 4.8 percent scored from 12 to 19 marks. These data signify that the performance in this

question was generally average. Below is the pie chart that expresses the candidates' performance in this question.

Figure 20: The candidates performance in question 6.


The data presented in Figure 20 indicate that 41.8 percent of the candidates scored 3.5 marks or above, which is average performance.

Despite the fact that the question was generally not well performed, some candidates managed to score high marks. The candidates who scored high marks (4.8%) successfully defined the terms capacitance, charge density and equipotential surface. Additionally, they derived an expression for the electric field strength E, due to a point charge and correctly showed how E relates with charge density δ . The candidates described the structure and the mode of action of a simplified version of the Van de Graff generator and identified three factors on which the capacitance of parallel plate capacitor depends on. Also, they determined the time of fall of a proton in a uniform electric field neglecting the effect of air resistance and gravity and determined the length of a paper sheet required to construct the capacitance of a parallel plate capacitor. Extract 6.1 depicts a work of a candidate who performed the question well.


Extract 6.1

601 CAPACITANCE - la the abolite of material
such as capacitor to store charge which
such as capacitor to store charge when Is given as the ratio of charge stored to the potential dufference applied
to the potential dufference applied
· · · · · · · · · · · · · · · · · · ·
U CHARGE DENSITY - Is the concentration
of charge on a material whoch Figuen
as the total amount of charge per unit
Volume Area or length.
in Equipotential Eurpaer - Is the surface in which electors potential
Eurface in which electors potential
Is the same at each point
•
60 Consider q
Q 40

ab From coulomble Law of electrostates
Force (F) = K 9, 90 K = 1
Force (F) = K 9, 90, K = 1 E-permittints of a medico,
F = 9.90
4118+2
Now Elector field (E) at Pis
Now Elector field (F) at P is E = F - is from definition of E]
en o) and ai)
Then E = (9,90) ; 90 = 91
Then $E = \left(\frac{q_1q_0}{4\pi\epsilon r^2}\right) \div q_0 = \frac{q_1}{4\pi\epsilon r^2}$
E = 9 ×1 = 9
$E = \frac{9}{4\pi r^2} \times L = \frac{9}{4\pi r^2 \epsilon}$ Hence deriver
But 9 = T = charge density
41172
411172
E = T e · Constant
E = 0 E : Constant
E = 0 e : (F & To constant
E = 0 1f & 16 constant E & 0 :Electric field strength increases with manager to charge density.
E = 0 If & w constant E & 0 :Electric field strength micreases with more To charge density.
If E & constant If E & constant E & I constant E & I constant E & I constant E & I constant Flector freld strength macreases with mare To charge density. Shown: Shown:
E = 0 E = 0 If E & constant E \times 0 :Electric freld strength mcreases with mare To charge density.

c) production of voltage of order 107V.
6(d) i PACTORS WHICH CAPOCITANCE DEPEND. (a) Area of the plates The Capacitonce of Capacitor increases with increase in Area of plates.
a Area of the plates
The Capacitomice of Capacitor increases
with increase in Area of plates.
(b) Distance of separation of plates
Capacitance & 1 distance opseparada
appan e of separana
(c) Nature of delectric materials.
C & E,
ii Given mass of proton (mp) = 16:7×1028 lg. dratale (d) = 2 rs cm. Electore freld (F) = 2 r65×10° /m. The (t) = 2
mass of profits (1/2) = 16: 4×10 19.
(1) (1) = 2,5 cm.
The close field (F) = 2 2 05 × 10 m.
1 me (() 2 /
from Force (P) zma = Eq,
$a = \mathbf{E}q - \mathbf{i}$
10).
$a = \underline{Eq} - \underline{i}$ m $Also d = \sqrt{at^2} - \underline{ai}$
d - 1, Eq. 2
$d = \int Eq + 2.$
+2 = 12 dm 7/2.

Extract 6.1 shows how the candidate fulfilled the demands of all parts of the question. Consequently he/she achieved a high score.

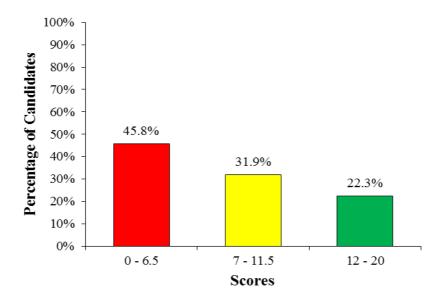
On the contrary, the candidates who performed poorly in the question lacked both content knowledge and numerical skills. These candidates failed to define the terms capacitance, charge density and equipotential surface. For example, some of the candidates showed that the relation between electric field strength and charge density is direct relation instead of inverse relation. The majority failed to describe the structure and the mode of action of a simplified version of the Van de Graff generator and to identify three factors on which the capacitance of parallel plate capacitor depends on, which are area of plates, plate separation and permittivity of dielectric medium. Also they failed to determine the time of fall of a proton in a uniform electric field and the length of a paper sheet required for constructing the capacitance of a parallel plate capacitor. The candidates lacked general knowledge on the concepts of static electricity.

Extract 6.2

(0)	a) Capacitomer this is the reciprocal of remists
	na or is the ratio of electric current and
	the change produced by the conductor
	The entring to prose according the consecution
	**
	(u) Charge density u the ratio of charge d
	mas produced in a conductor and the volume
	in I Change density is the ratio of change of mass produced in a conductor and the volume of current entering and bearing the conductor
	(iii) Equipotential surface this refers to the
	place when the energy produced in the conductor
	notes and that my bosing the conductor
	deat sha files of a control of the control of the
	are the rune.
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
(2000)	
b .	Solytim, Expression
	Data given
	Elita Call troub
	Electric field strength = E
	Permittivity = E
	Change durnity = 6
	The contract of the contract of
	Solution.
	sourch -
	1 2411 Et6
	22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	E = 1/4/18 1/0+8
Manager of the second second second	14115 1 .010
	and the second s

	A STATE OF THE STA
din	Factors which the capacitance of porallel plate
	capacitor depend
	1) Length of wire
	1 Cross rection area
	(3)
(ii)	Solution Dala given
	Mass of proton = 16.7 x W-28 kg Dirtoma langth = 2.5 cm
	Distance unath = 2.5 cm
	magnitude = 2.65 x 10 4 V/m
	T = Required
	73 T T T T T T T T T T T T T T T T T T T
	11 distance
	V= distance Time
	2.65 x w 4
	V = magnitude = 16.7 x 1028
	Wang of burn
	V = 1.6 K1031 m/s.

