
THE NATIONAL EXAMINATIONS COUNCIL OF TANZANIA

CANDIDATES' ITEMS RESPONSE ANALYSIS REPORT FOR THE ADVANCED CERTIFICATE OF SECONDARY EDUCATION EXAMINATION (ACSEE) 2017

131 PHYSICS

THE NATIONAL EXAMINATIONS COUNCIL OF TANZANIA

CANDIDATES' ITEMS RESPONSE ANALYSIS REPORT FOR THE ADVANCED CERTIFICATE OF SECONDARY EDUCATION EXAMINATION (ACSEE) 2017

131 PHYSICS

Published by
The National Examinations Council of Tanzania
P.O. Box 2624
Dar es Salaam, Tanzania
© The National Examinations Council of Tanzania, 2017
All rights reserved

TABLE OF CONTENTS

FORE	EWORD	iv
1.0	INTRODUCTION	1
2.0	ANALYSIS OF THE CANDIDATES' PERFORMANCE PER	
	QUESTION IN PHYSICS 1	2
2.1	Question 1: Measurements (Errors)	2
2.2	Question 2: Measurements (Dimension Analysis)	7
2.3	Question 3: Gravitation	14
2.4	Question 4: Circular Motion	19
2.5	Question 5: Newton's Laws of Motion and Projectile Motion	26
2.6	Question 6: Simple Harmonic Motion	32
2.7	Question 7: First Law of Thermodynamics	38
2.8	Question 8: Transfer of Heat and Thermometry	43
2.9	Question 9: Current Electricity	47
2.10	Question 10: Current Electricity	
2.11	Question 11: Electronics	56
2.12	Question 12: Electronics	61
2.13	Question 13: Electronics	65
2.14	Question 14: Environmental Physics	70
3.0	ANALYSIS OF THE CANDIDATES' PERFORMANCE PER	
	QUESTION IN PHYSICS 2	73
3.1	Question 1: Fluid Dynamics	73
3.2	Question 2: Vibrations and Waves	84
3.3	Question 3: Vibrations and Waves	92
3.4	Question 4: Properties of Matter	99
3.5	Question 5: Electrostatics	105
3.6	Question 6: Properties of Matter	111
3.7	Question 7: Atomic Physics	119
3.8	Question 8: Electromagnetism	127
3.9	Question 9: Atomic Physics	133
4.0	ANALYSIS OF CANDIDATES' PERFORMANCE PER TOPIC	141
5.0	CONCLUSION AND RECOMMENDATIONS	141
5.1	Conclusion	141
5.2	Recommendations	143
Appe	ndix A	144
Apper	ndix B	145

FOREWORD

The Advanced Certificate of Secondary Education Examination (ACSEE) marks the end of two years of secondary education. It gives a picture of the effectiveness of the education system in general and education delivery system in particular as it is a summative evaluation. The candidates' answers to the examination questions are a strong indicator of what the education system was able or unable to offer to the candidates in their two years of advanced level secondary education.

The candidates' items response analysis report on Physics subject ACSEE 2017 was prepared in order to give feedback to students, teachers, parents, policy makers and the public in general on how the candidates answered the examination questions.

The report highlight some of the factors which made the candidates fail to score high marks in the questions. The factors include; inadequate knowledge of the various topics, failure to identify the task of the question; lack of mathematical and communication skills. The analysis made will help the educational administrators, school managers, teachers and students to identify appropriate measures to be taken in order to improve the candidates' performance in future examinations administered by the council.

The National Examinations Council of Tanzania will highly appreciate any fruitful comments and recommendations from teachers, students and other education stakeholders aiming at improving the quality of future analysis reports.

Finally, the council would like to express sincere gratitude to the examination officers and all others who contributed to the preparation of this report.

Dr. Charles E. Msonde EXECUTIVE SECRETARY

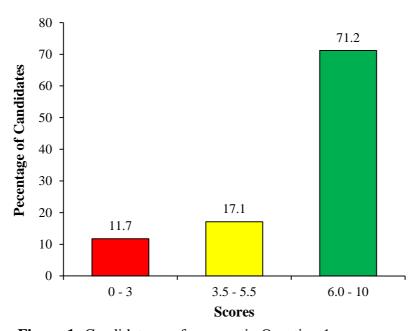
1.0 INTRODUCTION

This report is based on the analysis of candidates' responses to the 2017 ACSEE questions in Physics paper 1 & 2. The papers aimed at measuring and evaluating the skills acquired by the candidates as stipulated in the 2010 syllabus and adhered to in the 2011 examination format for advanced secondary education.

Physics paper 1 comprised of fourteen (14) questions which were categorized into three sections; A, B and C. Section A was composed of six (6) questions and section B and C had four (4) questions each. The candidates were required to answer ten (10) questions by choosing four (4) questions from section A and three (3) questions each from sections B and C.

Physics paper 2 had three sections, namely A, B and C. Each section comprised of three (3) questions making a total of nine (9) questions. Candidates were instructed to answer five (5) questions by choosing at least one (1) question from each section.

A total of 18,433 candidates sat for Physics examination, of which 85.78 percent passed the examination and 14.22 percent failed. In 2016, the number of candidates who sat for Physics examination was 17,312 of which 80.34 percent passed the examination and 19.66 percent failed. This implies that the candidates' performance in this year has improved by 5.44 percent.


The following section analyses the candidates' responses with regard to the demands of the questions. In the course of analysis a brief note on what the candidates were required to do and the reasons for their performance are provided. The samples of candidates' good and poor responses are also inserted as extracts to illustrate the cases presented. Graphs and charts are also used to summarize the candidates' performance in a particular question. The analysis groups the performance as good, average and poor in the ranges of 60–100, 35–59 and 0–34 respectively. Green, yellow and red colours are respectively used to represent these groups of performance. The report also indicates the general performance in each topic as compared to year 2016. Finally, it provides some recommendations that may help to improve the candidates' performance in future examinations.

2.0 ANALYSIS OF THE CANDIDATES' PERFORMANCE PER QUESTION IN PHYSICS 1

2.1 Question 1: Measurements (Errors)

This question was divided into three parts: (a), (b) and (c). In part (a) the candidates were required to give the meaning of the terms: (i) absolute error and (ii) relative error as used in error analysis. In part (b) the candidates were given a stem which state that; "the force "F" acting on an object of mass "m" travelling at velocity "V" in a circle of radius "r" is given by $F = \frac{mv^2}{r}$ and the measurements were recorded as: $m = (3.5 \pm 0.1)kg$, $v = (20 \pm 1)m/s$ and $r = (12.5 \pm 0.5)m$ ". Then they were required to find the maximum possible (i) fractional error and (ii) percentage error in the measurement of force. In part (c), the candidates were required to show how to record the reading of force as expressed in part (b).

A total of 17,760 (95.8%) candidates attempted this question; 11.7 percent of the candidates scored from 0 to 3.0 marks, 17.1 percent scored 3.5 to 5.5 marks and 71.2 percent scored from 6.0 to 10.0. These data reveal that the general candidates' performance in this question was good because 88.3 percent of them scored 3.5 marks and above as shown in Figure 1.

Figure 1: Candidates performance in Question 1.

The candidates who performed well were able to identify and determine errors in measurement. Most of them defined correctly the given terms, wrote correct formulae for the maximum possible fraction and percentage errors. Furthermore, they identified the values of errors for mass, velocity and radius. They also able to substitute and compute the required values for fractional and relative error. This shows that the candidates were conversant with the concept of errors. Extract 1.1 shows one of the responses from a candidate who performed well in this question.

Extract 1.1

1 (a)	(1) Absolute error - 11 the magnitude difference
	between the true Rlue and measured Rlue of
	a physical quantity. Le 141
	,
	(ii) Relative error - Is the fraction of Absolute error to the true value of a physical quantity.
	error to the true value of a physical quantity.
	1è 1A1
	A
1 (b)	(i') Sln.
	Data given
	m = (3.5 L 01)kg , V = (2011)mil.
	$r = (12.5 \pm 0.5) \mathrm{m}$
	r = (12.5 t 0.5) m fractioned ever = askef.
	Farm
	F = MR apply In both side
	<i>r j</i>
	Inf- = In 1m2
	-
	Inf = lnM + lnv2 - lnr
3.65	Inf = Inm + 2 Inv - Inr differentiate throught
	$\frac{\Delta F}{F} = \frac{\Delta M}{M} + \frac{2\Delta V}{V} - \frac{\Delta r}{\Gamma}$
	but alway error is maximized
	$\frac{\Delta F}{F} = \frac{\Delta M}{M} + \frac{2 \Delta V}{V} + \frac{\Delta r}{r}$
	DF = (0.1) +2/1 +(0.5)
	$\frac{\Delta F}{F} = \left(\frac{0.1}{3.5}\right) + 2\left(\frac{1}{20}\right) + \left(\frac{0.5}{12.5}\right)$
	\
	$\frac{\delta f}{f} = \frac{59}{350} = 0.16857$
L	o. Frachonal error \$ = 59

1(6)	ii) र <u>श</u> ्च
1(9)	persentage error = asked.
	Fram
	OF = 0.16857
	F
1	100 = SF x 100
	F
	OF = 0.16857 x100 = 16.857
	Perfentage error in the mentionent of force
	= 16.857%
	111
1(c)	<u>sóln.</u>
	from F = mve
	r mass = 3.5 kg
. , .	$F = mv^2$ $V = 20 \text{ ms}^{-1}$
	r = 12.5 m.
	T 22.2.2
	$F = 3.5 \times (20)^2$
	12.5
	F 1.0.1)
	F= 112N
	but from . NF - 0.16867.
	but from OF = 0. 6867.
	<u> </u>
	DF = 0.16857 x F.
	BF = 0.16857 × 112
	DE = 18.88N.
	Force = (112 ± 18.88) N.
	· · · · · · · · · · · · · · · · · · ·

In extract 1.1 the candidate provided precise definitions for relative and percentage errors and systematically calculated the fractional and percentage error.

Conversely, few candidates (11.7%) who performed poorly in this question failed to use the required key words for defining absolute and relative errors. Moreover,

they incorrectly derived the formulae for fractional and percentage errors. Most of these candidates failed to answer part (b) of the question as they failed to consider an important idea in error analysis which states that, *errors are always additive*, therefore they calculated fractional error using the incorrect formula, $\frac{\Delta F}{F} = \frac{\Delta m}{m} + \frac{2\Delta V}{V} - \frac{\Delta r}{r} \text{ instead of } \frac{\Delta F}{F} = \frac{\Delta m}{m} + \frac{2\Delta V}{V} + \frac{\Delta r}{r}. \text{ Extract 1.2 shows the answer of one of the candidates who performed poorly in this question.}$

Extract 1.2

10 a) Absolute error 1s the loay of making an error Xm = Measure value Xt - Exact value	ove Poults
Xm - Measure value.	ov june
Xt - Exait value.	
Abiolito evor DX= Xm-Xt).	
Absolute enor DX = Xb-Xm	
De Relatives error: Is the valo Leleveen Absolute en the measure value:	or to
$ \begin{array}{c c} R \cdot E - Relative emor \\ R \cdot E = Xm - Xt \\ \hline \times m \end{array} $	
$R = \Delta X$ $X M$	
16 is tolular.	
$F = \frac{MV^2}{Y}$	
$m = (3.5 \pm 0.1.)$	
$V = (20 \pm 1)$ $V = (2.5 \pm 0.5) \text{m}.$	
I wm	
$F = Mv^2$	
$m = m(M \vee S) - m \vee S$	
$M \leftarrow M M \leftarrow M M \sim M M$	

16 cis DF = DM + aDV - Dr
E M V T
$\Delta F = 0.1 + 2(1) - 0.5$
F 3.5 20 12.5
$\Delta F = 0.1 + 0.1 - 0.00$
E. 2.8
DE = 6.028571428+0.1-0.04
F
DF = 0.088671428.
F
AF = 0.089.
The state of the s
The Maximum fractional two = 0.089.
Add Con Parkers and Alandary A of free
1(b) (ii) Ferlintage error in Measurement of fire. M = (25 ± 0.1)
$M = (23 \pm 0.1)$
V= (20 ± 1) V=(25+05)
F= Muc
1.5 - 1.0 (10.1/2)
MF = M(MV) - MV
mf = mm + mv - mr
$DF = DM + 2\Delta V - \Delta V$
DF = 0.08857 1458
DF = 0.08857 1428
0 = 0.089 X 100 /n.
F 20 47 100 10
F DF = 0.088 X 100 6. F DF/ = 8.9%.
/F 100.

In extract 1.2 the candidate attempted part 1(a) by using both words and mathematical notation to define fractional and percentage error with incorrect responses. The formula written in part (b) to calculate the fractional and percentage errors was also not correct.

2.2 Question 2: Measurements (Dimension Analysis)

This question had three parts; (a), (b) and (c). In part (a) the candidates were required to: (i) define the term dimension of a physical quantity and (ii) identify two uses of dimensional equations. In part (b), the candidates were required to: (i) state the basic requirement for a physical relation to be correct (ii) list two quantities whose dimension is $[ML^2T^{-1}]$. In part (c), they were required to: (i) use the method of dimensions to derive the formula relating the physical quantities given that; the frequency, 'f' of vibration of a stretched string depends on the tension 'F', the length 'l' and the mass per unit length, ' μ ' of a stretched string, (ii) apply the principles of dimensional analysis to prove the correctness of the relation $\rho = \frac{3g}{4\pi RG}$ whereby, ρ is the density of the earth, g is the acceleration due to gravity, R is the radius of the earth and G is gravitational constant.

The question was attempted by 97.8 percent of the candidates, out of which 8.2 percent scored below 3.5 marks out of 10 marks. Few candidates (0.8%) scored 0. The candidates who scored from 3.5 to 5.5 marks were 22.6 percent while those who scored from 6.0 to 10 marks were 69.2 percent. This question was the best performed question by many candidates because 91.8 percent of them scored 3.5 marks or above. Figure 2 illustrates the performance of candidates in question 2.

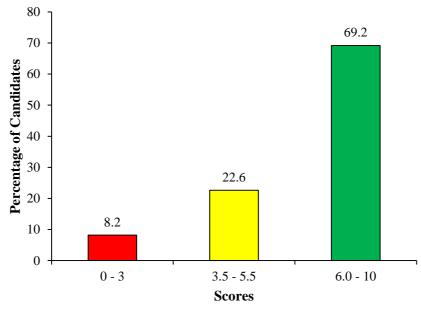


Figure 2: Candidates' performance in Question 2

The candidates whose performance was good were able to define and provide the correct examples of dimensions as used in measurement of physical quantity, stating the key principle used to check whether a given equation is dimensionally

correct or not and correctly identified the two quantities represented by the dimensions ML^2T^{-1} . They were also able to use rules of dimensional analysis to derive the relationship between the frequency of a vibrating stretched string and its tension, length and mass per unit length. Extract 2.1 shows the work of one of these candidates who managed to answer this question correctly.

Extract 2.1

	Dimensions of a physical quantity sepers to the way in which physical quantity are related to the power of fundamental quantities of Time, length and Mass en [Velocity] = [LT-1]
5 (M) (M)	Uses of dimensional equations To recapilate the forgotten formula To check correctness of a grien formula

26)ú	The baric requirement for a physical relation to be correct is dimension consistency such that the dimension of each and every term on either order of the equation must be the
	dimension consistency such that the dimension of each
	and every term on either order of the equation must be the
	Same.
26) (ii)	Quantities whose dimension (1 [M27-1] are
	Planck's constant
_	Angular momentum
262 (1)	Guien f or FXLY. MZ Xo
200	Guien f & FXLY. uz Xo
	[F] = MLT ⁻²
	[L] = L
	[M] = M["
	from f x Fx Ly. m2
	t = K. Ex. Ga. Mg
	[f] = [K] [F]X [L] [L]2
	Jin ie k is constant hence it's dimensionless [K] =1
	riz - rezx, rizzruzt
	[T-1] = [MLT-2]x, [L] y, [ML-1]2
	$\begin{bmatrix} T^{-1} \end{bmatrix} = \begin{bmatrix} MLT^{-2} \end{bmatrix}^{X}, \begin{bmatrix} L \end{bmatrix}^{y}, \begin{bmatrix} ML^{-1} \end{bmatrix}^{2}$ $\begin{bmatrix} M \end{bmatrix}^{\circ} \begin{bmatrix} L \end{bmatrix}^{\circ} \begin{bmatrix} T \end{bmatrix}^{-1} = \begin{bmatrix} M \end{bmatrix}^{X+2}, \begin{bmatrix} L \end{bmatrix}^{X+y-2}, \begin{bmatrix} T \end{bmatrix}^{-2X}$
	By Cozyanion
	M: X+2=0 6
	L: X+y-Z=0 (i)
	T: -2x = -1 (ii)
	(onsoder egn (iii)
	-2x=-1
	$x = \frac{1}{2}$
	Consider egn (i)
	X+2=0 but x= 2
	\$+Z=0·
	Z = -1/2

2(c)(i)	consider egn (ii)
	X+y-2-0 but x=12 = -12
	1/2+y-1/2=0
	y = -1
	Substitute y=-1, x=k, z=-12 in the egn (x6)
	1 × FXIX 112
	f x fh t' uh
	$f \propto f^{h} L' u^{h}$
	\mathcal{M}^2 . l
	The relation is $f \propto F^{\frac{n}{2}}$
	Ju ^k l
2(1(û)	Given P = 39
(6)	
-	Required to prove consistness of the relation. [P] = [ML-3]
	[P] = [ML-3]
	[g]=[LT-2]
	[R]=[L]
	[4] =[M-1 L3 T-2]
	Input the above diviension in the relation given.
	[P] = [3][9]
	[4][1][8][4]
	[P] = [9]
	[P][4]
	[ML-3] = [LT-2]
	[L] [M-1 L3T-2]
	$\begin{bmatrix} L J [M^{-1} L^{3} T^{-2}] \\ = \begin{bmatrix} L^{1-1-3} . M^{0-1} . T^{-2-2} \end{bmatrix}$
	= [L3.M.T°]
	= [M[-3]
- /	- [ML-3] = [ML-3]
	Since left hand side es equal to night hand side
	hence proved

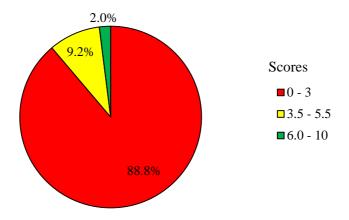
In extract 2.1 the candidate provided clear responses and managed to apply systematically the rules of dimension analysis in deriving the formula relating frequency of a stretched vibrating string, its tension, length and mass per unit length.