đ	T = distance D 0.025m Velocity 1.6x1031m(1
	Time = 1.6x10-33 Second.
ckin	Data given
	Thick = 3x w 2mm
	length = ? Capacitme = 15MP
	Relative permability permittinity = 2 = 2.5'
	L = /411 E V E + 6
	T = 1/411.5.2, 12×1/15×1/15×1/15×1/15×1/15×1/15×1/15×1/
	= /12T1 . 2-5 / 12,500,000
	= /1011
	= 112.53mm·
	2
	i. length = 112.53 mm.


In extract 6.2, the candidate was incompetent in providing correct responses. He/she defined incorrectly the terms capacitance, charge density and equipotential surface. Also the candidate used an incorrect formula to determine the time of fall of a proton in a uniform electric field and to determine the length of a paper sheet required to construct capacitance of a parallel plate capacitor.

3.7 Question 7: Electromagnetism

In part (a) of this question, the candidates were required to (i) state any three magnetic components of the earth's magnetic field and (ii) determine the earth's magnetic field and its angle of inclination I at a location where the horizontal and vertical components of earth's magnetic field are 2.7×10^{-5} T and 2.0×10^{-5} T respectively. In part (b), they were required to state: (i) Biot–Savart law, and (ii) Ampere's theorem as applied in magnetism. Part (c) required the candidates to (i) draw hysteresis loops diagram for soft iron and hard steel and use them to discuss permanent magnets, (ii) define permeability constants and (iii) derive an expression for the magnetic flux density B at the center of a circular coil of radius r and N turns placed in air

carrying a current I. In part (d), they were required to calculate the (i) magnetic induction at the centre of the coil, (ii) magnetic moment of the coil, and (iii) torque acting on the coil if it is suspended in a uniform magnetic field of induction 0.6T such that its plane is parallel to the field.

The question was attempted by 33.7 percent of the candidates and out of them, 45.8 percent scored from 0 to 6.5 marks including 8.1 percent who scored zero; 31.9 percent scored from 7.0 to 11.5 marks; and 22.3 percent scored from 12 to 20 marks. Only one candidate scored full marks in this question. The analysis shows that the question was averagely done. The histogram below summarizes the performance of the candidates in this question.

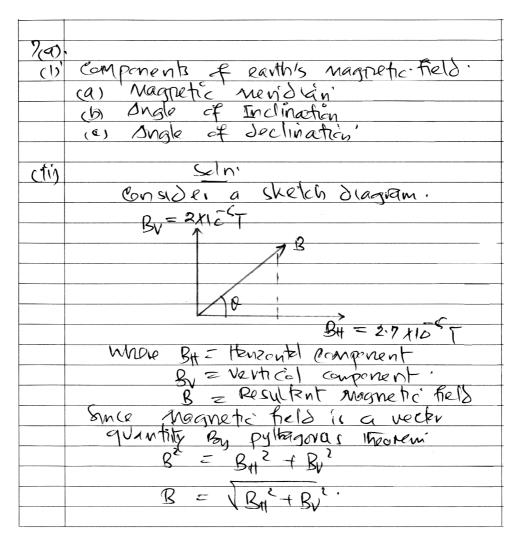
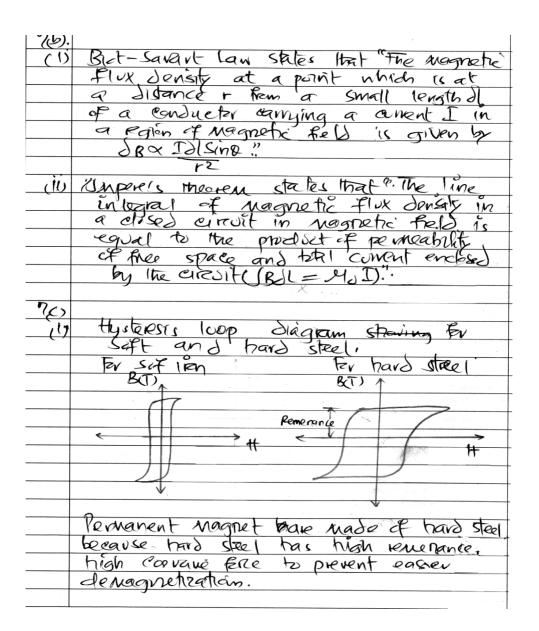

Figure 21: The candidates' performance in question 7.

Figure 21 shows that 22.3 percent of the candidates scored 12-20 marks.


Some of the candidates who attempted the question and performed well (22.3%) had good knowledge on electromagnetism as they managed to state the components of the earth's magnetic field, determine the earth's magnetic field and its angle of inclination I at a location, and state Biot—Savart law and Ampere's theorem. These candidates were also able to draw hysteresis loops diagram for soft iron and hard steel and use them to discuss permanent magnets. They also managed to define permeability constants and to derive an expression for the magnetic flux density B at the centre of a circular coil of radius r and N turns placed in air carrying a current I. Furthermore, they managed to calculate the magnetic induction at the

centre of the coil, the magnetic moment of the coil and the torque acting on the coil when suspended in a uniform magnetic field with its plane parallel to the field. Extract 7.1 shows a sample of a good response from one of the candidates.

Extract 7.1

700	B= BHZ+ BZ.
	B= (2.7/1/05)2+(2/1/05)2
	B= \7.2911010+4110
2,1	B = 3.36/1105 T.
	ana = Bv
	BH. BH.
	D= tan (2/105)
	0 = 36.53
	0 = 36.53° Co Earth's magnetic field is 3.36×10°T and it angle of inclination is 36.53°.
	36.53.

7 ci)	Remeability constant is defined as the ratio of nagretic flux density of a material in a medium to the magnetic field strength (magnetising toke).
	ratio of nagretic flux density of a
	material in a medium to the magnetic
	field straight (magnetising force).
div.	Seln.
	Derivation of Magnetic flux densitys at the centre of the circular coil of Tadius r. and N turns placed in air carrying current I. Consider the diagram below.
	at the centre of the circlar coil of
	radius r. and N turns placed in air
	caming current I.
	Consider the diagram below.
	0. F
	frem Bit-saight Law.
	B= [JR. but JB= k Id] SIND
	. 3
	Since a cell is in air
	K = U0.
	B = (MoIdSind but 0=90.
	$B = \int \frac{MoIdSind}{4111^2} bit 0 = 90^\circ.$ $l = 2111 V.$
	$\ell = 2iTr(V)$
	1 then setter
	$\rho = \left(\frac{1}{1} \right)$
	3 4020
	o AME.

7	21Th
Chij	B= (4010)
	J, FIN
	B = MaI (2MN)
	400
	((1, 30
	B- MeI T, JUNN
	ZOV2 ()
	R = MOJ (2 TVN)
	B = 401 (SINN)
	S = MoIN
	2 7
	(Magnetic flux density; of circular
	coll at the centre is
	con Magnetic flux density; of circles coil at the centre is 13- Mo IN Stown,
	3 Shown,
	~ 1
70	Soln
	30/1
(0)	Solve Signetes $d = 160m$ Follow $r = 142 = 80m$ Turns $N = 40$
	DIGITIES OF TOOM
	TUINS $V = 140 = 8cm$, V = 40 V = 54
	TUMS N=40
	Whent, 1 = 5A
-	(B = 1
	h -
	B= SEIN
	21
	but Mo= 4 Trio 7 Hm 1

7 (1)	-57
(1)	$B = 4\pi \kappa i ^{2} x 5 x 40$
	3/8/15 ² B = 1.5712103T
	B = 1.57171-3T
	~ Magnetic insultion R = 1,591x107
i Ĉ.	c 1
Clis	Character to the
	for NA - NTX.
	$ V = V ^2$
	Soln: Magnetic Manent, M. From M = NIA. but A = TV2. then M = NI TV2. M = 40 × 5×(0.08) × TT M = 4.021 Am2. C. Magnetic Manent 1: 4.021 Am2.
	M = 40 x 6x(0.08) x [
	M= 4.021 Am2.
	Engretimalent 1: 4.021 Am2.
du	
an	seln!
	Reguled ?: Terque.
	Frem T = BANISINO.
	where $B = 0.76T$ $N = 40 A = \pi V^2$ $\Gamma = 54$
	$N = 40$ $A = 10^{-1}$
	0 - do.
	T = 5A 0 = 96 then $T = 0.76 \times 116.08 \times 40 \times 5$
	T = 3.056 Nm.
	(23:000 1VM)
	c'. Torque will be 3.056 Nm.
	V

Extract 7.1 shows how the candidate attempted the question and provided the correct responses to all parts of the question.

Some of the candidates who attempted the question performed poorly as they provided wrong responses to most parts of the question. These candidates had an insufficient knowledge on electromagnetism especially on the concepts of the earth's magnetism, magnetic properties of materials and the application of Biot–Savart law. Extract 7.2 shows how the candidate attempted the question but failed to provide the correct answers.

Extract 7.2

70	Magnetic components of the earther magnetic feels (3)
a	magnetic full (3)
	1. Magnetic induction
	2. Shreshold.
	3. Magnetic flux.
7(w)(w)	Δ.
1	L- /V
	h
	ý X
	, ,
	C
	2.7 × 10-57.
	2.7 X (0°5 1 ··
	5 11 m 10 A
	Further magnetic field = frequired. From. Magnetic = HC XVC,
	from.
	Magnetic = H(XV-C)
	field,
	Magnetic
	Magnetic tield = 5.4 x10-10'
	moregoro magnetic field = 3.4 X10'10;
	3
7,8,	Data given.
	Diameter, EDD =40 turn.
	Diameter, (D2) = 16cm.
	Current (D= SA.
	Magnetic induction = Regulared
	Magnetic induction = Required. Magnetic moment = Required.
	Torque: Required.
	1019ar = talallect.

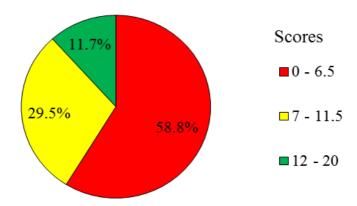
	Solution
10	Magnetic
	Magnetic Induction = DIXDZ
	1.
1	- 40×16
	3
	400110
	= 40 × 16 cm.
:	5 A
	= 128.
	Magnetic induction = 1287.
	and the service of the second of the description of the second of the se
(ia)	Magnetic moment
	= Magnetic moment x Current
	s demonstra
	128T × 5A.
	= 640T/A.
/	The second secon
	Magnetic moment = 6407/A
	Magneric monerce- 0-10 (1)
	<u> </u>

CILL	Torque.
	= Magnetic induction Xthagnote From
	Magnetic field.
	a Colombia orthographic services and a service services by
	1/28 1
	17 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	A REPORT OF THE STATE OF THE ST
	=168.42.
	Thepore torque = 168.42.

Extract 7.2 shows how the candidate attempted the question by using incorrect formula and procedures and consequently obtained incorrect answers. The candidate provided responses which did not relate to the demand of the question. For example, instead of giving components of the earth's magnetic field which includes north component, vertical component and inclination or dip, he/she listed them as *magnetic induction, shreshold* and *magnetic flux*.