The candidates who performed poorly in this question failed to attempt correctly almost all parts of the question. For example, one candidate defined dimensions of a physical quantity as the fundamental quantities (MLT) to which a physical quantity is measured. These candidates failed to recognize that, dimensions of a physical quantity are powers to which the fundamental quantities (Mass, Length and Time) must be raised to represent the physical quantity. Apart from that, most of them applied wrong formula and procedures hence ended with incorrect results which indicates that they had inadequate knowledge and skills in solving dimension analysis questions. Extract 2.2 is a sample of an incorrect response taken from the script of one candidate.

Extract 2.2

2.	as is Dimension Is the physical quantity
	which used to measure
	the clitarice and length
	of a. Salstanere!
2.	e cis The use of dimension.
	(i) Wed to Simplify the
	equation.
	(ii) used to Show thre unit
	of the equation.
2.	do (is Thre basic requirement for a physical
	relation to be correct B. dimensi-
	anal equation have to show the
	correct basic requirement:
	Carron paste repair every arri
7	6) (ii) Two quantities whose dimensi-
	(B) (11) 100 Main 13 0003 - CM (10)
	onal B
	(1)
	(ii) Pressure
2.	ascis Dimension & the physical
	quantities which used
	to slow the correct
	equation by using the
	equation by using the blacket sign.

2.	(c) Frum
	The transferred Variable like 12 - 12
	F= Mar
	but
	$\alpha = V$
	$\alpha = V$
	7/P4/22 = T
	F=MV
	T
	but v=1
	TO WELL TO
	F = MLXL
	E - PETERO GIRLETT
	F= mi2
	F= MLTT
	by using dimensional.
	my asing anweating
	[T] = [N] [L][L][T]
	G7 - (2127-7
	$[F] = [ML^2T]$
	Et The Property of the Propert
_	- 57177-13
2.	(c) iii Fren
	J = 39
	एक्तिन.
	but
	J= chewity
	g = accerelation duet
	gravity


2.	c ci) R = rulius of the earth
	G= gravitational constant:
	122
	J = 39
	क्राह्म
	7= 39
	क्रार्टन'
	J = [35]97
	$J = \frac{39}{29}$ $J = \frac{39}{39}$ $U = \frac{39}{39}$ $U = \frac{39}{39}$
	J = 39 1617 RG.
	61,156
	9 (4TIRG) = 39.
	J411RG=39,
	J All Vesce 33
	G = 39
	$C_{\ell} = 39$ 9772
	= 39
	JUTIC.
	= 49118.
	G = 39
	· 3772.
	6.1 - 6.7 6.7
	[G] = [3][9]
	[4] [7] [1] [K)

In extract 2.2 the candidate failed to identify the units of the dimension [ML²T⁻¹] which could enable him/her to obtain the required names of the corresponding physical quantities. Apart from that, in 2 (c) (ii), instead of showing the equation relating the dimension of ρ and $\frac{3G}{4\pi RG}$, he/she showed the equation for $G = \frac{3g}{4\pi \rho G}$ and not its dimension.

2.3 Question 3: Gravitation

This question had two parts, namely (a) and (b). In part (a), the candidates were required to: (i) explain why does the kinetic energy of an earth satellite change in the elliptical orbit, and (ii) give two factors which determine whether a planet has an atmosphere or not. In part (b) the candidates were given a stem which states that; 'a space craft was launched from the earth to the moon. If the mass of the earth was given to be 81 times that of the moon and that the distance from the centre of the earth to that of the moon is about 4.0×10^5 km'. The candidates were then required to: (i) draw a sketch showing how the gravitational force on a spacecraft varies during its journey, and (ii) calculate the distance from the centre of the earth to a point where the resultant gravitational force becomes zero.

A total of 4,354 (23.5%) candidates attempted the question. The candidates who scored below 3.5 marks out of 10 marks were 88.8 percent, out of which 50.2 percent scored 0. Those who scored from 3.5 to 5.5 marks were 9.2 percent and only 2.0 percent of them scored from 6 to 9.5 marks. Generally, the candidates' performance in this question was poor because 88.8 percent scored 3 or below out of 10 marks as shown in Figure 3.

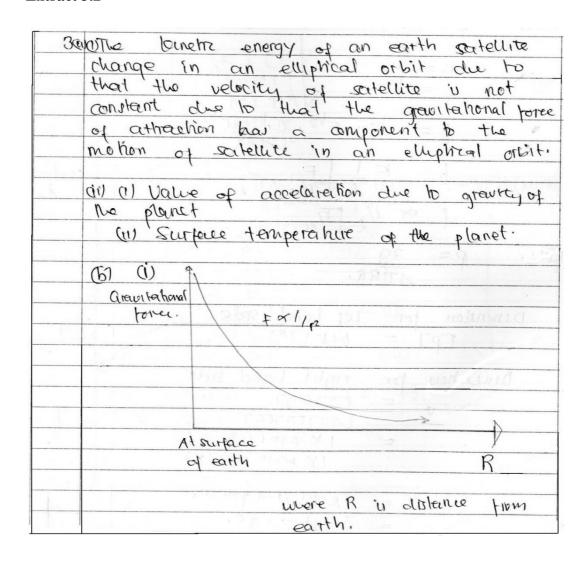
Figure 3: A chart showing candidates' performance in Question 3.

Majority (88.8%) of the candidates who performed poorly had inadequate knowledge about gravitation. Most of them skipped some parts of the question particularly part (b). The few who tried to attempt all parts, failed to provide the correct explanation in part (a). They also sketched poor graphs for variation of gravitational force on a spacecraft against the distance from the moon and the earth. Furthermore, they were not able to use correct formula for calculating the distance from the centre of the earth to a point where the resultant gravitational

force becomes zero. Extract 3.1 presents a sample of an incorrect response from one of the candidates.

Extract 3.1

3	(a) To my know that kinipite oncory of the energy.
	due to it's musion, home the centh symmi
	change in the ellipsing whis due to the toponter
	4 MUHUM?
	19. Factors which despriming the planes has an
	atmosphere is
	n it is nearly to the earth' Surface.
	$\widehat{\mathbf{Q}}$.
10	
	(b), Agla siven,
	MBS 31 Mm.
	Strome by the firm the cerebrary
	the earth to that of the naums
	26 22 13 km,
	D. Recennie to Morch
	1
1	THE COURSE CONTRACTOR OF THE C
	Early E C E E
	Early t t b. b
1 / 2 2	0.0
	ir). Rearing to calculate the distance from to comy,
	I the early to where the reasonants sommented
	force selimo 7000


	anoster the trassemy taro line.
	Becture Landing
	Sakilita,
	14
-	F= GMM.
	2
13	f = GMm
-	f = GMM (Rah).
	(4,43)
	By1 V= 26m.
	(12-th).
	fs mv
	· Ca M · r
	mx = GMm (Reh) ²
	(Reh) (Reh)2'
	mv. = GMENm.
	(Reh).
	(orri).
	BUT
	V> Escape valury y the - Sandin.
	Which is grow
	VS 2GM,

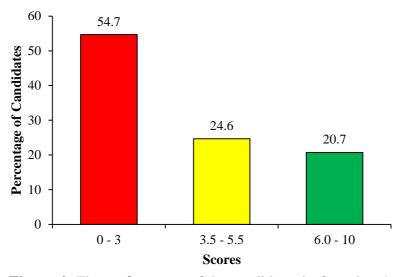
VS GNA
Ves Cons (Reh).
(261Mm.) 25 61Mg.
(Reh) (neh).
20/2-14 72 - 0 41
(Reh)2 GUB (Reh)2
(Reh)2 (Reh)
(A) (A) (A)
4 Mm = ME (R+h)2 (R+h)
(R+h)2 (R+h)
$\frac{\Phi \mathcal{M}_{10}^{2}}{(\mathbb{R}+h)} = (\mathcal{M}_{\overline{b}})^{2}$
The Man (ME)
(ICPh)
Me2 = (18-ph).
$\frac{Me^2}{mn^2} \leq \frac{(R-fh)}{4}$
1 7 0
(ME) = (2-th)
(21)?= R+4x13
(181) S 11-4 4M
6561= R+492013
4,
5
NS 6.56 (x1512,

In extract 3.1 the candidate provided incorrect responses in all parts except in part (b) where he/she sketched an inaccurate diagram to show the variation of gravitation force on spacecraft and therefore received partial marks.

A few candidates (11.2%) that performed well had adequate knowledge on the concept of gravitation. Most of them were able to give clear and correct explanation for the reasons of the change of kinetic energy of an earth satellite in the elliptical orbit as well as the factors which determine whether a planet has an atmosphere or not. They also managed to apply the correct formula in attempting part (b) (ii). Some of them however confused between the sketch of the variation of gravitational force from the earth surfaces to infinity and that of the spacecraft which required them to consider the effect of the moon. Extract 3.2 presents the answer of one of the candidates who scored high marks in the question.

Extract 3.2

)	3	Mis Connider figure below,
		Axiosicm.
		Eath (Non)
		Earth Ente. (Men)
- 		X = 1 Ax108m-X-1
		Let the point of which the resultant grows technonal force be zero. be t from
		graviteinonal force be zero, be t from
		earth.
		For zono resultant proce.
		Frank = Fmoon.
)	K	D to 1 to
		GMem = GMmm
		χ_{S} $(\nabla \chi_{10} \omega - \chi)_{S}$.
		character (222 m) Mittel
		where G- arenterhand contra
		But Me = 81 Mm. Me. Mull of earth
		Mm - Mais of morn
		GBIMm·m = GMm·m n- man q saldin
		X5 ((X103-X)s.
		81 = 1
		$\frac{\chi_5}{81} = \frac{(\nabla \kappa_1 o_8 - \kappa_1)_5}{1}$
		X5 = 1-500 X1010 - C.VBVGX-BX5.
		X3 = 1-506 X1010 - 6.46400 X +8X5.
		80x2-6.4x1010 X + 1.296x1011=0.
		on sowy x = 4100 3.6 x105 km.
		The distance from contre of earth celere resultant atauntahenal borce 'U zero U 3.6×105 br
		resultant atom tahenal bree 'U zero U 2.6405th


In extract 3.2 above the candidate provided correct responses for all parts of the question except part (b) (i) in which he/she sketched the graph for the variation of gravitational force on a spacecraft from the surface of the earth to infinity without considering the effect of the moon on the spacecraft.

2.4 Question 4: Circular Motion

This question consisted of two parts; (a) and (b). In part (a) the candidates were required to: (i) justify the statement that "if no external torque acts on a body its angular velocity will not be conserved", and (ii) find the resultant linear

acceleration of a car, given that the car was moving with a speed of 30 ms⁻¹ on a circular track of radius 500 m whose speed was increasing at the rate of 2 ms⁻². In part (b) the candidates were given a stem which states that; an object of mass 1 kg is attached to the lower end of a string 1m long whose upper end is fixed and made to rotate in a horizontal circle of radius 0.6 m with constant circular speed. In this part they were required to find the: (i) tension in the string and (ii) period of the motion.

About two thirds (67.9%) of the candidates attempted this question out of which 54.7 percent scored below 3.5 and 19.4 percent of these scored 0. The candidates who scored from 3.5 to 5.5 marks were 24.6 percent and those who scored from 6.0 to 10 marks were 20.7 percent. These data shows that the general candidates' performance in this question was average because 45.3% of the candidates scored 3.5 marks or above as illustrated in Figure 4.

Figure 4: The performance of the candidates in Question 4.

The candidates who received average scores had satisfactory knowledge on the concept of circular motion as they managed to answer correctly some parts of the question. These candidates had good understanding on the condition for conservation of angular momentum as well as the relationship between tangential and centripetal accelerations. Some however failed to resolve the forces acting on a body tied with a rope moving in horizontal circular motion and therefore scored average marks. Extract 4.1 shows the answer of one of the candidates who performed well this question.

Extract 4.1

L	(a i The statement 'If no external togue action a body,
	Its augular velocity will not conserved! can be justified
	In using the principle of conservation of znewer home-
	by using the principle of conservation of Engular home- whom which states that "If no external torque acts on
	a body, the Engelor humentum (Iw) before the Impact
	is equal to angular transmitten after Impact"
2,000	1.0
	IW = Constant
	This freams that the angular fromentium is always
	Conserved, but the angular velocity may very In order to
	Conserve the Engular momentum.
	ii/ plesultant linear acceleration.
	$\alpha_r = \sqrt{\alpha_c^2 + \alpha_f^2}$
	Centripelal acceleration (ac) = 12
	V Committee of the comm
	Green; Welocity (1) = 30 mls
	Radius of Granden track (r) = 500 m
	ac = (36)°
	500

4	a) ii/ Continues.
-	2 A 12
-	$\alpha_c = 30 \times 30$
_	500
-	ac = 1.8 mls? Criven tangential acidenshion (at) = 2 mls
T	Then.
	$ar = J(1.8)^2 + (2)^2$
	$ar = 2.69 \text{m/s}^2$
	The resultant Linear acceleration is 2.69 m/s?
	the purpose was consensed for the standard mollique of
	and by the harborers on the above of all constraint
4	(b) / Consider the figure below
	White the second second
	A North Annual Control of the Contro
	Ð
1	1,1,5
\neg	Tosa
\top	m2 > TSINO
	-
+	ing mg
1	mg
	Required! Touston in the string
\dashv	The state of the s
	(tiven: Maria dinest m) = 140
	landh al Ilon the (1) - Ilon
	triven: Mass of object (m) = 1kg Length of the string(l) = 1m Radius (r) = 0.6m
	1 manus (a) - 0.0m
+	1. h.: h.:
1	at equilibrium; Teoso = Mg &

76) i/ Continues
	sind = r/
	C
	$sin\theta = 0.6$
	$\frac{\sin \theta = 0.6}{L}$ $\theta = \sin^{-1}(0.6)$
	0 = hin (0.6)
	withough Al
	0 = 36.87° y
	Tost = mg / -
	T= M9 W
	4200
	= 1×9.8
	ws 36.87
	T = 12.25N
	T= 12.25N Tension in the string is 12.25N
	il Period of motion.
	V
	Period (T) is given by;
	$\theta \omega I = T = 0$
-	$T = 2\pi \frac{1}{9}$
	L = 1m
	COS 16-87 = 0.8
	9 = 9.8
	T - 211 [1x0.8
	T= 211 TIX0'8
	T = 1.8 seconds
	1 2 10 3000
	Period of motion is 1.8 seconds

In extract 4.1 the candidate gave correct responses in every part of the question. For the part which required illustration, the candidate drew a clear diagram that was labelled correctly. Also his/her work is clear and presented systematically.

As for the candidates who had poor performance, some of them failed to interpret the meaning of the word "justify" as used in 4 (a) (i). Most of them tried to state the law of conservation of angular momentum instead of providing the required justification. For example, one candidate responded to this part by writing, 'No its angular velocity will be conserved based on the principle of conservation of angular momentum which states that a body will maintain its state unless an external force acts on it'. This candidate lacked knowledge about circular motion as he/she failed to distinguish the conceptual ideas of circular motion from linear motion. Others were not able to illustrate correctly the given tasks and apply the correct formula in solving the problems. Extract 4.2 is a sample of a poor responses from one of the candidates.

Extract 4.2

4	as is it no external torque acts on a body its
	angular velocity in 11 not conserved in a
	fact that the external torque balance with tw
	centificated force, so it put the body in a circular
	path and with a certain angular velocity.
	u) Criven.
	U, = 30 ms-1
	r = 500m.
	AV = 2ms-2.
	from.
	V = rw. duide by + both sides.
	t de monte accel
	t de monde allelac
	$\alpha = \alpha \omega$
	The state of the s
	and $w = V$
	The state of the s
	50
	a = ~ V/
	= 2ms ⁻² x 3oms ⁻¹
	500m
	- 60m ² (-1
	500 h
	az 0.12 ms ²
	The resultat when a college is 0.12

4	b) solution hite pat	
	b) solution much m=1kg r.	99 Y
	l=im.	
	r=0.6	t-3 ++
		in the state of
	704	12 378
	(, , ,	· · · · · · · · · · · · · · · · · · ·
	1	
	lover por	
	mg	
	At offer fant	
	MUZ = T + Mg - 0	
	nt lawr part	
	MV2 + Mg = T, -1)
	tria o- o	-
	take eqn 0	
	MUZ = T + Ma.	
	To MUL - Mg	
	(1.)(11.)2	
	$\frac{(1)(V)^2}{2} = T + 1 \times 9.8$	
	۰. ۵	
	V2 = T+9.8	
	0.6	
	V2 = 0.6T+ 5.88	
	V2 = 0.6T + 588 -	63

	for oan 10
	(1) u2 + q.8 = T.
	0.6
	V + 9.8 = T.
	0.6
G (8)	V2+5.88=0.6T
	4-0
	V2 = 0.67 - 5.88 -W
	compare ern @ and w
	0.67 4 5.88 = 0.61 - 5.88
	T = 9 & N.
1 1	t and the state of
	- The tension 6 98N.

In extract 4.2 the candidate illustrated that the object performs vertical circular motion while the question instructed that the body rotates in horizontal circles. This mistake caused him/her to apply incorrect formula to calculate the tension and the period.

2.5 Question 5: Newton's Laws of Motion and Projectile Motion

This question had two parts (a) and (b). In part (a) the candidates were required to calculate: (i) recoil velocity of the gun, and (ii) velocity acquired by the hunter during firing if a 75 kg hunter fires a bullet of mass 10g with a velocity of 400 ms⁻¹ from a gun of mass 5 kg. In part (b) the candidates were given a stem which states that; a jumbo jet travelling horizontally at 50 ms⁻¹ at a height of 500 m from sea level drops a luggage of food to a disaster area. The candidates were required to (i) determine at what distance from the target should the luggage be dropped, and (ii) find the velocity of the luggage as it hit the ground.

A total of 13,004 (70.2%) candidates attempted this question: out of these candidates 17.5 percent scored 0; 34.9 percent scored from 0.5 to 3.0 marks; 30.9 percent scored from 3.5 to 5.5 marks; and 16.7 percent scored from 6.0 to 10 marks. These data shows that the performance in this question was average. Figure 5 illustrates the performance of candidates in question 5.

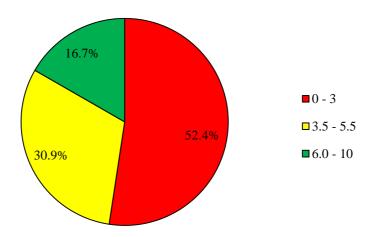
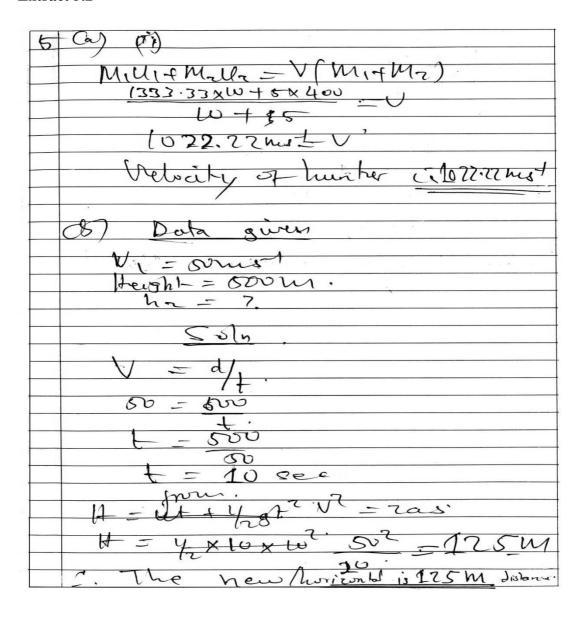


Figure 5: A pie chart representing candidates' average Performance in Question 5

The candidates who attempted this question well had ample knowledge and skills in solving problems relating Newton's laws of motion and projectile motion. These candidates were able to identify the principle governing the motion of the bullet in part (a) and to find the motion of the luggage dropped in air in part (b). Extract 5.1 shows an example of the best response taken from one of the candidates.

Extract 5.1

5@	Soln. Data given.
	Mass of hunter = 75kg = Mn
	Mass of bullet (ms) = 10g = 10 x 103 kg
	Yelocity of bullet (V) = 400 ms-1
	Massof gun (Mg) = 5 kg
	O Required to calculate the recoil of the gun
E19	from the principle of conservation of linear
	momentum
della	"moment before collision = moment after collision"
e VI	Since at the beginning the moment was zero also the final
-	moment should be equal to zero
3.77	That is; moment of gun + moment of bulet = 0
	my Vb + Mg Vg = 0
	10 x 10 x 400 + 5 Vg = 0
	5 V 9 = -4
-	vg = -0.8 m 5 The negative
	sign indicates that the gun moves in opposite direction to
	that of the bullet.
	.: The gun will recoil with a velocity of 0.8 ms-1
	in the direction opposite to that of the bullet.
	3.0 To the Los Description of the Pipilin C
50	@ Required to calculate velocity acquired by the hunter
	Let the relocity acquired by the hunder be V'
	so the momentum of the hunter will be MV'
	But the total momentum is the sum of
	momentum of the hunter+ momentum of the gun+ momentum of
	the sulet = 0


here M=75kg, Mg=5kg, Ug=0.8 ms, Ms=10x10 kg
$A = 75 V' + (5 \times 0.18) + (10 \times 10^{-3} \times 400) = 0$
75 V' + 4 + 4 = 0
75v' + 8 = 0
$\frac{75 \text{ v}' = -8}{75}$
V'= 0.107 ms' The negative sign
indicate that the direction of the hunter will be opposite to that of the sullet.
.; Velocity acquired by the hunter during firing is 0.107ms
opposite so that the some
Solu.
diagram to thow the condition of the problem.
50 Vo=50ms-)
500m
y =? × × =?
Orequired to had the horizontal distance the buggage to be
dropped in order to land at the targeted area
5 = ut + 1/2 at 2 - yyo = vyt - 1/2 9 t2 but vy initial = 0

50	0 ,, -500 = -4.9t2
	i'. t = \\ 500
	7 414
	t = 10:102 &c
. '- '	
	Then Range = Vox t
	here Vox = 50ms 1, t = 10.102 sec
	n = + + + v = V = F = V = F = v = v = v = v = v = v = v = v = v
	: R = 50 ×10-102
	R = 505.76 m
	The luggage should be be dropped 505.76m away from
	the disaster area
	010 1 010 1
(C)	@ Required to find the velocity of the luggage asit
	hit the ground.
	from Vy = 7 Vox + Voy
	Vy = 7 Vox + Vey
	· but Vox = horizontal velocity = 50 ms 1
	Voy = V. + at
-	Vy = 0 + 4.8 × 10.102 fec
	Vy= 98.4996 ms-1
	Vf = \ 502 + 98.99962
	1,000
	Vf= 124502302 112300, 92
	pr. or thilip =
	VE = 110.91 ms-1
	i. The velocity of the luggage as it hit the ground is
	110.91 ms-1.

In extract 5.1 the candidate managed to present his/her work well. He/she identified constraints required for calculating each of the asked quantity. The candidate also performed systematically the required calculations and gave correct conclusions.

On the contrary, the candidates who performed poorly failed to identify the principle governing the motion of the bullet based on the concept of Newton's laws of motion. Some attempted to recall the principle of conservation of linear momentum but finally lacked mathematical skills in analysing the given data to get the correct answers. They also faced problems in attempting part (b) which based on the concept of projectile motion. In this part they were supposed to apply the Newton's second equation of motion to solve the problem but instead they applied Newton's first equation which led them to give wrong answers. Extract 5.2 is an example of a poor response to this question.

Extract 5.2

5 (c) ii) velocit of luggage.
Data.
7 -10 see.
q - ω.
V = 7.
U 5 50
Soln.
V=a+wt.
V = 10+50x10.
U = 10 + 50 U
U = 510 ms1
final velocity of luggage is \$10 m 1

In extract 5.2 the candidate provided incorrect answers in all parts of the question due to the use of wrong formula. The candidate was also not carefull enough as he/she changed the number of the question from 5 (b) (ii) to 5(c) (ii) which is not indicated in the question paper.

2.6 Question 6: Simple Harmonic Motion

The question had two parts; (a) and (b). In part (a) the candidates were given a simple harmonic equation, $x = 6sin10\pi t + 8cos10\pi t$, where x is in centimetre and t in second, then they were required to determine (i) amplitude and (ii) the initial phase of the motion. In part (b) they were required to: (i) show that the total energy of a body executing simple harmonic motion is independent of time, and (ii) find the periodic time of a cubical body of sides 0.2 m and mass 0.004 kg floating in water then pressed and released such that it oscillates vertically.

This question was attempted by 8,283 (44.7%) candidates, out of which 74.5 percent scored below 3.5 marks out of 10 marks allocated to this question. About fifteen percent (15.1%) of the candidates scored 3.5 to 5.5 marks while those who scored 6 to 10 marks were 10.4 percent. These data imply that the general performance in this question was poor. Figure 6 illustrates the performance of candidates in question 6.

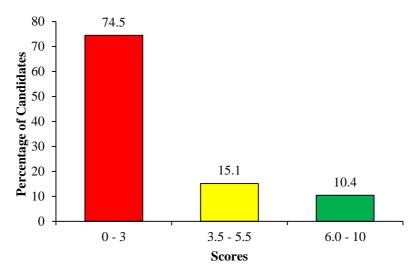


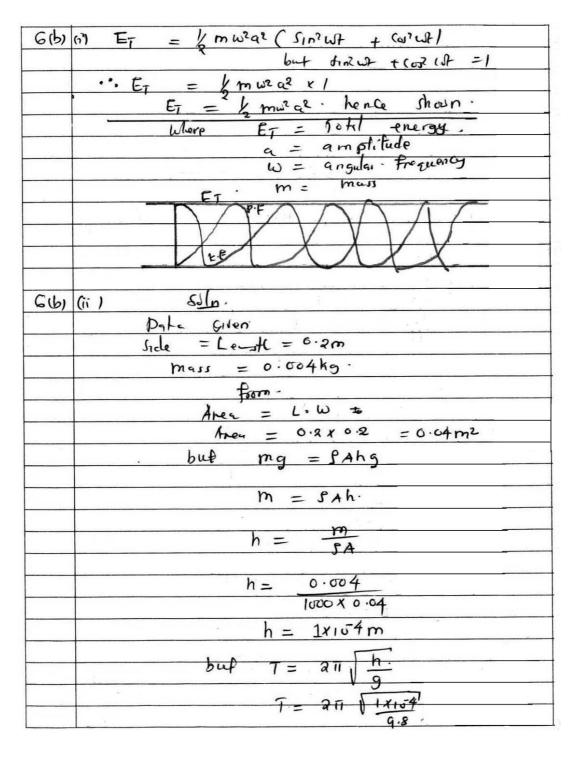
Figure 6: Candidates' Performance in Question 6

The candidates who performed poorly in this question, failed to apply the correct formula in solving the problem. Some of them wrote correct formula but they lacked mathematical skills in manipulating the data to get the correct answer. This is an indication that they lacked knowledge concerning the concept of simple harmonic motion. Extract 6.1 is an example of an incorrect response taken from the script of one of the candidates.

Extract 6.1

06	(a) x = 65m 1011t + 8 (a) 1011t.
	colo, .
	X= 6 nh topt
	$X_1 = 8 \cos 10 \text{ int}$
	Let $\omega = 1011$.
	XI = 65m wt
	$X_2 = 8 \cos \omega t$
	To equate both eggs and then to add.
	(65m 2wt =0.
	1 82 carut = 0.
	36+64 (Sm 2 wt2+ Cox2wt2) =0.
	100 (Sm 2 + 60,2 w) t2 =0, but sm 2 + 60,2 =1
	t = 10.
	0 =651 w (10)
	m w =0'
	$\omega = 0$
	but w = 1011 stomeans 1011 =0.

06,	(a)	Ġ	Am	fitudo	_	100				218	2010	_	1	
-				4 -		en'							301	
			0	- 10	D. ?	smiwita	1001	2wt2		2380	10		90	*
				A -	- 1	00.		00	Är	nplitu	do :	= 1	00 .	
	(4)	In	itig ph	iase c	4 +	notion		- (n :	9	۵	
			1		m					3	As	7	5	
			6 Sm	2wt2	2 (2,								
						A STATE OF THE STA	rej.	y .	110		· Vinte		meth of	
			VS	m w	=1	57,							*	
	r			w =	Sm	-1 0					1.19	9.03	Penult	
				w =	0	•		e lo			- 11	Ţ.	1976	2
		1	Initia	phas	e	is .	0°			. []				
4-164	- 4			1								-		
														-

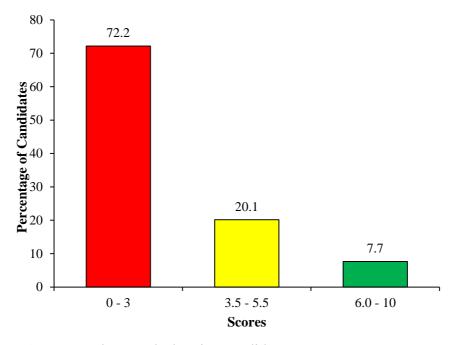

In extract 6.1 the candidate attempted wrongly each part of the question. In part (a) he/she obtained false value of time t due to poor factorization of t from the equations. In part (b) the candidate did not know the meaning of initial phase because he/she associated it with angular velocity.

The candidates who performed well in this question showed a good ability in mastery of the content as they were able to derive the general equation for displacement of a particle executing *s.h.m* and hence compared it with the given equation in order to find the value of amplitude and initial phase of the motion. They also managed to derive the formula for total energy of a body executing *s.h.m* and to link the concepts of s.h.m and the law of floatation in solving part (b) (ii) of the question. Extract 6.2 is an example of a good answer from one of the candidates.

Extract 6.2

6(a)(i) <u>sal</u> n-
	Data given
	$x = 6 \sin 10\pi i + 8 \cos 10\pi i - 0$
	Ampfitude = asked.
	from $x = a sin(wt + \phi)$
	X = 9 Sinut Cos + q Corat Sint
	X = a cosossinut + a sino cosut -1
	Compare the two equation
	X = 6 Siniotit + 8 Cosiotit
	X = a coopsinus + asing coord.
	$6 = a \cos \phi$ —(ii)
	$8 = a \sin \phi - (iv)$
	guare the town egn and then
	add them
	$(6)^2 = a^2 \cos^2 \phi$
	(8)2 = 92 Sin24
,	62 + 82 = 92 COJ14 + 92 SINZ4
	62 + e2 = 92 ((orto + sinz a)
	buf sin2q + (a)2p = 1
-	62 + 88 = 98.
	9 = 162+88
	q = 10 cm
J	.'. Amplitude = 10cm
6(0)(11	I Initial Phose 9 motion = asked.
	from.
	6 = a (or \$ -C)
-	8 = 9 Sina -(ii)
	tala egn (ii) and divide by (i)

6(9)	(ii)
	$\frac{8}{6} = \frac{a \sin \phi}{a \cos \phi}$
	6 a cod
-	
	& = Tan b
	\$ = tan (\$)
	φ = 53.13
	o'. Initial phase of motion = 57.13
G(b)	(i) <u>S</u> n.
0(9)	from.
	X = a Sin wt
	dr. = quequt
	df
	v = aw cos ut -0
	but .
	K-E = 6 mue
1	K-E = 1/m (aw Cos wt)2.
	(T)
4	K-E = /2 m a2 w2(252 wt
	4-1 4 T
	but P.E = 1/1 KX2
	but P.E = 1/KX2 but k= mw2.
	P. E = 1/2 mw2 (a sinwt)2. p. E = 1/2 mw2 (a2 sinzw)
	P.E = 1/2 mus (a2 & m2 wt)
	P.E = 12 mazwzsinzwt
	but E7 = P.E +k.E
	ET = 1/2 m 92 m 2 hn 2 wt + 6 m 92 m 2 (052 m)



Extract 6.2 illustrates the competence shown by the candidate in performing the calculations. The candidate started by stating the demand of the question in a particular item and then tackled each part of the question carefully to reach the final answer.

2.7 Question 7: First Law of Thermodynamics

This question was divided in two parts; (a) and (b). In part (a) the candidates were required to: (i) give a common example of adiabatic process, and (ii) state what happens to the internal energy of a gas during adiabatic expansion. In part (b) the candidates were given a word problem which stated that; a mass of an ideal gas of volume 400cm^3 at 288K expands adiabatically where its temperature falls to 273K. The candidates were required to: (i) find the new volume of the gas, and (ii) calculate the final volume of the gas if the gas was finally compressed isothermally until its pressure returns to its original value.