3.8 Question 8: Atomic Physics

Part (a) of this question required the candidates to (i) explain briefly the production of X-rays, (ii) list down any three uses of X-rays, and (iii) show how intensity and penetrating power of an X-ray beam is controlled. In part (b), the candidates were required to calculate (i) the number of electrons per second striking the target, (ii) the velocity of the of the incident electrons,


and (iv) the energy of incident electrons given that "an X-ray tube, operated at d.c. potential difference of 60kV, produces heat at the target at the rate of 840W. Assuming 0.65% of the energy of the incident electrons is converted into X-radiation".

In part (c) they were required to (i) show that the possible energy levels (in joules) for the hydrogen atom are given by the formula: $E_n = -k^2 \frac{2\pi^2 m e^4}{h^2} \frac{1}{n^2}$ where m is the mass of electron, e is the electronic

charge, h is the Planck's constant, $k = \frac{1}{4\pi\varepsilon_0}$ and ε_0 is the permittivity

constant of vacuum, (ii) give the significance of the negative sign in the formula for E_n in (c) (i) above and (iii) calculate the wavelength of second member of Balmer series of hydrogen spectrum if the first member has wavelength of $6563 \times 10^{-10} \text{m}$.

The question was attempted by 13,299 (76.2%) candidates. Out of them 58.8 percent scored from 0 to 6.5 marks, including 4.1 percent who scored zero; 29.5 percent scored from 7.0 to 11.5 marks; 11.7 scored from 12 to 20 marks; and 41.2 percent scored from 7.0 to 20 marks. These scores indicate that the question was averagely performed, as captured in the chart below.

Figure 22: The performance of the candidates in question 8.

The candidates who performed well (11.7%) in this question had mastered the content on the topic of Atomic Physics. The majority of them were able to explain the production of X-rays, list down uses of X-rays, and show how intensity and penetrating power of an X-ray beam is controlled. Also they were able to calculate the number of electrons per second striking the target, the velocity of the incident electrons and the energy of incident electrons. They showed correctly that the possible energy levels (in joules)

for the hydrogen atom are given by the formula: $E_n = -k^2 \frac{2\pi^2 m e^4}{h^2} \frac{1}{n^2}$ where m is the mass of electron, e is the electronic

charge, h is the Planck's constant, $k = \frac{1}{4\pi\varepsilon_0}$ and ε_0 is the permittivity

constant of vacuum. Finally they were able to give the significance of the negative sign in the formula for E_n and to calculate the wavelength of second member of Balmer series of hydrogen spectrum. Extract 8.1 shows a sample of a good response from one of the candidates.

Extract 8.1

8.	tol 2 the latin of your land at 1012
	of it the production of x-rays happens when a stream of furt moving
	electrons are guddenly stopped by a motal target. The x-rays are produced by excitation of electrons close to the nucleur unlike the optical rays which are
	due to excelation of elections of salono shells, The zet up is such that the
E .	flament is heated to produce the electrons which are then accelerated by the
Barana and A	prosence of an elocture field to high velocities and they but the metal larget and
	course to development of warrant les touch a pound to at the production
7.1.1	cause the development of x-rays the transformer provides the potential needed for heating the flament and acceleration of electrons. The metal bright should
	be had and have a high melting point to prevent to from suddenly melting. Drily
12.72	a small faction is the short of electric is problemed by a register
	get being used by noted as best which has the conjusted much the
	a small faction is he of the energy of elections is perspormed is a vary the rest being used for wasted as heat which has to be conducted away by the coolant of I to hand the kept. The tought is embedded in the and which attents
	The electrons from the plament.
	A SHITY SAX & S
100	117 1)cos & y-rays.
	- can be diffracted and their patterns adultantion can be used for study of
	119 Uses of y-rays. -p Can be diffracted and their patterns of diffraction can be used for study of the indecular structurer of compact solid materials.
· · · · · · · · · · · · · · · · · · ·	They are used in medical institutions for determining various flows within the body such as bone facture and others.
4 17.	the body ouch as bone facture and others.
	to since are electromagnetic waves of short wavelengths they are be used for energy requiring process as they passes a large amount of energy
	for energy requiring process as they passes a large amount of energy
	A
	And a large of the
Samplement -	"If The interesty of x-ray beam is controlled by the flouring current while
	to penetating power is controlled by the accelerating pid given to the elect
	11) The interesty of x-ray beam is controlled by the flowing current while the penetrating power is controlled by the accelerating and given to the electrons in the first place by the transformer.
	J. Power = 840 W.
	1. Power = 840 W. X-ray perant = 0.65%. The rest of the energy is converted unto heat 99.35%.
· pala	heat 99.35%.

8	b/ / Supply voltage 60/2V,
	/ W/
	H = IV.
	/+
	I=9/=19/
	P = 99.35X 1.6 x 10-19 x 60 X 163 X 7/
	t
Maria Ma	840 - 9.5876 rid 13 m
Articles	9.5376×16" 9.5376×10" t.
	133/6/10 7:35/1/X/6V
	n/ 2,227, 14 +
	y = 8,807 ×1014 electronic per second.
	$ V = V = V m V^2$
	$V^2 = 2eV$
	m .
	$V^{\dagger} = \sqrt{\frac{2eV}{1}}$
	1 / 1/1/3
	$V = 2 \times 1.8 \times 10^{11} \times 60 \times 10^{3}$
7	Velouty of elections = 146.97×106m/s.
	Telestiff (Missing)
	My Incident elections had Kinetiz energy = /mv2.
	IN TUDONI LIGORIZ LING KINETAL = 1 WA.
·.	5V0.1V531 v6.100.00
**************************************	= 0.5X9.1X1031 X(146.97X109).
	1 0 0 0 d
	Energy of inadent electrons = 9.84×10-15.