A total of 9,194 (49.6%) candidates attempted this question, out of which 33.9 percent scored 0 marks, 38.3 percent scored 0.5 to 3.0 marks, 20.1 percent scored 3.5 to 5.5 marks, and 7.7 percent scored 6.0 to 10 marks. These scores reveal that the candidates' general performance in this question was poor. The analysed data are illustrated in Figure 7.

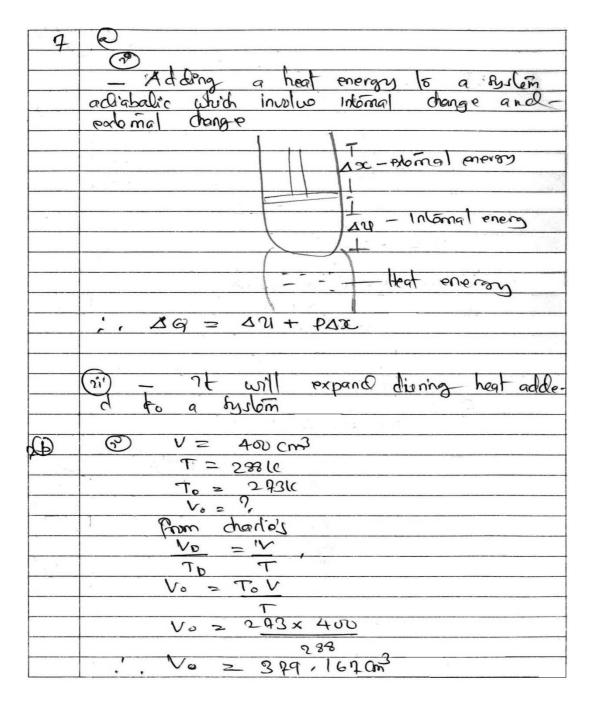


Figure 7: A bar graph showing candidates' performance in question 7.

The candidates who performed poorly in this question, were not able to provide a common example of adiabatic process and to give a proper explanations on the effect faced by the internal energy of a gas during adiabatic expansion. Furthermore, they applied a wrong formula and laws in finding the new and final volumes of a gas under isothermal condition. This shows that most of them lacked

knowledge and skills of solving problems related to the concept of first law of thermodynamics. Extract 7.1 shows a sample of an incorrect response given by one of the candidates.

Extract 7.1

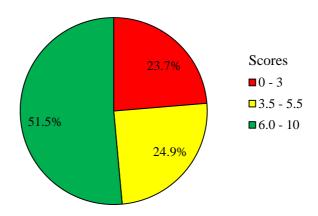
16) (1) at constant pressure = Accimity.
75 (1) at consists pressure - 460/11/48 V = 400 cm ³ T = 1293 (C ,
$V = 400 \text{cm}^3$
T = 293 K
To = 293.151 (at constant temporali
V _o = \(\gamma\)
Vo 2 V
To the man of the
1. Such as the second s
Vo = To V
T
Vo = 293.151cx 400 cm3
29810
V = 293.15 × 400 cm3
298
4.0.15000000
V = 407, 1\$27973cm3
1. 0. 1-6.3
V = 407.15Cm3'
. The final Volume was 407.15cm
The final Volume was 404. Iscm

In extract 7.1 the candidate provided an illustration in part (a) (i) which did not match with the demand of the question. Also the candidate used Charles' law to calculate volume of the gas under adiabatic process which is not correct.

On the contrary, the candidates who performed well managed to apply the formula and the first law of thermodynamics in analysing the data to get the correct answer. In addition, they provided correct responses on the common example of adiabatic process and gave correct reason for what happens to the internal energy of a gas during adiabatic expansion. This indicates that they had good mastery about the concepts of thermodynamics. Extract 7.2 is a sample of a correct response from one of the candidates who responded correctly to this question.

Extract 7.2

(a) (ii) From Q = AU + W For Adiabatic process, Q = > O = AU + W AU = -W During expansion the Internal energy decreases as heat leaves or enters the switch, hence internal energy is the one it							
Q= AU+W For Adiabatic process, Q=0 0= AU+W AU=-W							
For Advabalic process, Q=0 0= AU+W AU= -W							
0- AU+W AU=-W							
$\Delta U = -W$							
During expansion the Internal energy decreases as	-						
Duning expansion the Inland energy decreases as							
	no						
heat leaves or enters the system, hence internal energy is the one it	ed to						
do Work.							
7 (1) Volume (Vo) = 400 cm ²							
7 (1) Volume (Vo) = 400 cm² Tem perature (To) = 288k. Tem perature (T ₁) = 272k. (i) New Volume (V ₁) =?							
Denote (T.) - 2H2k	¥						
(i) Nous Vivos (11) = 2/31							
From							
$TV^{8-1} = anstant$	-						
UN.8-1 = LON.8-1.							
8=1.4. V18-1 = ToV18-1							
V10.4 = 288 × (406)0.4 273							
273							
V, = 457.23 cm². ., The New Volume = 457.23 cm².							
? The New Volume - 457, 23 cm3.							
(1) (ir) Entrel Volume (V,) = 457,23 cm².							
Inited temperature (Ti) = 273 k.							
Final Volume (V2) = ?							
solution							


7 (L)(ñ)	Fritich pressure (Po)							
	Fum							
	PVZ net							
	P= nRT							
	V							
	Po= 8.31 x 288							
	400 X163							
	= 59 B12 Pa.							
	Final pressure = Initial pressure = 59 83.2 (B)							
	Lait							
	two							
	PiVI ZRV							
	Ti Ti.							
	P = POVO XTI							
	ToXV1							
	= 59 83.2 × 400 × 228 243							
	288x 457.23							
	= 4961,68 pa,							
	Hence							
	BV3 > PIVI							
	To Ti							
,	$V_2 = P_1 V_1 \times \hat{I}_3$							
	BY							
	= 4961. &8 x 457,23 x							
	From Forthernal Equation							
	PV = constant							
	$P_3V_3 = P_1V_1$							
	Vz = P, V1							
	, <u>P3</u>							
	V3 = 4961,68 × 457-23							
	59 83.2							
	\s= 379.17 cm3, the final Vilume = 379.17 cm3.							
	. ", The final Volume = 379.17 cms.							

In extract 7.2 the candidates wrote the correct response for each part of the question. It seemed they had adequate knowledge of adiabatic process therefore they were able to support mathematically the response in 7(a) (ii).

2.8 Question 8: Transfer of Heat and Thermometry

This question consisted of three parts; (a), (b) and (c). In part (a) the candidates were required to state: (i) Prevost's theory, and (ii) Wien's displacement law. In part (b) they were required to explain briefly why, (i) steam pipes are wrapped with insulating material, and (ii) stainless steel cooking pans fitted with extra copper at the bottom are preferred. In part (c) the candidates were required to determine the Celsius temperature defined by the property x that corresponds to a temperature of 50° C on a gas thermometer if the value of the property x of a certain substance was given by $x_{\theta} = x_{o} + 0.5\theta + 2 \times 10^{-4}\theta^{2}$ where θ is the temperature in degree Celsius.

A total of 17,175 (92.7%) candidates attempted the question, out of which 23.7 percent scored 0 to 3.0 marks including 9.1 percent who scored 0. The candidates who scored 3.5 to 5.5 marks were 24.8 percent while those who scored 6.0 to 10 marks were 51.5 percent. Generally, the performance of this question was good. Figure 8 presents performance in question 8.

Figure 8: The candidates' performance in question 8.

Majority (76.3%) of the candidates who performed well stated the Prevost's theory of heat exchange as well as Wien's displacement law. They gave correct reasons why steam pipes are wrapped with insulating material and why stainless steel cooking pans fitted with extra copper at the bottom are more preferred in domestic use. In addition, they managed to derive the formula and determine the Celsius temperature with respect to thermometric property of a given substance. Generally these candidates were conversant with the concepts of thermometry. Extract 8.1 illustrates the performance of candidates in question 8.

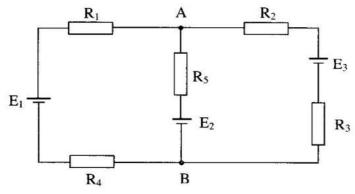
Extract 8.1

8aci)	Prevost's theory States that, "A body radiates energy at
	the rate depending on the nature of its surpace and its
W	temperature and it absorbs energy at the rate depending
	on the nature of its surface and the surrounding temperature
	and when the temperature of the body is constant, it
	absorbs radiations at the rate equal to the radiations it
	emits."
(ii)	Wien's displacement law stodes that, "The wavelength
	of radiation at which maximum intensity is produced
	of radiation at which maximum intensity is produced is inversely proportional to the absolute temperature of
	the body.
b(2)	This is normally done so as to reduce head losses
	from the steam to the sumundings.
(ii)	This is due to the fact that copper is a good anductor
	of heat and so stainless cooking pans filled with extra
	copper at the bottom tend to show good ability as their
	of heat and so stainless cooling pans filted with extra copper at the bottom tend to show good ability as their heat conduction is very good and hence they are presented
(c)	Given: $X_0 = X_0 + 0.50 + 2X_{10}^{-4} + 6^2$.
	From: $\theta = (X_{\theta} - X_{0}) 100^{\circ} c$
i.	(X100 - X0)
	$X_{50} = X_0 + 0.5(50) + (2x10^{-4})(50)^2$
	Xso = Xo + 25 + 0.5
	1. Xso = Xo + 25.5

8(0)	Also; $X_0 = X_0 + 0.5(0) + 2 \times 10^{-9}(0)^2$
	$X_{o} = X_{o}$
	Also; X100 = X0 + 0.5(100) + 2×10-4(100)2.
	$\chi_{100} = \chi_0 + 50 + 2$
	: X100 = X0 + 52.
	Thus;
	$\Theta = \begin{pmatrix} X_{50} - X_0 \\ X_{100} - X_0 \end{pmatrix} = \begin{pmatrix} X_{50} - X_0 \\ X_{100} - X_0 \end{pmatrix}$
	(X100 - X0)
	$\Theta = \left((X_0 + 2s \cdot s) - X_0 \right) 100^{\circ} c$ $\left((X_0 + S_2 - X_0) \right)$
	(Xo+52-Xo)
	$\theta = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} $
US	X6+52 -X6/
	$\hat{\Theta} = \left(\frac{25.5}{52}\right) \frac{100^{\circ}c}{}$
	(52)
	0 = 49.03846154°C ~ 49.04°C
	The temperature would be ~ 49.04°C.

In extract 8.1 the candidate managed to provide correct responses for each part of the question and he/she presented his/her work systematically and gave precise conclusions.

The candidates who performed poorly failed to comprehend almost all parts of the question. They failed to recognize that steam pipes are wrapped with insulating materials in order to minimize the loss of heat due to radiation. Furthermore copper has greater thermal conductivity than steel as it allows more heat to flow into the pan hence cooking of food becomes easier and faster. Apart from that, most of them had poor mathematical background on thermometry as they failed to relate the given expression of property X in determining its Celsius temperature which corresponds to a temperature of $50^{\circ}C$ on a gas thermometer scale. Extract 8.2 presents a sample response of one of the candidates who performed poorly in this question.


Extract 8.2

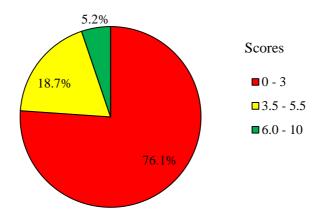
8	9/1/ Usitha Provost, theory, 1sthe theory which Shows how tomporature dopone on onmon
250	Shows how tomporature dopond on tonnon
	ment temperature if temperature y environment
	is low also may load the temperature in the
	System to docroaço
100	JUSTYPT TO ESCHOLOGY
2	
	hon which fall on a black body can absorb all energy are replact mon"
	has what sall as a black body can a back
	all an about buy can about b
	all energy are reflect two
h	, 0
-	is Borouse stoam pipe have abouty to acquire
	More energy for short poined of time
	ii Bocoso are good conductor a head So we when are fitted with extra Copper at the botton helps to reduce the heat become Copper Is a had
	are fitted with extra Copper at the botton helps
2	to roduce the heat because Copper Is a had
	Conductor q hoat
801	X0 = X0 + 0.50 +2 × 10540 2
	50 = X0 + 0.5x50 + 2x10-4x502
	50 = X0 + 25 + 0.5.
	50= x0+ P0255
	50 = X ₀ + 25.5
	X. = 50-25.5
	X. = 24.5°
	The above 6/6/10 24 5 00
	The degree of Colsius is 24.5°C

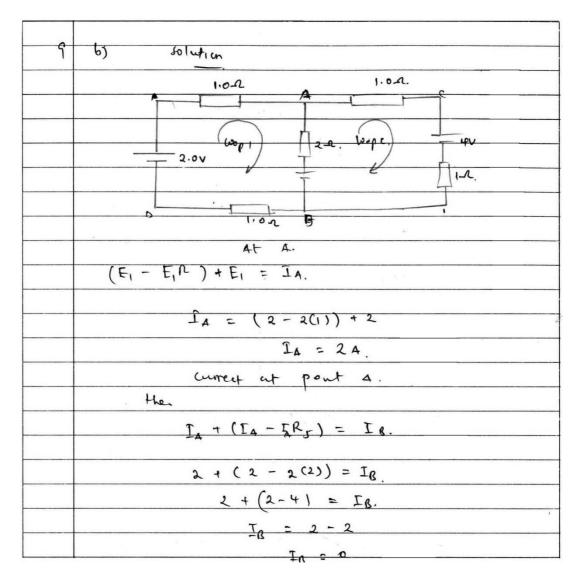
In extract 8.2 the candidate failed to state correctly the Prevost's theory of heat exchange and Wien's displacement law as well as applying the correct formula to find the Celsius temperature corresponding to a temperature of $50^{\circ}C$ on a gas thermometer.

2.9 Question 9: Current Electricity

The question was divided in two parts; (a) and (b). In part (a) the candidates were required to: (i) explain the advantage of using a greater length of potentiometer wire, and (ii) to explain why Wheatstone bridge is not suitable for measuring very high resistance. In part (b) the candidates were given the following circuit diagram then required to calculate the: (i) current flowing through the circuit and (ii) potential difference, V_{ab} .

This question was attempted by 64.1 percent of the candidates; out of which 76.1 percent scored 0 to 3 marks, 18.7 percent scored 3.5 to 5.5 marks while 5.2 percent scored 6 to 10 marks. These analytical data show that the question was poorly done as shown in Figure 9.




Figure 9: Candidates' Performance in Question 9.

Most of the candidates who responded poorly in part (a) (i) failed to understand that having greater length of potentiometer wire would reduce the potential gradient along the wire and thus increase the wide range and make the measurement taken to be more accurate. One candidate for example wrote *it helps higher amount of electricity to pass* while another candidate wrote *it helps to get*

clearly the resistivity of a particular wire. In part (a) (ii), the candidates were supposed to show that Wheatstone bridge is not suitable for measuring very high resistance because, for high sensitivity of the bridge, all resistances should have high values to reduce the current passing through it which would damage or make the device insensitive. In part (b) also some of these candidates lacked mathematical skills as they failed to analyse and identify the number of loops in the given figure and hence apply Kirchhoff's laws to calculate the current flowing through the circuit and its corresponding potential difference V_{ab} . Extract 9.1 is a sample taken from the answer of one of the candidates who responded incorrectly to this question.

Extract 9.1

9	a) i) The use of greater length of potenhoneter
	wire is that to reduce the resistinty of a
	wire, because resulting of a wire varies inversly
	proportional to leasth,
	7 % /
	") Wheatstone bridge y not usefull ni measurm
	g very high renstance because it will need a
	g dvanonueter with higher renormity

In extract 9.1 the candidate attempted to explain how the resistivity of the wire could be affected due to greater length instead of the advantage. In part (b), he/she failed to analyse the given circuit diagram and to apply Kirchhoff's laws and hence obtained incorrect answers.

On the contrary, most of the candidates who performed well provided inevitable explanations about the asked terms. They also showed a great ability in analysing the circuit diagram and organizing the data when applying Kirchhoff's laws in finding the correct answers. This is an indication that they had a good understanding about the concept of current electricity. Extract 9.2 shows an example of a good response to this question.