8	C/ 17.
	Potential energy E = -e2
	Potential energy $E_p = -e^2$ $471\xi r$
	mv3 = e3/
	$\frac{1}{2}mv^2 = e^2/8116r.$ Kinetz energy $E_k = e^2/8116r.$
	2 /871&r.
	kinetiz energy Ex = e3
	27 / 8η&r.
	Total energy, Eg = tx + Ep
	= e3 - e3 8718 4718 m
	ong mar
	E1 = - e2/
	E1=-e2 871&~
	mur = nh/ quantisation of angular momentum.
	muk = nh/ quantisation of angular momentum.
	27
	$mv = nh$ $2\pi r$
	∕2Tr.
	$V = nh$ $2\pi mr.$
	271 mr.
	$m\left(\frac{nh}{2\pi}\right)^{2} = e^{2}$ $m\left(\frac{nh}{2\pi}\right)^{2} = e^{2}$ $m\left(\frac{n^{2}h^{2}}{4\pi}\right)^{2} = e^{2}$ $m\left(\frac{n^{2}h^{2}}{4\pi}\right)^{2} = e^{2}$ $m^{2}h^{2} = e^{2}$ m
	121mr/ 411&1.
	7717 471 Et.
	n2h2 - p2y
	4712mr 4718.
	r= 478n2h2
	411 Lez m

8	V 12 Ch2/2
0	$\frac{c}{n} = \frac{\epsilon n^2 h^2}{n^2}$
	$E_{1} = -e^{2}$ $8\pi \varepsilon r$ $E_{n} = -e^{2}$ $8\pi \varepsilon \left(\varepsilon_{n}^{2}h^{2}\right)$ $7e^{2}m$
	Γ - 22/
	4 = -6/
	811& 1
	$E_h = -\frac{1}{2}$
	878 (Enzh-)
	(7e2m).
	2 7 7
	$E_n = -e^2 \pi e^2 m$ $8\pi e^2 n^2 h^2$
	87182n2h2.
1 1	
	$E_n = -\pi e^4 m$ $8\pi \epsilon^2 n^2 h^2$
	8782n2h2
	$\frac{E_n = -e^{4m}}{8\xi^2 n^2 h^2}$
	882n2h2
	lompare,
	$E_n = -k^2 27^2 \text{ me}^4 \perp$
	h ² · n ²
4	$E_{n} = -\frac{L^{2} 2 \pi^{2} me^{4} L}{h^{2} \cdot n^{2}}$ $E_{n} = -\frac{1}{2} \cdot \cancel{X} \cancel{X} me^{4}$ $= -\frac{1}{2} \cdot \cancel{X} me^{4}$
1	Eller E2 h2n2.
1.74	En = - me 4
	852n2h2.
Service Control of the Control of th	So. En = -me4 = -k22112me4. 1 where k=1
	So. $E_{\eta} = -me^{\frac{1}{4}} = -k^2 \frac{2\pi^2 me^{\frac{1}{4}}}{h^2}$ where $k = \frac{1}{4\pi \epsilon}$
	0.00
	hence shown .
	S - 1497 (

8	V 11/ The monative soon implies that the proper tool to increase from
0	It is the negative sign implies that the energy lends to increase from the ground state to the ionisation state where he is maximum and that
	12 Sew.
	$111/\lambda = 6563 \times 10^{-10} \text{m}$
	for prot member.
transportation of the control of the	$n_1 = 2$ (AVa >) yex
	for prot member. $n_1 = 2$ (A) $n_2 = 3$.
ativist at the last graph constant was properly	$\frac{1}{\lambda} = R_{H} \left(\frac{1}{1} - \frac{1}{1} \right)$
errotani (* 2002). Si sellos efent debarbos	
	6563X10 (4-19)
	6563X10 (4 1)
	$\frac{36}{5\times6563\times10^{-16}} = R_{H}.$
	5x6563x1676
- 16-	
	Ry = 10,970,592.72.
	<u> </u>
adress success of annual	for seemd member
eco secele su te se consultante de	$n_1 = 2$ $n_2 = 1$ $R_1 = 10,970,592-72$
and the second s	$\eta_2 = \emptyset$
	$K_{H} = 10,970,592-72$
energy of the second second second	
	/ = 10,970,592·72 (/ - /)
1/3	
	1/ = 2056986.135.
and the state of t	A 0 (1) 1 - 7
	$\lambda = 4.861 \times 10^{-7} \text{m}$

Extract 8.1 shows how the candidate managed to provide proper responses and applied the correct formula in calculations and consequently ended up with the required answers. However, this candidate included an incorrect application of X–rays in his/ her list by saying "X–rays are used for energy requiring process".

On the contrary, the candidates who performed poorly in this question lacked the understanding of the concepts of X-rays; and their production and uses. As a result, they could not calculate velocity of incident electrons

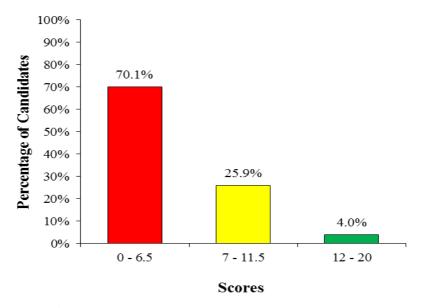
and their respective energy. In general, these candidates had limited knowledge on the concepts of X-rays and Bohr's model of the atom as applied to atomic Physics. Extract 8.2 shows the sample answer from a candidate who performed poorly in this question.

Extract 8.2

	1
8 a)	i) Production of X-ray,
	This x-ray & produced when
	the radration energy or when rays are strike to. He target and release energy which known as
	He target and release energy which known as
F 90 9	x - 1011,
	7
	ii) Uses of X-rays
National State of the Control of the	- used to check destroyed part organ in human
	eq in brain
	used to show how allrandet travel in the
	budy.
	- p used to show the effected part in vital organ
P	of the human example it show how Ribs
* * *	affected by smoker person r

Ea)	in) the intensity and penetrating power of an X-ray;				
	bem controlled by skin of the human or of any				
	bem (untrolled by Skin of the human or of an Object				
b)	Duta gru				
	<u> </u>				
	V= 60KV'				
	E = 0.667.				
	r - 0 03 I				
	115 - 1 m/21				
	$k \cdot E = \frac{1}{2} m v^2$				
	KIE = WO - EO				
	$ev_s = F_0$ $e \times 60 \times w^3 = 0.65$				
	100				
	6 = 0-148 = 1.0629 x11-8.				
	The number of electre = 1.065 x11-4.				
u)	KrE = y mv1.				
	$P = \frac{\sqrt{2}}{2}$ $\frac{1}{2} = \frac{\sqrt{2}}{2}$ $\frac{1}{2} = \frac{\sqrt{2}}{2}$ $\frac{1}{2} = \frac{\sqrt{2}}{2}$				
	i e v = 1, v				
	me 2				
	1.8xw11 x 60xw3 = 1, v2.				
	2				
	Veluty = 146.97 xw3m/s				
	146.17 XW mj.				

8 c	En = - k3 2112 mft /
	hi pi
	form'
	Angular Momentum
121 2	My. (n = 29) m = 21)
	nh. nh Vníní
	Form: Angular Momentum: $Mv_{n}r_{n} = 2\pi$ $m = 2\pi$ $nh \cdot nh \cdot v_{n}r_{n}r_{n}r_{n}r_{n}r_{n}r_{n}r_{n}r$
	$F = \frac{2\pi}{4\pi \epsilon_0 r^2}$ $\frac{r}{r} = \frac{2\pi}{2\pi}$ $\frac{1}{r} = \frac{2\pi}{2\pi}$ $\frac{1}{r} = \frac{2\pi}{2\pi}$
	Vn = 211 Myrn nh = 211.
	$\Delta v = 31$ $\Delta v = 31$
	$r = 20$ $lm_n n h$
	(Mrn n h.
	$\frac{2e^2}{4\pi\epsilon r^2} = 2\pi$
	4TE r2 nhmm
	Ze2 = 1
	$\frac{Ze^2}{2\pi \xi_0 r^2} = 1$ $\frac{2\pi \xi_0 r^2}{Ze^2}$ $\frac{7e^2}{2\pi \xi_0 r^2}$
	Ze ²
	2112 Es (211 mvnh) 2
	/
	Ze2 mf 2T
	nsh2,
	2 M2 4 2112 = Ei.
	hr hr.
	Z = 11
	9
	E = -k2112 Mc4;
	$E = -k^{2} \pi^{2} M_{c} + \frac{1}{4} \frac{1}{n^{2}}$ $E_{n} = -k^{2} 2 \pi^{2} M_{e} + \frac{1}{4} \frac{1}{n^{2}} \frac{1}{n^{2}}$ $Hence shown.$
	En = - k 2 2 1 2 Me 4
	# 2 n²
	tence shown.


energy was released	s that the				
energy was released					
III) Data gun					
	1 7 7 7 7				
0' > 3					
$n_2 = 3$	d in balmer.				
N= 6563 xw-10m-	= 41				
	-13.6ev				
SE = E, - E.	n2,				
	- 13.6ev				
λ	42				
QE =	- 13.6 x 1.6 x 2-19				
	42				
DE = 1.36	x10-19,				
SE= hc					
λ					
1.36x10-19 = 3xw 8 x 6.63x10-34	1.36x10-19 = 3xw8 x 6.63x10-34				
λ .					
1 = 1.462 x 10-6.					
1.36xw17 = hc(1, -1).					
6663 x15 10 A	1136 xw17 = hc(1 -1),				
= 1.4625)	= 1.4625 XIV-6.				
The War length of deemd Member	= 1.4621 Xm- gm				

Extract 8.2 indicates how the candidate answered the question wrongly. The candidate explained that X-rays are produced when rays hit a target instead of fast moving electrons hitting a metal target. He/she used Einstein's photoelectric equation to calculate the velocity and energy of incident electrons instead of using the mass-energy relations.

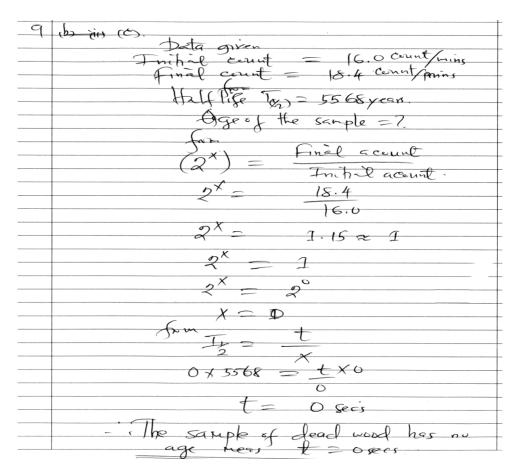
3.9 Question 9: Atomic Physics

Part (a) of this question required the candidates to (i) differentiate between natural radioactivity from artificial radioactivity, (ii) name three applications of radioisotopes in medicine, and (iii) state two conditions for stability of nuclides referring to light nuclides and heavy nuclides. In part (b), the candidates were required to (i) derive an expression for the half–life using the radioactive decay law, (ii) give meaning of carbon–14, and explain its production and how it is used in dating process. In part (c) the candidates were required to calculate the age of the sample of dead wood if the half–life of carbon–14 is 5568 years given that Living wood has an activity of 16.0 counts per minute per gram of carbon, and that a certain sample of dead wood is found to have an activity of 18.4 counts per minute for 4.0 grams".

The question was attempted by 69.7 percent of the candidates. Out of them, 70.1 percent scored from 0 to 6.5 marks including 8.0 percent who scored zero; 25.9 percent scored from 7.0 to 11.5 marks and 4.0 percent scored from 12 to 20 marks. The chart below summarizes the candidates' performance in percentage against the scores in this question.

Figure 23: The candidates scores in question 9.

The data in Figure 23 indicate that 70.1 percent of the candidates scored below 3.5 which is an indication of poor performance.


Poor performance in this question was contributed by candidates' inability to differentiate between natural radioactivity and artificial radioactivity. They failed to outline the applications of radioisotopes in medicine. Moreover, they were unable to state the conditions for stability of nuclides referring to light nuclides and heavy nuclides. Furthermore, these candidates failed to derive an expression for the half-life using the radioactive decay law. The majority failed to give the meaning of carbon – 14, its production and how it is used in dating process. Also, they failed to calculate the age of a sample of dead wood because they used incorrect formula; For example, one of the candidates used the formula $A_0 = Ae^{-\lambda t}$ instead of $A = A_0 e^{-\lambda t}$ in calculating the age of the sample of dead wood. Extract 9.1 shows the work of a candidate who did the question poorly.