Extract 9.2

(a)(i) Advantages at greater length potentioneter wire	
Olunveoses The occupacy to weasure The vollege	
@ Enoble wide ronge of voltages to be neasured	
(o) High resistance will block bypass The	
CAN THE VISISIONE COLL STATE SYPACE THE	
(0/in) High resistance will tause come to by pass The area	
and take another voot which has lower resistance	
compared to that so there will be no concert possion	4
in the region of high resistances	
$\frac{P(b)(i)}{\sqrt{1_2}}$	
112	
-F-1 loop / 3Rs (loop 2. + F.3	
$ \begin{array}{c c} \downarrow I_2 \\ \downarrow F_1 & loop 1 & 3R_5 & loop 2. & F_3 \\ \hline \end{array} $	
313	•
Py B 0 R. = R. = 1:0-7	,
121 - 1-7 - 15 - 19 - 10 - 1	
Applyin Encloss low. Rs= 25	-
Consider 100p 1 Fr = F3 = 4V	
E Enf = Spd. E1 = 2V	
E1-F2 = I1R1 + I3 R0 +], R4	S. C. L. P. C.
2-4=1, $+21$, $+7$	
$-2 = 2I_1 + 2I_3 - 0$	
Consider loops 2.	
Etnf = Epol	
E2 - E3 = J2 R2 - Î3 R5 + J2 R3	
$4 - 4 = 1_2 - 21_3 + 1_2$	
$0 = 2\overline{1}_2 - 2\overline{1}_3 - \overline{0}$	
At Junction A $I_1 = I_2 + I_3$	
+1 - 12 7 -13	

9(6)(i)	0= I2 + I3 - I1 - 1
	$-2 = 2\overline{1}, + 2\overline{1}_3 - \overline{0}$
	$0 = 2\overline{1}_2 + 2\overline{1}_3 - \overline{0}$
	0 = I2 + 13 - I1 - (iii)
	Solving equation quales smallene
	I; = -0.667A
	I2 = -0.33 A
	$I_3 = -0.33 A$
	negative indirates direction
	of flow
	Convert in the circuit are
	0.667 A through R, and Ry
	0.33 A through Rs
	0.33 A through Rz ord Rz
	but I, = 13 + I, = 0.667 A
	Court Mangh The crucuit = 0.6674
9(6)(11)	Vab = 13 Rg + F-2
	$= (0.33 \times 2) + 4 = 4.66 \vee$
	Vab = 4.66 V

Extract 9.2 shows how the candidate was systematic in analysing the circuit diagram and applying Kirchhoff's laws to obtain the correct answers although the responses given in part (a) (i) and (ii) are not so neatly presented.

2.10 Question 10: Current Electricity

This question comprised of three parts; (a), (b) and (c). In Part (a) (i), the candidates were required to list two factors which the resistivity of material depends and in (a) (ii) to determine with reason, the new resistivity of a wire of resistivity ρ if its length was doubled after being stretched. In part (b), the candidates were required to: (i) explain why a high voltage supply should have

high internal resistance, and (ii) justify the statement that "it is not possible to verify Ohm's law by using a filament lamp". In part (c) the candidates were required to find: (i) resistivity of a wire, and (ii) conductivity of a wire if a potential difference of 4 V is connected to a uniform resistance wire of length 3.0 m and cross sectional area 9 x 10⁻⁹ m² allowing a current of 0.2 A to flow through it.

A total of 17,320 (93.5%) of the candidates attempted the question, out of which 36.0 percent scored below 3.5 marks including 5.6 percent who scored 0 marks. The candidates who scored 3.5 to 5.5 marks were 57.9 percent while those who scored 6 to 10 marks were 6.1 percent. This shows that the candidates' general performance to this question was good. The graphical presentation of these data is shown in Figure 10.

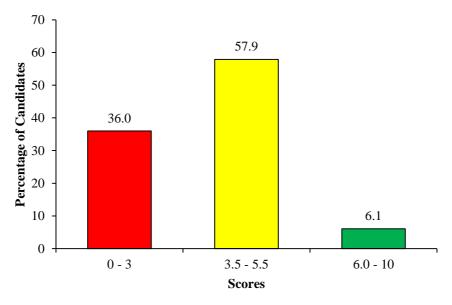


Figure 10: Candidates' Performance in Question 10.

The candidates with good performance had a good understanding of the subject matter especially on the concept of electric conduction in solids. This enabled them to identify the factors affecting resistivity of a material, the relationship between voltage and internal resistance of a source of e.m.f as well as rationalizing the properties of a filament lamp. In this case, they managed to recognize Ohm's law and its applications in calculating the resistivity and conductivity of a wire. Extract 10.1 shows a good response from one of the candidates with good performance.

Extract 10.1

10	(0) I/ @ Con @ Temperature and @ Nature of material
	TV Solo
	resolutivity of limited length Li
	Find length Le = 2 Li
	f = AR
	f'= Xr' ZAR'
	L' ZL
	Note! Resolutional depend on length of will also
	change from R to R1
	Since the nature of wire with same then
	change in length is scattereighted by chance in
	resultance. If & a usumed constant
	L = U
	R R'
	f = RL' Im c R' = 2R
	FI PIL
	1 = R2L =1 1 20L
_	
	f = f'

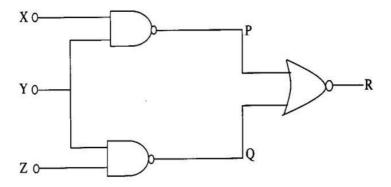
=. Resistivity of the wine will be the same because
of En the characteristic of material. It can only bo
affected by temperature
(5) is High voltage supply should have high internal reviotano so as to
limit the amount of current generated since high current
 value tout into high power low in from of heat
(Te H. = Tip).
ii/ It is not posseble to verify ohms low by using Itlament
11/ It is not possible to verify ohms low by using fflament lamp because it is a non-ohmic coordinator and hence does not
ober ohme law.
C foln.
E=4V, l=3.0m &= 9x109, I=0.24
Soumption: The unit of see to be at II-unit is me
The state of the s
: . Resultance of wire R
V=1P
$V = IR$ $R = V = 4 = 20 \Lambda$
7 0-2
Ma
f = AR = 9x159x20 2m
7 3
Resolving f= 6 ×10-2 DM
in / Conductivity 6
6 = 1 = 1 - 1
$6 = 1 - 1 - 1 - 1$ 6×10^{6} Conductivity $6 = 16.67 \times 10^{6} \cdot 10^{6} - 1$
 Conduction & = 10 10 x 10 6 0%-1
Culture 10/12 2 - 18.8/ 1/10 70 11

Extract 10.1 indicates the competence shown by the candidate in analyzing the problem. The candidate was precise in organizing the concepts to reach the expected answers.

However, some of the candidates who performed poorly in part (a) wrote two factors as "cross-sectional area" and "length of the wire" as they failed to recognize that resistivity depends only on the nature and temperature of the

material so when the wire is stretched to double its length, its new resistivity will remain the same as before. The analysis also shows that instead of comprehending the given statement in part (b), some of the candidates stated Ohm's law. The candidates did not realize that, filament lamp is non Ohmic material and hence disobeys Ohm's law. Extract 10.2 illustrates a poor response given by one of the candidates.

Extract 10.2


to.	an
	9/.
	Resistivity of the material depends on
	- cross-rectional area of the material
	- The length of the material
	817
1	If the wire of respitation, In streehed double
	its length there will be decrease is restitivity due to
	resistantly is inversely proportional to length.

10.	a)
	11/
	fal
	L
	6). 12.
	The high voltage supply should have a high
	internal resistance due to voltage & inersely
	proportional to current Y=IR. The issue of
	having high internal resistance it will facilitate
	to have high output power. So as to decrease
	the e.m-f (E) - ie. $E = V - Ir$
	<i>h</i> ,
	"It's not possible to verity ohmis law
	"It's not applied to read a Mante law
	de la
	by using a plament lamp " due to Ohm', lan
	states that
	"The current passing through a conductor
	is directly proportional to p.d across it provided
	no external force act on it"
	, In a filament lamp no flow of enment
	as well as the p-d. to be proportional with

In extract 10.2 the candidate wrote incorrect factors on which the resistivity of a material depends. In part (b), he/she failed to respond correctly and instead of justifying the given statement, the candidate attempted to state Ohm's law.

2.11 Question 11: Electronics

This question had parts (a), (b) and (c). In part (a) the candidates were required to explain briefly the function of: (i) oscilloscope and (ii) Op-amps. In part (b) they were required to study the given figure and then construct a truth table showing the output P, Q and R.

In part (c), the candidates were required to: (i) list three basic elements of communication system and (ii) explain advantage of using optical fibre systems than coaxial cable system in telecommunication processes.

A total of 11,293 (60.9%) candidates attempted this question, out of which 18.3 percent scored below 3.5 marks, 33.4 percent scored 3.5 to 5.5 marks, and 48.3 percent scored 6.0 to 10 marks. These scores show that the candidates' performance in this question was good. Figure 11 illustrates candidates performance in the question.

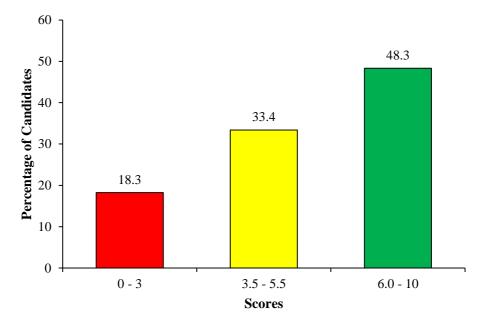


Figure 11: Candidates' Performance in Question 11.

The candidates who performed well were able to explain the function of oscilloscope and Op-amps and they managed to analyse the given figure and drew the correct truth table showing the output P, Q and R. Apart from that, they

correctly mentioned the basic elements of communication systems and listed the advantages of using fibre than coaxial cable system in telecommunication processes. Extract 11.1 shows a sample of a good response.

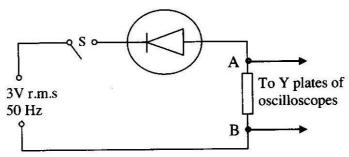
Extract 11.1

11.	a) i) Oscilloscope is a derreer which is used to
	Involuce rais of broth which are useful
	In different cases such as neasuring voltage,
2	clock and other systems
	(ii) Op-amps are operational amplifiers which
	amplifies the difference of its inputs to
	produce an amplified output and can be used
	in solving different mathematical operations melia
	addition, delatraction, deferent when, intergration etceter.

116)		1 1					I a truth table showing
	. 6	refer	<u>t</u>	1, Q	1 and	2 R	
			- 8	T	Putt	ATA	BLE
	Luly.	Inp	ete		_	puts	
	×	1	2	9		R	
5	0	0	0	1	1	0	- 2-7-1/2 1/2
	0	0	1	2	1	0	
	0	1	0	1	1	0	
	0	1	1	1	0	0	
<u> </u>	1	0	0	1	1	0	
(03	1	0	1	1	1	0	
	1	1	0	0	1	0	
		. 1	1	0	0	11	
		- Of	Atreal Services	could	bre e sy	syst atem	ems are advantageous than since they enable signals over large distances compare
			h c	oakir	al c	able	afeterns
			oell	10	H		tibre systems signal strength hen transmutted over large
			earl	Thu y	Inl.	12 s 220 s	gnal does not lose abergeth coasial cable systems signed rapidy compared to optical pore
	L. J.		12	111011	(1	1/0//	

Extract 11.1 shows that the candidate managed to provide correct answers to all the parts of the question.

On the contrary, the candidates who performed poorly lacked basic knowledge on amplifiers and the procedure for finding outputs of logic gates. One of these candidates wrote: *Oscilloscope is used for producing x-rays*. This candidate failed to show that oscilloscope is used to display waveforms, measurement of voltage frequency and phase as well as acting as a clock. Besides that, these candidates lacked fundamental concepts regarding telecommunication process as they were not able to even list three basic elements of communication system which are transmitter, communication channel and receiver. Extract 11.2 shows the responses of one of the candidates who performed poorly in this question.


Extract 11.2

416	G: Osilloszope: used and offer elec Short waveleng	Box o	prod	ecetions	or xerry
	Short waveleng	R.	gaeric	vaceti ui	1813
	(D: O. pampi used for d · as a su · used as a · as an in · as a su	Letto inter incusi verusi stergra stergra	ng an	pure pure a	amplifier
رك	Truts table.	P	1 1 0 1 1 0 0	0 0 0 0 0 0 0 0 1	
۷.	(b): alements of c · Kollular policy · Conquiter · F(4) Apr li) Optival folso system the travelling of easily cines of	lons Crute 1 Pa	neld dio.		

In extract 11.2 part (a) (i) the candidate stated the function of x-ray machine instead of oscilloscope. He/she mentioned cellular phones, computer and AM/FM Radio as the basic elements of communication system instead of transmitter, communication channel and receiver. He/she lacked understanding on the topic of communication.

2.12 Question 12: Electronics

This question had three parts; (a), (b) and (c). Part (a) required the candidates to: (i) define the term semiconductor and (ii) give three examples of semiconductor materials. In part (b), the candidates were required to: (i) outline two factors on which electrical conductivity of a pure semiconductor depends and (ii) explain how the forbidden energy gap of an intrinsic semiconductor varies with increase in temperature and finally, in part (c), the candidates were given a circuit diagram as shown in the Figure below and were required to calculate: (i) the peak voltage and (ii) the period.

A total of 12,905 (69.6%) candidates attempted the question, out of which 34.5 percent scored 0 to 3 marks including 6.9 percent who scored 0 marks. The candidates who scored 3.5 to 5.5 marks were 27.6 percent and those who scored 6 to 10 marks were 37.9 percent. The analysed data indicates that the general performance in this question was good as illustrated in Figure 12.

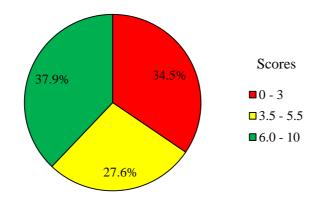


Figure 12: Candidates' performance in Question 12.

The candidates who performed well in this question managed to provide a correct definition and give examples of semiconductor materials, explain two factors on which electrical conductivity of a pure semiconductor depends and they explained precisely the manner in which forbidden energy gap of an intrinsic semiconductor

varies with increase in temperature. They were also able to apply the correct formula and the given data to calculate the values of the peak voltage and period of a.c source. These candidates had good understanding about semiconductors and its characteristics. Extract 12.1 presents an example of a good response to the question.

Extract 12.1

12	@ (1) Semi conductor : Is a substance/Materials
	whose electrical anductivity has between
	the conductivity of Condictors and
	Insulators
	(1) - Gallium arsenida
	- Silicon
	- Germanium
-	(b) a) Temperature
	(b) (1) Temperature - Forbidden energy gap
	(11) - When the temperature increases
	the formbidden energy gap decreases and
	Vise versa: Therefore the tem change
	vise versa: Therefore the tem change in temperature varies inversely with
	the forbidden energy gap

12.	(c) (1) Data given
	Erms = 3 V
	Frequency (f) = 5VHZ
	NVW
	Fo= J27 Ems
-	where
	Eo = Peak Viltage
	frms = Rook mean square voltage
	Thes
	Esz 121 × 8 = 3 12N = 4.242640687V
1	-: Reale voltage = 4.243 V
	(1) The penodic time (T)
	Sine T=!
	+
	92 ·1 s = 0.626
-	50
	where of - Frequency.
	Where & - Frequency T - Time pend
	- Rendic time is 0.02 Seconds

In extract 12.1 the candidate provided short and clear responses for each part of the question which required explanations as well as precise calculations for the parts which required computation.

The candidates who performed poorly failed to clearly define the term semiconductor and list its examples. One candidate for example wrote: *solid state, liquid state and gaseous state* which are three states of matter instead of *silicon, germanium and gallium arsenide*. Besides that, they were not able to outline two factors on which electrical conductivity of a pure semiconductor depends, or to interpret the given circuit diagram and apply the correct formula to calculate the period and peak voltage. They therefore lacked basic knowledge on semiconductors and its properties. Extract 12.2 is a sample answer from one of the candidates who performed poorly in this question.

Extract 12.2

1211 Somi- and on the one was to between
their cather af in Elder,
examples of Semi-and for internals we
(i) Solve 5 Re
(ii) greens shte,
(iii) 9 - seons shte,
(6) "Cleeting of Cardistry of - pure Semi"- cond
che depud on!
The Nature of the materials,
Me Man of on markets
(ii) Because their aven few amount of the
enough that involved when the temperature
(1) Decause their avery few amount of the enough that involved when the temperature increase compared to other intrinsis semi-al
ar 1
I'm The Reac Vo trago:
the not merone Squap (rom.) = IV.
We next we case show (1, m.) = 30.
feguery SUHZ.
John John ,
for Ivinos = Io
77.
Ivens = V
<u>TT</u> ·
Iran = 1

	Irin.32 0195.	
	Ir.mis = 0-95.A.	
	1 Hack do	. / X X
	be V= IRI	2. (1
		1 1 11/
	NZ OUSTXI	
	(1) = a-22 N.	
	Land to the second to the seco	
	Tis The pend	
121	my pend	
(0	fm; Frequen = SHZ,	
	1. 1. [100]	
	T = 200	
		. 4
	m1 7= 10	
	, J. T.	a at a
	T = 1, 0.95.	
	1 7	
	3	1 17
	1=0.110.	
	to five parofit 0.1	15

In extract 12.2, part (a) and (b) the candidate failed to comprehend correctly the concepts asked and applied wrong formula in part (c) to find the period and peak voltage.

2.13 Question 13: Electronics

This question comprised of three parts, namely (a), (b) and (c). In part (a) the candidates were required to explain the meaning of: (i) P-type semiconductor and (ii) N-type semiconductor. In part (b) the candidates were required to: (i) list three types of transistor configurations, and (ii) Explain why a collector of a transistor is made wider than emitter and base. In part (c) the candidates were required to calculate: (i) the current amplification factor, β and (ii) current gain, α , given that;

a charge of $100\mu A$ in a base current produces a change of 3mA in the collector current.

Ninety percent (90%) of the candidates attempted this question, out of which 27.3 percent scored below 3.5 marks, 24.5 percent scored from 3.5 to 5.5 marks and 48.2 percent scored 6 to 10 marks. These scores imply that the performance of the question was generally good. These data are shown in Figure 13 below.

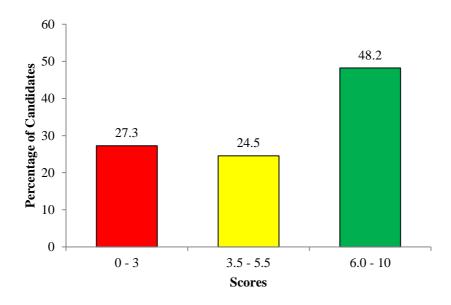


Figure 13: Candidates' performance in Question 13.

Majority (72.7%) of the candidates who performed well were able to explain precisely the meaning of P-type and N-type of semiconductor and to give the correct reason why the collector of transistor is made wider than emitter and base. Some also applied the correct formula in calculating the current amplification, β and current gain, α . This indicates that they had good understanding on transistors and its configurations. Extract 13.1 shows the responses of one of the candidates who performed well in this question.

Extract 13.1

13 (a (8) P-type semiconductor is the impute semiconde	ctor		
that is doped using the trivalent element	7		
or trivalent natural such as Boron. The			
P-type semiconductor is nich in holes Than			
electrons. The prajenty current causes are			
toles.			
(it) N-type semiconductor is the semiconductor the	1		
is made after the deping of intensic.			
semiconductor using pentavalent elements			
or materials. They are nich in treams.			
The pragnity curent carriers are electrons			
Exampley pentenalont materials are Ballim			
and Antimorny (56).	and Antimorny (56).		
,			
(b) (1) Three types of Canrifor configuration			
1. Common-Emitter Configuration			
2. Common-Cellecter			
3. Common-Base transister.			
*	,		
(31) The collector is peacle wrider than emit	ter		
and base because post of the heat			
that is produced is dissipated into			
the collector so it is made und	2		
than emitter and base. Emitter is made this to allow the			
Forter is made this to allow the			
passage of electrons towards The collecter			
Also this enables the emitter not to			
accumulate efections. Nort elections			
are passed to edlector.			

13	(e) (t) Given
	SIR= 100 µB - bare correct
	DIc = 3 m A - allefor current.
	Reguired
	(i) Curent somp) fication factor B
	,
	from R Die 3mA 2n
	DIB TODIA
	. The Courent Amply capin factor B
	From B = SIE 3mA = 30. The Courent Amplyication factor B is 30
	()i) The current gain . a.
	From The relation
	$\beta = \frac{\alpha}{1 - \alpha}$
	1 1-9
	(30 = X
	1-02
	30-30a=~
	30 = 31x
	$\alpha = 0.9697$
	: The Current gain = 0.9677

Extract 13.1 shows a candidate with good understanding on the concepts asked as he/she managed to write the correct responses for each part of the question.

The candidates who performed poorly in this question failed to explain the meaning of P-type and N-type of semiconductors which are basic concepts in electronics. Most of them failed to argue why the collector of a transistor is made wider than that of an emitter and base. This implies that they had inadequate knowledge and skills in solving electronics problems. In this case, the candidates showed a good understanding that, during its operation the excess heat is produced at the collector junction. Therefore, the collector is made wider to dissipate heat and so protect it from distortion. Extract 13.2 is a sample response of one of the candidates who performed poorly in this question.

13 @ (i) P-type Semiconductor D the
Lype of sewi conductor which
inder the electricity with the
Croult.
011 0000
11 a (ii) N- type & the type of son
1) a (ii) N- type is the type of son
where to make the sul
the electric current Flowing
in the drault.
13 (b) (i) Three types of drawsistor is
ces not transter
cú)
B chiais Collector of a truststor madre
wider than emitter ad base
because emmiter are thre
send for trient of source
are out current in the circuit
12 (C) (i) Dada given
12 (C)(i) Dada given
Charge = WO, UA
Charge = UDUA.
current amplification =?
Fran
IB = IODULA
3×10-3
1B = 0.033A:
The constant of the state of th
1. The current amplification is 0:03]

In extract 13.2, the definitions of P-type, N-type semiconductors and the wrong formula written by the candidate show that he/she completely lacked the basic knowledge of transistors and its mode of operation.

2.14 Question 14: Environmental Physics

This question had two parts; (a) and (b). In part (a), the candidates were required to: (i) state three sources of heat energy within the interior of the earth, and; (ii) discuss two advantages of windbreaks to plant environment. In part (b), the candidates were required to explain briefly the major causes of: (i) water pollution and (ii) air pollution.

A total of 14,708 (79.4%) candidates attempted this question, out of which 2.1 percent scored 0 marks, 14.9 percent scored 0.5 to 3 marks, 56.8 percent scored 3.5 to 5.5 marks and 26.2 percent scored 6 to 10 marks. These scores imply that the general candidates' performance in this question was good as illustrated in Figure 14.

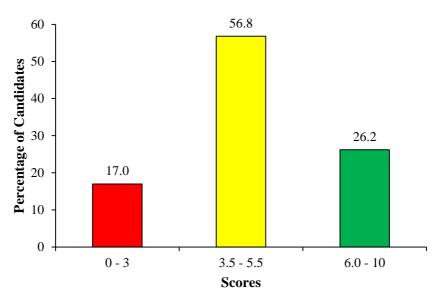


Figure 14: Candidates' performance in question 14.

The candidates who performed well in this question were able to state correctly the three sources of heat energy within the interior of the earth and explained correctly the two advantages of windbreaks to plant environment. They also were able to briefly explain the major causes of water and air pollutions as required, showing that they had knowledge about environmental physics. Extract 14.1 shows the responses of one of the candidates who performed well in this question.

Extract 14.1

14: (a) (i) Jourses of heet energy within the Interior of
the earth are:
(of Radiocetine decay of the hotopes such as The liver (Th), User and Uverian (U)
(b) The gravitational work done by the earth when it retrate, on its own axis
(1) Collision of the partites during the earth
(ii) Advantages of wind breaks to plant ennounced
(a) It lesses the cold
(9) It increases the sield, - Wind breeks before helps to increase bielding the creps by conserving preventing the enewsive less of water by plants through transpiration as the wind is prevented.
the crops by conserving preventing the enewsive
trus ex water by plants through transpiration
a, the wind is prevented.
(b) It improves the sp crops spraying activities. - spraying of the insucherales and posticions is well when there is wind break.
- IPizzing of the insecticity and postuction is uself
when there is writed breaks.
(a) Poor bed fishing me thod,
(a) for bed fishing method,
- Jomse of people use chemicals dung fishing activities, which eauss the death of logs number
of acqueti animals especially fish and thus
polluting the environment of martin

14: (b) (i)
(b) (f)
(b) themicals and Dasles from madeship
- the chemicals from constraint and invested
(b) Chemicals and wester from inclusting - The chemicals from inclusting anedimental to the water source, and thus pelluting water in the sear ocean or nine.
when in the leaf ocean or nue.
the second secon
(c) Agricultural products.
- Agricultury product. Such as crops residues,
fertilies, and one manure, may be directed to
fertilies, and and manure, may be directed to writer sources by the wind or vainfell.
(ii) Canus of air pollution:
(a) Burning of vegetation
(a) Burning of vegetation. - Burning of forest in horders, the dusts and herm ful gases in the atmosphere.
here hel selve to the troughts.
(b) R as Hearn b. I as from inclustries
(b) Burning of Hermful gays from inclustries - Industries procluces the hormful galas such as Corbonal coxide and sulps hardroxicale in the
C C D C C C C C C C C C C C C C C C C C
at I
ctros ja hero
(2) Burning of Mars.
- the frees such as coal, coke and refund
(c) Burning of fiels. - The fiels such as coal, coke and refund gase, when burned introduce the houses ges, in the atmosphere.
gets in the atmospher.

In extract 14.1 the candidate provided the correct responses with respect to the demand of question. He/she was precise in explaining the three sources of heat energy in the interior of the earth, two advantages of windbreaks to plant environment and the major causes of water and air pollutions in the environment.

The candidates who performed poorly in this question failed to provide correct responses in most parts of the question. Some of them misinterpreted the question by providing responses which are not relevant. One of the candidates for example listed three sources of heat within the interior of the earth as *energy from the sun*, *energy from wind and energy from the surrounding*. In actual fact, these are

renewable energy which are found outside the earth. Extract 14.2 presents a sample of such incorrect responses.

Extract 14.2

14 (G) (i) Surve of heat energy
- every from the Sun
- energy from wind
- energy known Surraunding
(11) Advantages of wind breaks to plan
if Act as no pollant agent if Influence the enzymestokice place
if influence the enzymestatice
place
(b) (water pollution is The goldetion
of unwanted heterals to me water
WSOUTOQS.
(c) Agr pollution is the addition of
unwanted Materials to the air
Such at travault gases.

In extract 14.2 part (a) the candidate gave wrong answers but also in part (b) he/she attempted to define water and air pollution instead of stating its causes.

3.0 ANALYSIS OF THE CANDIDATES' PERFORMANCE PER QUESTION IN PHYSICS 2

3.1 Question 1: Fluid Dynamics

This question had three parts (a), (b) and (c). In part (a), the candidates were required to: (i) state Bernoulli's theorem for the horizontal flow (ii) state the principle on which Bernoulli's theorem is based and (iii) find the rate of flow of water through the pipe which is full of water, given that at a certain point A, it tape from 30 cm diameter to 10 cm diameter at B and the pressure difference between points A and B is 100 cm of water column. In part (b), they were required to (i)

define the term terminal velocity and (ii) derive an expression for the terminal velocity of spherical body falling from rest through a viscous fluid. In part (c) the candidates were required to find the pressure difference across the first capillary when two capillaries of the same length and radii rating of 1 : 2 are connected in series and the liquid flows through the system under stream line conditions, given that the pressure across the two extreme ends of the combination is 1 m of water.

The question was attempted by 81.9 percent of the candidates, out of these 38.0 percent scored 0 to 6.5 marks, 34.9 percent scored from 7 to 11.5 marks and 27.1 percent scored from 12 to 20 marks. These scores indicate that the general performance in this question was good as illustrated in Figure 15.

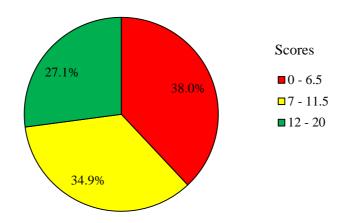


Figure 15: Candidates' Performance in Question 1

The candidates who performed well in this question correctly stated Bernoulli's theorem for the horizontal flow, and mentioned the principle on which Bernoulli's theorem is based. Most of them were able to recall and apply both equations of continuity and Bernoulli's equation to find the rate of flow of water through the pipe. In addition, they managed to define the given terms, to derive the expression and calculate the pressure difference correctly. These candidates had good understanding on the concept of fluid dynamics. Extract 15.1 shows one of the responses from the candidate who answered the question correctly.

Extract 15.1

1.9	(i) The bemoullis theorem for the horizontal flow states that " for steady motion and hon-viscous fluids the Sum of the pressure energy and kinetic energy per unit volume at every point in the flow is always constant".
	Such that $[P+\frac{1}{2}3V=constant]$
	(ii) The bemorellis theorem is based on the Principle of conservation of energy which states that energy can neither be- Created nor destroyed rather it can be transfered from one form to another.
1(5)	(i) Terminal velocity is the maximum velocity that a body acquires when moving through a fluid (liquid/gas) of infinite extent.
	(ii) Consider an object of density of released on the stirface of fluid of coefficient of viscousity of cupthwist viscous dreg) Solid triguid Sphere me

Balaneing forces vertically
ma = mg-(upthrust+ viscous force)
Recall; stote's law.
f(drag) = 6717rv.
ma = mg-(upthwest+611prv)
But upthoust = mg.
$= S_{L}V_{o}g.$
= 411×3-9_9
ma = 0Vog - (61171/4411838g)
But when terminal velocity is reached
fret =0 and a=0

$\sigma V_{0} = 6 \pi V_{1} + 4 \pi V_{3} + 4 \pi V_{3}$
417°09 = 6177×1+411°3°5,9,
6112rVT = 411r3g - 411r3g
STIDENT = 41113 (2-27)
$\frac{32V_T = 2r^2g(\sigma - SL)}{3}$
$V_{T} = 2r^{2}g(\sigma - \beta \iota)$ 92
- Terminal velouty V = 2rg (o-SL)
where $V_T = Termina velocity r = Padius of Spherical ball O = Density or Sphere$
In = Density of Liquid

19	(III) Consider:
3	
	By using the continuity equation.
	$A_1 u_1 = A_2 v_2$
	110201 = Ar207.
	$A = \left(2 \right)^{2} \Lambda^{2}$
	r; = 30cm, rz = 10cm.
	$V_1 = \left(\frac{10}{30}\right)^2 v_1$
	V2 = 94,-0
	for hoñzontal Pipe, use bemontis egn.
	P1+18V2 = P2+18V2
	$(P_1-P_2) = \frac{1}{2} s(V_2^2-V_1^2).$

$\left(P_1 - P_2\right) = \frac{1}{2} \cdot \left(V_2^2 - V_1^2\right)$
But V2 = 9V1
$(P_1 - P_2) = \frac{1}{2} (94)^2 - 42$
2(P1-P2) = 81V2-V2
5
80V2 = 2(P1-P2)
But (P1-P2) = 39h
80 Vi = 289h
V ² = 29h 80
V = 125h
V1 = /2x98X).
V1 = 0.4949m/s

	Reall: Q = AV
	Q = A14
	W= Thi2VI
	$Q = \Pi(0.3)^{2} \times 0.4949$
	9 - TT (0.15)2 x 0/4949
- 4	$Q = 0.034987 \text{m}^3/\text{s}.$
	Q ≈ 0.035 m/s.
	The rate of flow of water = 0.035m/s.
1 c)	Consider the Sketch:
	P or
	P ₁ P ₂
	By Using Poisselles formular-

$Q_{1} = \Pi R_{1}^{4}R$ $82L$
Q2 = ITR2 P2 87 L
for honamal pipes Q = D2
<u>ΠΡ, R, Ψ</u> = <u>ΠΡ2 R, Ψ</u> 87L 87L
$\frac{P_1R_1^{\prime }}{-} = P_2R_2^{\prime }$
$P_2 = \left(\frac{P_1}{P_2}\right)^{4} P_1,$
But $R_1 \cdot P_2 = 1 \cdot 2$ $\frac{\left(P_1\right)^2}{\left(P_2\right)} = \left(\frac{1}{2}\right)^4 = \frac{1}{16}$
$P_2 = \frac{P_1}{16}$

-	Given that PI+P2=1,
	$P_{1}+P_{1}=1,$ 16
	[6P,+P, =1,
	Pl = 16 m of water.
	17
	therefore, the pressure accross the first Capillary is 16/7 mg water

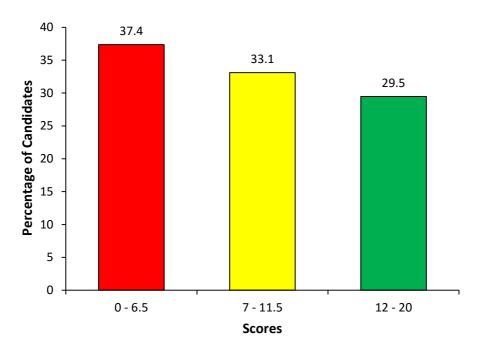
In extract 15.1 the candidate answered correctly all parts based on the requirements of the question.

The candidates who performed poorly in this question failed to state Bernoulli's theorem and to apply the equations of continuity and Bernoulli's to find the rate of flow of water through the pipe. Some also confused defining the term 'terminal velocity' with linear velocity. They failed to derive the expression of terminal velocity for a spherical body. One of the candidate for example wrote, *terminal velocity is the velocity possessed by a body in air due to the resistance of gravitational force* showing that he/she lacked knowledge on fluid dynamics. Extract 15.2 shows a sample response from one of the candidates who attempted this question but did not perform well.

Extract 15.2

1	a) (t)
	Bernoullis theorem for the horizontal flow States that
	For the fluid moving in horizontal flow the sum of kinetic energy and fotential energy
	sum of kinetic energy and fortential energy
	and pressure is Constant which express the
	Row of Awirel.
	& Muz + Mgh + MP = Constant,
	3
	(h)
	The Bernoull's theorem is based on the pressure
	and density of water.
	Also it is based kinetiz energy of the
	Alurd flowing through.
	Data given
	Diameter of pipe at point A = 30 cm Diameter of pipe at point B = 10 cm
A	Diameter of pipe at point 13 = 10cm
	Pressure différence between point A and B = 1000m,
	Column.
	Rate flow of water through the File
	01. 10 0. 1 4
	Rote at A _ Diameter at A
	Rate at B Diameter at F.
	Rate of flow = 100 × 10 = 33.3
	30
	-'. Rate flow of water through the pipe is 33.3
	have flow of wares illiopday we take 13333

1	(P) (I)
	Terminal velocity is the distance travelled by a
	Certain fluid per unit time
	(11)
	Kinetic Energy (KE) = Kmu2
	Potential Energy (PE) = mak
	Pressure (P) = 39h.
	Pressure (P) = 3gh. P= 3gh
	9= P 3h
	PE = MP M _ MP
	Z X Z
	PE = MP
	3
	$\frac{1}{2}mv^2 + mgh + mP = C$
	3
	1/2 MV2 + Mgh + MP/8 = C.
	$\frac{1}{2}V^2 + gh + 1P_g = C.$
	2 3
	15v2+3gh+P=C.
	2
	<) Data
	A of The coto of the codius = 1:2.
	(h/h)The ratio of the radius = 1:2. Pressure = 1m of water
	P. Pressure différence =?
	from Sgh + P = C


In extract 15.2 the candidate explained the terms found in Bernoulli's equation e.g. kinetic energy, potential energy and pressure instead of stating Bernoulli's theorem and the principle on which it is based.