Extract 9.1

9 min Natural radioachity
This is the disintegral of particles
This is the other trees.
of an elements while
1 Dright Life to the more to of
Athial radinativity, Is the property of
of the budy to disintegrate on their own
A Distriction of the second of
5 pontereasly.
(11) (a) To dean medicine from phatural medicine
to artificial mediane
to I'm Want and magnifu the
(1) to the tree tree to the tree to the tree tree to the tree tree to the tree tree to the tree tree tree tree tree tree tree
teagent of medicine and mix with
b) For led to mix and magnify the feagent of medicine and mix with the medicine from traditional to
The fractional flow to the
modern mediane
eg fom Roots/leag - Tablets.
(a). Use to trop reducative elements entering
in the pricess of making medicine
(4) the press of material reductive

9 ch in Roducchie decay law				
stokes that The rate of disintegra him of the				
door reductive elevent resecual to the				
states that The rate of disintegration of the decay radioachie element is equal to the number of disintegrated in a partent number				
Le la same				
do x-N				
$N = (O - Q_i)$				
do = -kN				
AL.				
dt seprebing vanables				
do = -d+				
00				
Integrate though out				
- vitojisje ti sij i e				
do - todt				
0-0				
7(0-0g) = - Kt				
no- no = - cī				
$(n(Q_{\lambda}) = -kt)$				
Introduce legilithm under base				
$\frac{0}{0} = \frac{-1}{2}$				
<u> </u>				
U1				

9 (b) 0 = 07 e
but t=t
$\theta = 0.6$
$-kt_{1}=\ln(9_{0})$
- k but 10 = -10
tz = 14(%)
byt 1 (%) = 1 (%) = 0.986.
Then Ty = In(O/a)
Ty = 0.936 K
The half life 1/2 0.936
tence proved

Extract 9.1 displays the incorrect responses given by a candidate who performed poorly on this question. The candidate interchanged the contrast between natural and artificial radioactivity. He/she presented incorrect applications of radioisotopes in medicine and used the concept of the rate of cooling in deriving the decay law instead of number of particles decaying per time (rate of decay) and ended up with incorrect expression.

There were very few candidates (4.0%) who performed well in the question. Good performance was attributed by the ability of the candidates to retrieve and comprehend the need of the question. The majority were knowledgeable enough to differentiate between natural radioactivity and artificial radioactivity. They also named the applications of radioisotopes in medicine precisely. Furthermore, they stated the conditions for stability of nuclides referring to light nuclides and heavy nuclides correctly. These candidates derived an expression for the half–life using the radioactive decay law correctly. They managed to give the meaning of carbon–14 and to explain its production and use in dating process. Finally, the candidates calculated the age of the sample of dead wood by employing the

appropriate formula. Extract 9.2 shows a sample of a good response from one of the candidates.

Extract 9.2

aq.	Matural radioactivity it a type of radioactive decay
	which occur spentaneously, and does not involve
	to be stimulated by agentr like neutrons.
	Example is the natural de cay of Uranium
	White
	ANTERED radioactivity it one in which the radioactive
	atom by corred to undergo radioactivity by bomburdin
	It with other particles like neutrons
	1 Natural radioactivity does not require external agent
	while artificial nad backwity tequipes external
	agent like bombarding with other particles
	(ii) Applications of radiovolopes
	2) Radioisotoper are used to treat cancer problems
	in medical field
	2) Radio Motoper are used to launtify and
	2) Radio Isotopes are up of to Identify and treat tumours in the body of patient
	3) RadioDutiper are used to recognize fracture of
	infernal parts of a body
	ni) Two conditions for stability are
	1) Neutron to proton ratio. When the ratio is around 1, the nuclide it very stable.
	around I, the nuclide it very stable
	11 D. 17
	11) Binding energy per newclean: The larger the
	ii) Binding energy per neticlean: The larger the value of Binding energy per neticleon, the more stability is the nuclide.
	more stability is the nuclide.

oq,	b) 11) a Ferom radioactive de cay law				
,	1/0/				
	$\frac{dN}{dN} = -\lambda N$				
	dt				
	$\frac{dN}{dt} = -\lambda dt$. Intergrating				
	10				
	$\int_{N_{1}}^{N} \frac{dN}{dN} = - \sum_{i=1}^{n} \frac{dt}{dt}$				
	$\ln[N]_{N}^{N} = - \times t$				
	100				
	In N-In No=->t				
	$\ln\left(\frac{N}{N}\right) = -\lambda t$				
	$\frac{N}{Nt} = e^{-\lambda t}$				
	N=Noe-xt				
	OFWhalf life N= 1 No, t = Ty				
	2 10, 0				
	No = No e-X1/2				
	-				
	$\frac{1}{2} = e^{-\lambda \frac{1}{2}}$				
	$2^{-1} = e^{-\lambda T / 2}$				
	$2 = e^{\lambda T \chi}$				
	$\ln 2 = \lambda T_{\frac{1}{2}}$				
	$T_1 - \ln 2 = 0.69314718$				
	$T_2 = \frac{\ln 2}{\lambda} = \frac{0.69314718}{\lambda}$				
	(·) Ty = 0.693				
	<i>></i>				