3.2 Question 2: Vibrations and Waves

This question had three parts (a), (b) and (c). In part (a), it was given that a cyclist and a railway train were approaching each other with a speed of 10 m/s and 20 m/s

respectively. The candidates were required to calculate the following terms at the moment the engine driver sounds a warning siren at a frequency of 480 Hz: (i) the frequency of the note heard by the cyclist before the train had passed, and (ii) the frequency of the note heard by the cyclist after the train had passed. Part (b) required the candidate to: (i) deduce whether the wave is travelling in the positive x-direction or in the negative x-direction given that y = asin(wt - kx) represents a plane wave travelling in a medium along the x-direction, y being the displacement at the point, x at time, t, and (ii) determine the speed of the wave, given that, $a = 1.1 \times 10^{-7} m$, $w = 6.5 \times 10^3 s^{-1}$ and $k = 19 m^{-1}$. Part (c) required the candidates to: (i) explain briefly why diffraction is common in sound but not in light and (ii) find the length of the wire that should be reduced to bring it again in unison with the same tuning fork, whereby a 40 cm long wire is in unison with a tuning fork of frequency 256 Hz stretched by a load of density 9 gm⁻³ hanging vertically when the load is then immersed in water.

Ninety eight (97.8%) percent of the candidates attempted this question, out of these 0.8 percent scored 0 marks, 36.6 percent scored from 0.5 to 6.5 marks, 33.1 percent scored 7 to 11.5 marks and 29.5 percent scored 12 to 20 marks. These scores indicate that the general performance in this question was good as shown in Figure 16.

Figure 16: Candidates' Performance in Question 2.

Most of the candidates who performed well in this question were conversant with the concepts of vibrations and waves as they were able to recall and apply the correct formulas in performing calculations by using the given expressions and data to fulfil the demands of the questions. These candidates managed to explain briefly the reasons why diffraction is common in sound but not in light and to show how the length of the wire can be reduced to bring it in unison. The answer of one of the candidates who performed well in all parts of the question is shown in extract 16.1.

Extract 16.1

	consider the condition of the publish,
29 13	- Us (cyclist) Us
	(train)
	First case
	Before treun has passed
	applying doppler principle.
	$f' = \left(\begin{array}{c} V + 40 \\ V - 4z \end{array} \right) f$
	$f' = 1340 + 10 1 \times 480$
	$\xi_{1} = \frac{340 - 50}{340 + 10} \times 480$
	frequency heard by eyelist = 525 Hz
	treatmency reared my eyellit = 525 Hz
	second case.
131	Afterthe treum has passed
	$\mathcal{Z}' = \frac{1}{2\nu + \sqrt{1 - \nu}} = \frac{1}{2\nu}$
	(2147)
	$f_1 = \frac{340+50}{340+50} \times 430$
	(340+50)
	f' = 440Hz.
	Frequency hearts by eyellit = 440HZ.
	1 (2) 2000 - 14-116:

	since
26)	y= asin(we-kx)
	Then the mane is travelled in the positive
	x-direction
2613	+ toss
	y = 4 sin/wh -1cx 1
	but given us= 6.5×10°51
	2119 = 6.5×13
	ς = G·s χισ ²
	211
	f= 1034.5 Hz.
4.	. Les Comme
	14 = 211
	2
	1,4 = \$11
-	2 = 29/10
	$\lambda = 0.330 \pm w$ $\lambda = 50 $
	V = 0.0301 M
	then V = FX
	1 = 1034.2× 0.330}
	4 (024, 28 0, 230 4
	speed of the wave = 345.1 m/s.
	speed of 12 most - 345.1 m/3.
2012	Sound wave have large wavelength compared
	polish mysch have small manesength funt muse
	to want and a small a market with the
-	to diffracted sue to base maveling to compared to
-	o cither cited was to said margine in combiled to
	the sample opening but light having small unveloped

	th in most cases ite wavelength is small
	diffraction is observe funder normal
	diffraction is observe flunder normal
	circums tances.
<i>zeii</i> j	consider the condition of the problem.
	40cm
	t in the second
	tren
	$F = \frac{1}{2L} \sqrt{\frac{1}{U}}$
	St / JT
	$\xi = \frac{5\Gamma}{1} \left \frac{\Omega}{4 \Omega^2} \right $
	51 A A
	when the weight was immersed in water.
	F' = 1 T
	21 / 4.
	but due to approved apparent weight
	-5 load, T = (5-92) vg.

20	
	$f_1 = \frac{31}{1} \left \frac{31}{2} - \frac{1}{2} \right ^{2}$
	24, 4.
	but its required that
	7 - 7
	12.949 =1/19-921vg
	1x 2vg = 11(2-2 r)vg
	1 × 1 6 = 1 (2-21)
	<u></u>
	1/2 = 1
	$\frac{1}{L} \frac{\sqrt{3-5}L}{\sqrt{3-5}L} = 1$
	r1 = r1(6-25) pret r= 40 cm
	$L_{1} = L_{1}(g-f_{1}) \text{but } L = 40 \text{ erg}$ $L_{1} = L_{1}(g-f_{1}) \text{but } L = 40 \text{ erg}$ $q_{1}(g^{2}-1000) q_{2}=q_{2}(g^{2})$ $q_{2}(g^{2}-1000) q_{3}(g^{2}) q_{4}(g^{2}-1000)$
	$\frac{1}{2} = \frac{1}{12} $
	$L_{l} = 40 \times \sqrt{\frac{9x_{10}^{3}-1000}{9x_{10}^{3}}}$
	↑ 7×16 ³
	* but the density given is small compared
	question cannot be solvent further.
, ,	- alternatively if we ass bace density to be again
	then density of load = 9000 kgm3.
	then
	L1 = 1000 / 9000-1000
	9000

In extract 16.1 the candidate gave the correct responses according to the requirements of the question. He/she was able to recall and apply the formula of finding frequency before the train passed and the frequency after the train passed.

Some of the candidates performed poorly in this question as they failed to recall and apply the correct formulas in performing calculations. Most of them were not able to give reason on why diffraction is common in sound but not in light. One candidate for example wrote; *Diffraction is common in sound and not in light since longitudinal wave have tendency of spreading unlike electromagnetic waves*. This verified to inadequate knowledge on the concepts of vibrations and waves and its propertied. The candidates should understand that, diffraction effect is quite pronounced if the size of the obstacle or opening is of the order of the wavelength of the wave. i.e, since the wavelength of light is very small compared to the objects around us, diffraction of light is not easily seen unlike that of sound waves. Extract 16.2 shows a sample response from one of the candidates who performed poorly in this question.

Extract 16.2

29)	Dita given
	Velocity of cyclist=10ms-1 - 40 Velocity of raphy train= 20m/s-Us
	Frequency = 480Hz F=? of note to hook by exclist =?
	·
	Observer We=10mm Us=20ms-1
	f' = (- 4) f
	f' = (340 - 20) p 340 + 10
	$f' = \begin{pmatrix} 320 \\ 350 \end{pmatrix}$
	= (320)2180 Hz.
	f' = 438.86Hz
	Before tain has pass = 438.86Hz.

	(1) = Us=201/s -1
,	$f' = \left(\frac{3V + U_1}{V - V_0} \right) f$
	$f^{3} = (340+80) f$ $340-10$
	$f_{1} = \begin{pmatrix} 360 \\ 330 \end{pmatrix} f$ $b_{1} t f_{1} = \begin{pmatrix} 360 \\ 330 \end{pmatrix} f$
	but Frequency = 480 Hz,
	f'= (1.091) 490
	f1 = 523.64 Hz.
2.(b)	From y=asin(wt=kx)
	The
	y = asib(ant - anx)
	The equation 16 travelling 16 regative

$\Re(i) \alpha = 1.1 \times 10^{-7} \text{m}$
W = 6.545035-1
H = 19 m1
determine speed of wave
Spoed of wave from Love data to
given a Vi= a W2
V= Amptilude X (W)
$V = 1.1 \times 10^{-7} \text{ m} \times (6.5 \times 10^{-3})^{2}$
Space of wave = 11 x10 7 x 4.225x 107
Speed of wave = 4.6475 *10+14
Speed of wave = 4.6475m/s-1

In extract 16.2 the candidate wrote the formula for finding frequency but he/she interchanged the formula of frequency before and after the train had passed.

3.3 Question 3: Vibrations and Waves

This question had three parts; (a), (b) and (c). In part (a) the candidates were required to determine the separation of double slit, given that in Young's double slit experiment a total of 23 bright fringes occupying a total distance of 3.9 mm were visible in a travelling microscope, which was focused on a plane being at a distance of 31 cm from the double slit, and the wavelength of light used was 5.5×10^{-7} m. In part (b) they were required to find wavelength of the light when a grating with 300 lines per millimetres is illuminated normally with parallel beam of monochromatic light and if a second order principal maximum is observed at 18.9^{0} straight to the direction. Part (c) required the candidates to find the value of

the width "a" that will be the first minimum of light falling at the angle of 30^{0} when the wave length of light is 6500 nm.

The question was attempted by 33.3 percent of the candidates whose scores are as follows: 33.3 percent scored from 0 to 6.5, including 5.3 percent who scored 0, 33.6 percent scored from 7.0 to 11.5 marks and 33.1 percent scored from 12 to 20 marks. These scores indicate that the performance in this question was good as shown in Figure 17.

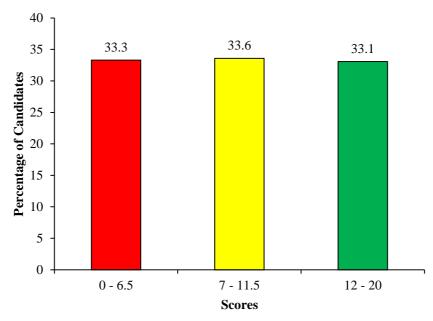


Figure 17: Candidates' Performance in Question 3.

The candidates who performed well in this question were able to use the correct formulas and give proper procedures in finding the separation of the double slit, the wave length of light and the width of the slits 'a'. Extract 17.1 presents a sample of responses from the candidates who performed well in this question.

Extract 17.1

30 Acta giren;
number of tringes; n= 23.
fringe separation; X = 3.9 mm = 3.9 x w m.
Distance between Mits and screen; D= 31cm = 0.31m.
$K(avelength')$ $\Lambda = 5.5 \times 10^{7} m$.
Required; Double dit separation; y=?
, , , , , ,
From Somular. Dn 1 = xy - Sor single somges
DnA = xy - for single bringes
D(n-1)1 = 14 - for number of finger.
Formular to use.
$\chi_{\mathbf{Y}} = \mathbf{D}(\mathbf{n} - 1)\lambda$
Where by X = fringe separtion.
y = Slits feporation
D = Distance from stits to Screen
n = number of trage
n = number of trage
$x^2 = \nabla(u^{-1}) \gamma$.
$y = \Delta(n-1)\lambda$
X ·
y = 0.31m (23-1)x5.5x10 m
3.9x10.5
y= 9.62 ×10 4m.
-4
Separation of the double slit is 9.62x10 m.

26	A 1
3D	Data given;
	graling , 9 = 300 lines per millimeters.
\vdash	other of principle = 2.
	S = 18.9°
	Required; Wavelength of light; \ = ?
	Solution.
	But Distance between 81its and screen B= 1 = 1 mm.
	g 300
	$\Delta = 3.33 \times 10^3 \text{ mm}.$ $\Delta = 3.33 \times 10^6 \text{ m}.$
	$\Delta = 3.33 \times 10^6 \text{m}$.
	. Distance between strts and screen; D = 3.83 x 10 m.
	A
	from; formular;
	From; Formular; D&m O = n A.
	To make I the subject.
	1 = D fm O
	n.
	= 3.33 x 10 m x 8 in 18.90
	2
	$\lambda = 5.4 \times 10^{7} \text{m}$
	.' . Wavelength of the light is 5.4 x107m.
2.0	

30	Data given; Vlavelength; $A = 6500$ nm = $6500 \times 10^{-9} = 6.5 \times 10^{-9}$	
V	Warelength; 1 = 6500 nm = 6500 x10 m = 6.5x	
	0 /	
	Wavelength; 1 = 6.5×10 m	
	Angle ; 0 = 30°.	
	Required; The value of "a" for the first minimum light full.	
	light full.	
	Filmfren.	
	form	
	Formular	
d Smo=nl.		
	where d= width (9)	
	n = order of light falls	
	λ= wavalungth,	
	0= An angle.	
	There force	
	d fm Q = n d	
	a = nd	
	Sina	
	d - 1 x B = 5 x 10 m = .1.3 x 10 5 m.	
	Sim 30°	
	^ TI	
	The value soft width "a" is 1.3 × 10 m	

In extract 17.1 the candidate was systematic in organizing the data, hence ended with correct answers in all parts of the question.

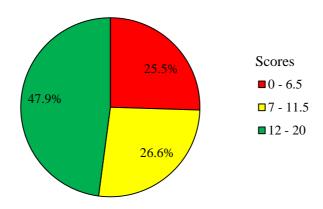
It has been observed from candidates' scripts that most of them wrote correct formulas but they used wrong procedure in determining the correct answers. This shows that they lacked knowledge on the concept of vibrations and waves particularly on how Young's double slit experiment can be carried out to determine the distance of separation of double slit, wavelength and a slit width. Extract 17.2 is a sample taken from the script of one of the candidates who performed poorly in this question.

Extract 17.2

3 а	5 o l n
	n = 23
	Yn = 3.9 mm = 3.4 × 10-3 m
	D = 31cm = 0.31m
	> 5.5 x 10-7 m
	q = 3
	fram
	$n \rightarrow = Yn$
	d D
	23 x 5.5 x 10-7 = 3 - 9 x 10-3
	d o.3 1
	*
	d = 23 x 5.5 x 10 ⁻⁷ x D.31
	3 - 9 x 10-3
	= 1.01 × 10 ⁻³ m = 1.01 mm
	*
	separation of the double slit
	is 1.01 x 10 ⁻³ m

Ь	b soln	
	N = 300 mm	
	n = 2	
	E = 18.9°	
	λ = ³ .	
	from	
	= n > sin e = 1	
	Н	
	λ <u>-</u> Ι	
	nNsinB	
	1	
	2 X 3 C C X 2 I U 1 8 · d.	
	= 5.15 x 10 ⁻³ mm	
	5 2 2 2 3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	
	.: Wavelength of Light = 5.15 x 10 mm	

c·	5 o L n			
n = 1				
G = 3 0 .				
	X = 6500 nm			
	N = a = ?			
	from			
	n 7 sin 8 =			
	7			
	masine = 1			
	a			
	a = 1			
	masine			
	= 1			
	1 x 6 5 0 0 n m x 5 in 3 0			
	. : OL = 3.08 x 10-4 nm-1			


In extract 17.2 the candidate failed to recognize and apply the correct formula and procedure in finding the separation of double slits, wavelength of light and the width of the slit.

3.4 Question 4: Properties of Matter

This question had three parts; (a), (b), and (c). Part (a) required the candidates to find the tension in the rod when it has cooled to 20° C given that a steel rod of length 0.60 m and cross sectional area $2.5 \times 10^{-5} \text{m}^2$ at a temperature of 100° C is clamped so that when it cools it was unable to contract. In part (b), the candidates were required to find the length when a load of 500 g is applied on a spring, given that a spring of 60 cm long was stretched by 2 cm by a load of 200 g. In part (c), the candidates were required to calculate the percentage increase in length of a

wire of diameter 2.2 mm stretched by a load of 100 kg, if the Young's modulus of wire is 12.5x10¹⁰Nm⁻².

A total of 11,346 (61.2%) candidates attempted this question, out of these candidates 25.5 percent scored from 0 to 6.5 marks, 26.6 percent scored from 7.0 to 11.5 marks and 47.9 percent scored from 12 to 20 marks. These scores indicate that the general performance in this question was good. The following pie chart illustrates the information given above.

Figure 18: Candidates' Performance in Question 4.

The candidates who attempted this question correctly had good understanding on properties of matter especially the concept of elasticity. Most of them were able to find the tension of the rod, its length and hence calculate the percentage increase in length. Extract 18.1 below shows the response of one of the candidates who performed well in this question.