9	(b) (11)0 Carbon 14 ir a Carbon forteen 150 tope of Carbon			
	Which it formed in estmosphers when nitrogen			
	Combiner with neutron in Cosmic ray region in			
	the atmusphere.			
	+ Lat 15 14 1 14 1			
	+ Lat 15 14 N + ON - P 6 C + 1 H			
	@ Plants abusibs must of 14 sutipe during their			
	time, and their Concentration keeps on Increasing			
	When plant dier, no more 19 C is utope is absorbed.			
© Studier have shown that the age of die				
	wood can be estimated by comparing the actuilty			
	of the sample of 19c in the word and the			
	6			
	activity of 14°C in the ancient living wood. This			
	1 called Calborn-11 dating			
	C) O 18. 4 Counts per munuk - D 4 grami			
	× p 1 gant			
	X = 4.6 (ourst per minute per gran			
	O. Two half life Ty = In 2			
	\(\frac{1}{2} \)			
	$0 \ln \left(\frac{A}{A}\right) = -\lambda T_{y} \text{or} \ln \left(\frac{A}{A}\right) = -\lambda t$			
	A0) (2			
	$t = -\ln(\frac{A}{A})$ had			
	Ao/ but			
	$\lambda = \ln 2$			
	Ty			
	2			

q.	c) $t = -\ln\left(\frac{A}{A_0}\right)$ but $\lambda = \frac{\ln 2}{T_2}$
	$t = -T_{1} \ln \left(\frac{A}{A_{0}}\right) \text{where } A = 4.6$ $A_{0} = 1.6$ $T_{1} = 5.56.8 \text{ years}$
	$= -\frac{5568 \times \ln\left(\frac{4.6}{16}\right)}{\ln 2} = 10013 \text{ years}$
	The age of sample 15 10013 years

Extract 9.2 is a sample response from the script of one of the candidates who managed to give the correct answers to almost all parts of the question.

4.0 ANALYSIS OF CANDIDATES' PERFORMANCE PER TOPIC

The analysis of the candidates' performance in each topic shows that the topic of *Simple Harmonic Motion* from Physics paper 1 was performed well by 61.8 percent of the candidates. The topics of *Measurements, Current electricity, Newton's laws of motion, Circular motion, Heat, Electronics, Gravitation, Projectile motion* from the same paper had average performance. The reasons behind the average performance in these topics were that the candidates had inadequate knowledge and skills on questions which involved the detailed explanations and numerical computations.

The topics of *Environmental Physics* and *Rotation of rigid bodies* had weak performance. The reasons behind weak performance in these topics include lack of content drawing skills, inability to derive different physical quantities, and lack of knowledge in giving detailed explanations on different Physics facts and phenomena.

The analysis also shows that in Physics paper 2, the candidates had average performance in *Electromagnetism*, *Electrostatics*, *Atomic Physics* and *Fluid dynamics* topics. The reasons behind the average performance in these topics include insufficient knowledge on mathematical questions, and improper substitutions of data values in the formulated equations, and application of inappropriate formulae in solving problems.

The analysis further indicates that, 2 out of 6 topics that were examined in Physics paper 2 had weak performance. These topics were *Vibrations and Waves*, and *Properties of matter*. The reasons behind weak performance in these topics include lack of knowledge on the application of Doppler

effects and the concepts of Young's double slits and Newton's rings experiments in interference of waves; and inability to explain different terms in waves, surface tension and elasticity. The summary of candidates' performance in different topics is shown in the appendix.

5.0 CONCLUSION AND RECOMMENDATIONS

5.1 Conclusion

The analysis of the candidates' performance per question has highlighted the challenges faced by the candidates in attempting the questions. It has also given the summary of performance in each topic and recommendations that can help to overcome the identified challenges.

The analysis has shown that the major problem faced by the candidates who scored low marks was inadequate knowledge on the concepts of different topics. Due to this problem, most of the candidates failed to show their competences by giving unsuitable and incorrect responses to some of the questions. For example, in Physics paper 1, they had insufficient knowledge on Rotation of rigid bodies and Environmental Physics for questions 5 and 14 respectively. In Physics paper 2, candidates had limited knowledge on Vibrations and waves for questions 2 and 3 and Properties of matter for question 4 where the performance appeared to be weak.

In addition to that, some candidates had misconception on the subject matter as they failed to identify the requirements of the questions by providing irrelevant responses. Another problem encountered by the candidates was lack of numerical skills. This caused some candidates to provide incorrect answers because they applied inappropriate formulae. Of all the topics which were tested, only one topic *Simple Harmonic Motion* was well performed. Other topics which include *Environmental Physics*, *Vibrations and Waves*, *Rotation of Rigid Bodies* and *Properties of Matter* were performed poorly. The rest of the topics were averagely performed as shown in the appendix. On the basis of these performances, the performance of Physics subject in this year has decreased by 5.36 percent compared to last year examinations because in this year some of the candidates failed to provide the correct responses in many parts of the question.

It is expected that, the feedback given in this report will enable the stakeholders, students and teachers to take the necessary measures to improve the candidates' performance on ACSEE Physics examinations in the future.

5.2 Recommendations

In order to improve performance in future, it is recommended that:

- (a) candidates have to make good preparations for the examinations and they have to carefully read and understand the demands of the questions when doing examinations;
- (b) candidates have to concentrate on conceptual understanding of theories and the subject matter of each topic covered under the syllabus and they should not to rush to solve questions without adequate theoretical knowledge;
- (c) candidates should work hard on attaining mathematical skills to improve their learning so that they can be able to solve problems which include calculations; and
- (d) teachers should conduct and encourage students to attempt more practical work during normal learning hours. This will improve the level of understanding of the contents and improve students' level of competence on the subject matter.

THE CANDIDATES' PERFORMANCE PER TOPIC IN PHYSICS

Na.	Торіс	Number of questions	Percentage of Candidates Who Scored an Average of 35 Percentage or Above	Remarks
1	Simple Harmonic Motion	1	61.8	Good
2	Electromagnetism	1	54.2	Average
3	Measurements	1	53.6	Average
4	Current Electricity	2	53.3	Average
5	Newton's Laws of Motion; Circular Motion	1	43.7	Average
6	Heat	2	43.4	Average
7	Electronics	3	43.1	Average
8	Gravitation	1	37.4	Average
9	Projectile Motion	1	36.6	Average
10	Electrostatics	2	36.2	Average
11	Atomic Physics	2	35.6	Average
12	Fluids Dynamics	1	35.2	Average
13	Environmental Physics	1	33.4	Weak
14	Vibrations and Waves	2	23.9	Weak
15	Rotation of Rigid Bodies	1	16.8	Weak
16	Properties of Matter	1	11.5	Weak