Extract 18.1

1				
A (9)	Criven.			
	1-0.60m			
	4 = 3-2x10-2 m3			
	8, = 100°C			
	02 = 20°C			
	10 to			
	10 to - x (0,-02) lo			
	1.6×10=1 =			
	L-0,6 = 1,6x10-7 (100-20)0,6			
	L-0.6 = 7.68×10-6			
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			
	e - 7.68x10-6m.			
, it				
	Y=FL			
	Ae			
	F= YAe			
	F = 2x10"x2.5x10-\$ 7,68x10-6			
	0.6			
	F = 64N.			
	The tention in the rod when cooled to			
	20°(11 64N.			

A. (b) Given.	
6=60x10-2m	
1=60cm	Son Valve Comme
e - 2cm	
M; = 2009	
ma = 5009.	
Y=Fl	2
7-mg	
A CAMPAN A C	
$\gamma = 200 \times 4 \times$	980X60
A X	2
	WQ 0 - W 0
Y = 500	X 780 X 60
	916
200 x 200 x Co =	Chayge ve
200 x 980 x 60 - 2 A	A.0
× H	A·e
	5
0 = 9	5cm
aster applying	moo
917-CT 347-19-1.	60 + 6
after applying	60+5
	65cm.
. The length after o	applying load of 500g
1's 65cm.	

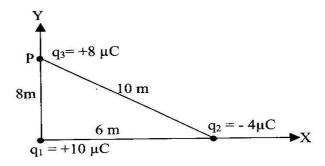
4. (c) Criven.
1 d= 2.2 mm x 10-3 m
m=100Kg Y=12.5×1010Nlm2
Y= FL
Ae
1 - A e
Y FL
F = 4/
YA 'C
percentage increave in length it given au
1 x 100% = F/A
,
= Mg = Mg $YA Y TId2$
YA YTIda
7
100% x % - 4m9 7 TId2
= 4x 100x 9.8 125x1010x 71 x (2.2x10-3)2
12.5X (0° X 11 X (2.2X(0°3)
100/100/100/
100 6× 4 = 2.06×10-3×100°2
= 0.206%
- 0,000 (e)
i. The percentage increase in length of the
100 M

In extract 18.1 the candidate managed to recognize and apply the required formula to get the correct answers in all parts of the question.

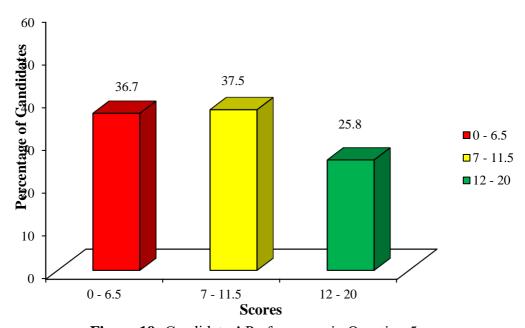
The candidates who performed poorly were not able to recall the formula of Young's modulus and apply it in finding the tension, length and the percentage increase in length of a wire. Some lacked mathematical skills as they tried to answer some parts of the question and left other parts, this led them to score low

marks. These candidates lacked knowledge and skills for solving questions based on the concept of elasticity. Extract 18.2 presents a sample of a poor responses from the script of one of the candidates.

Extract 18.2


4	a. John
1	Desta Giben
	Length of a steel= 0.60M It cross-sectional area= 2.5×10-5m² Temperature = 100°C Cooled temperature = 20°C
	It cross-sectional area= 2.5 × 10-5m2
	Temperature = 100°C
	Cooled femparture = 20°C
	Pregumed:
	To Find the terms in the rod
	theor
	0.00m × 5.2× 10,2 W,5
	Temb = 800c - 500c femb = 7000c - 500c 7.2 × 10_3 W
	temb= 800c
	1.2 ×10_, W
	= 0.0187
	The tension in the rod = 0.0187
	1/ (01)
	b. solu Data Given
	Data cliven
	Length of upring = 60cm Stretched Length = 60cm + 2 cm = 62cm Mass of load = 200g Mass of load = 500g
	May of load - 2000
	More of load - 5000
	then.
	? = \$ 200g
	G2cm XGOVY = Lovey x X
	62cm xitolog = losting x X 200g 200g
	$\times = 152cm$
	The Length = 155 cm
	,

	c. John
	Data Given
	Diameter of wore = 2.2 mm = 0.22m
	Mass of Load = forkg
	Young's modules of wive = 12. 5× 1000 Nm2
	then
	0.35m × 75-2×70,0 NW_5
	100kg
to the many that	5.72mx70,010
	Jooks
	0.0275 × 1010 Hm x too
	27. 5 x (010 Nm %
	. The preventage francise = 27. [X1010 Nm %


In extract 18.2 the candidate didn't write any formula when performing calculations. He/she substituted the data in a place where there is no formula and thus ended up with an incorrect answer.

3.5 Question 5: Electrostatics

This question had three parts; (a), (b), and (c). In part (a), the candidates were required to: (i) define the terms capacitance and electric potential and (ii) determine the value of capacitance, C of the capacitor when it is fully charged by 200 V battery, then discharged through a small coil of resistance wire embedded in a thermally insulated block of a specific heat capacity $2.5 \times 10^2 \, \text{Jkg}^{-1} \text{K}^{-1}$ and of mass 0.1 kg, if the temperature of the block rises by 0.4 K. In part (b), the candidates were required to: (i) calculate the capacitance of the capacitor and (ii) the energy stored in the capacitor when a parallel plate capacitor has plates each of area 0.24 m² is separated by a small distance 0.50 mm when the capacitor is fully charged by a battery of electromotive force of 24 V. In part (c), the candidates were required to: (i) comment on the assertion that the safest way of protecting yourself from lightning is to be inside a car, and (ii) find the total potential energy of the system of point charges shown in the Figure below.

The question was attempted by 46 percent of the candidates, out of which 36.7 percent scored from 0 to 6.5 marks including 4.5 percent who scored 0 marks, 37.5 percent scored from 7 to 11.5 marks and 25.8 percent scored from 12 to 20 marks. These scores suggest that the general performance in this question was good.

Figure 19: Candidates' Performance in Question 5.

The candidates who performed well in this question were conversant with the concepts of capacitors and electric potential due to point charges as they managed to define the terms and apply the correct formula to find the capacitance, C of a capacitor, the energy stored and the total potential energy of the system of point charges. Most of them were able to give correct comments on the assertion that the safety way that one could protect himself from lightning is to be inside a car. Extract 19.1 presents the answer of a candidate who attempted well.

Extract 19.1

5	
(a)i	Capacitance of a capacitor: Is the ability of a par
	Capacitar to store electric charges.
	and c= EA/d
	Electric potential at a point: Is the work done
	in Moving a unit charge from infinity
	to that Point
11/	Given '
	Capocitance - C
	V=200V
	C= 2.5x102 Jkg-1k-1
	M=0/1Kg
	10=0.4K
	Required Value of c

	Energy Lost by Capacitor = energy gamen
	by the block
	1 MXX
	2
	$\frac{1}{2}CV^2 = MC\Delta\theta$
	CV2 = 2MCAR
	$CV^2 = 2MC\Delta\theta$
	c = 2McΔ0 0
	√2.
	C= 2×0.1kg×2.5×108Jkg-1k-1×0.4k
	(200)2,
	CE 5×10-4 F
	: Capacitance C is 5×10 ⁻⁴ F
94	
56	Given that
	A = 0.24M2.
	d=0.5x10-3M
	V=24V
	1/ respectance of capacitor c
١ .	
	CE EA
	C= 8.854×1012 Nm-2kg-2 × (0.24M2)
	(D.5 × 10-3)
	C= 4-25×10-9 F
	: Capacitance of capacitoris 4.25×10-9F
	· · Capacitation of Capacitation 13

5bii	Considering that
	Energy stored by a capacitor is given by
	$E = \frac{1}{2} cv^2$
	E=1 x ·4·25x 10-9 Fx (241)2
	2
	E = 1.224×106 Joules
	L = 1224x10 Joures
	: Energy stored by capacitor = 1,224×10-6]
5ci	On the Light of the given statement Twhen
الحرا	one is inside the car the car is considered to
	have a gausian Surface at the top, hence inside
	the car charges are not present [Q=0] hence
	Lightning strike connot entre penetrate into
	the car anaffed the person, hence the person is Safe
C11.	Required
	Potentral energy W of the system.
	P.E=K9192
	1
	PET = K9192 + K9193 + K9392
	T 2 3
	PET=K 9192 +9193 +9392
	1

	7×109 [-10×10-6×4×10-6	8M	10
	A	103	
E	= - 9X109 (1.333	X10-13) J	
	$E = 1.2 \times 10^{-3}$	Joules.	
1			
	Total energy is 1.	2×10-3 Touler	

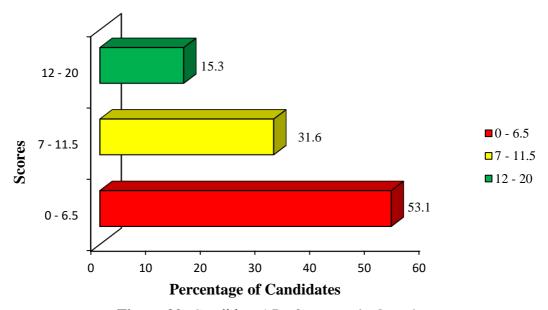
In extract 19.1 the candidate comprehended correctly to all terms and applied the correct formula and procedures in performing calculations to get the correct answers.

As for the 36.7 percent of the candidates who performed poorly, they failed to respond correctly to many parts of the question. Some of them failed to justify the given statement in part (c) (i). For example, one of the candidates wrote *safety way* is to be away from all things which can conduct electric charge during rain like phones, radios and television. This response does not match with the demand of the question. Moreover, many candidates didn't understand the principle on which the capacitor works i.e charging and discharging process of a capacitor. This shows that they lacked knowledge on the concept of electrostatic as well as poor mathematical skills in performing calculations. Extract 19.2 shows a response from a candidate who performed poorly in this question.

Extract 19.2

5	e) (11) Data
	speaks head repeatly 25x102 5 kg kg
	Speake head capacity 25x102 5 kg KT
	Nemperature of the block out
	temperature of the block out
	from Capacitance - PV.
	Capadance
	C = 2-5x18 x 200 x 0 14.
	C = RODKIO
	$C = \aleph a O X (o)$
	5)
	Data
	243
	Area (A) = 0.24 m2
	Area (Az) = 0 74 m2
	Greas is o.15 mm
	areas is 0.5 mm
	= 5x10 Pm
	= 5000 500
	to because motive doore tout
	V = Dif V.
	(1) the Capacitaise of the Capacitor

5 (6)(1)
5 (b)(1) Capacitance (c)
= (0.24)x2x Bx154x 24
C= 5.76 x103.
(11) Energy Stored in the capacitor
Energy = 200 y 57100
= 0.012 J.
C) of the safest way of protecting yourself from lightining is not to be inside a car
lightining is not to be inside a cor
but the safest way is to be away
with the all things which can conduct
electric charge during raining for example
be away of those things which are
using network to work like phones
and advos or televisions or be away
from the wide area where a man
himself is a tallest one than all things around then a man will be safe.
man will be supe.


In extract 19.2 the candidate wrote incorrect answers which were irrelevant to the asked concepts.

3.6 Question 6: Properties of Matter

Part (a) of this question required the candidates to: (i) define the terms tensile stress and tensile strain (ii) calculate the work done in stretching copper wire of 100 cm long and 0.03 cm² cross sectional area, when a load of 120 N is applied. In part (b) the candidates were required to: (i) mention any two factors on which modulus of elasticity of a material depends and (ii) Find fractional increase in length of the wires due to the weight of the traffic light, given that a 45 kg mass of traffic light is suspended with two steel wires of equal lengths and radii of 0.5cm and the wires make an angle of 15⁰ with the horizontal. In part (c) the candidates

were required to: (i) define free surface energy in relation to the liquid surface (ii) explain what will happens if two bubbles of unequal radii are joined by a tube without bursting and (iii) calculate the work done in breaking the drop of mercury of radius 5 mm falling on the ground and breaking into 1000 droplets.

A total of 11,618 (62.7%) candidates attempted this question, out of these 53.1 percent scored from 0 to 6.5 marks, 31.6 percent scored from 7.0 to 11.5 marks; and 15.3 percent scored from 12 to 20 marks. These data indicates that this question was averagely performed. The above data are summarized in Figure 20.

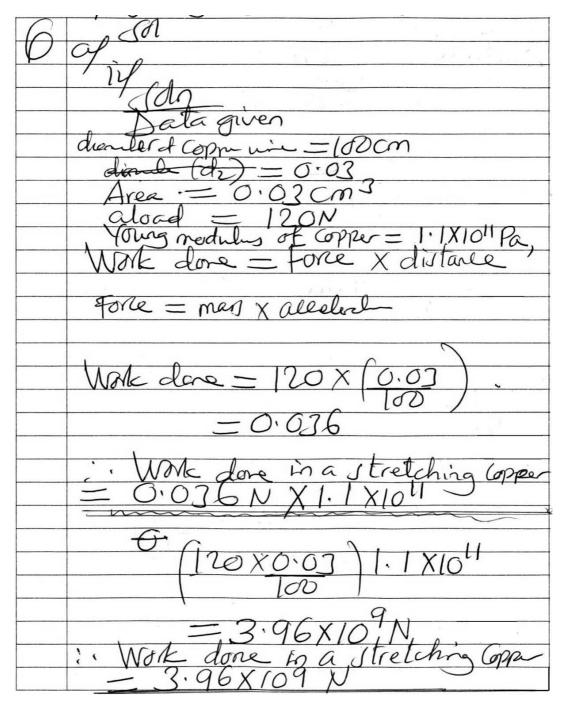
Figure 20: Candidates' Performance in Question 6.

The candidates who performed well in this question were conversant in the concept of properties of matter as they managed to describe surface tension and elasticity in terms of molecular theory. In addition, they were able to analyze surface tension in terms of surface energy. By doing so they managed to find the work done in stretching a copper wire, in breaking a spherical drop of mercury into 1000 droplets and resolving the fractional increase in length due to weight of a traffic light. Extract 20.1 shows the answer of one candidate who performed well in this question.

Extract 20.1

6,	(a) (i) Tensile spass 1s the fone deting
	per unit crossection area. (F).
	Tensile Stral Isthe extension product
	per unit orginal length.
	e/
6.	(if). Soln!.
	W = YFe.
	9
	From Young Moduls.
	E-FL Ae
	Ae
	@==
	P= Pl
	AE .
	W= VF(FC)
	à (XE).
	- NEGT.
	2 AE
	~ = 11 x (120) x 100x10
	$\omega = \sqrt{x(150)} \times \sqrt{100}$
	I see a
	w = 0.0225.
	My / with war
	The work dan 1; 0.022 J.

6	(b), (i) Fallow of while elasticity depend
	-a. Gosssection area.
	-> Amount of Stress applied.
	(11) Soln.
	SESTINE = Mg.
	E= FL ARE O(F
	AE C
	My /L AF
	09 = 45 x 0.8 ex x 100 = mg 8 24 Estine
	of. = 1 3x (6, 2x10 ,) \ 91 91 12,
	Fraction Increasing length is 5.42 ×10
	(c)(i) Surface energy 15 the work done on
	(c)(i) Surface energy 12 the work done on increasing the area and isothernal condition
	(11) If two bubble joining of equal rudhi
	by a tube without burshing the pressure
	In the tube will be equal, then the
	buble will coellier to form single large drop


6	(iii) (c) <u>Soln!</u>
	WBA; = 4 17 R2 4.
	WDAZ = Netrila
	$\Delta w = \Delta w_1 - \Delta w_2$.
	TO - HULLS - HULLS
	Pm = &th
	but 4/11/23 = 4/11/20.
E	
6	$C_{3} = 0$
	$\Delta \omega = 4\pi \chi \left[u_{\sigma} - b_{r} \right]$
	448 Us. 1 - Vs
	1
	DW = UTITE & -1].
	DW = 4488 [1/3 - 2].
	$D M = dx_{11} \times 0.45 \times (2 \times 10^{-3})^{5} \left[\sqrt{1000} - 1 \right]$
	DW = 1335 × 1035.
3	-3
1	The work done is 1'335 X10 J.

Extract 20.1 shows that the candidate attempted well this question by following correct procedures, applying correct formulas and conceptual ideas that met the demands of the question.

However, some of the candidates who performed poorly in this question were not able to recognize and apply the correct formulas and procedures in calculating the work done. They also failed to illustrate the given instructions with a free body diagram identifying an angle of 15⁰ that two steel wires made with the horizontal. Moreover, majority failed to comprehend correctly part (c) (ii). This indicates that the candidates had inadequate knowledge especially on the concepts of elasticity and surface tension. One candidate for example wrote; *a bubble with smaller radii*

will increase in size due to higher pressure from a bigger bubble. The candidates should understand that the smaller bubble will gradually collapse while the larger bubble expands. Extract 20.2 presents an incorrect response from one of the candidates.

Extract 20.2

6.67
57 To C to a land of alast victor
I Two factor on which modulus of clasticity
2 Trans D . At I have made
if Free Permattury of free space
Wernathing of empry space
· · · · · · · · · · · · · · · · · · ·
22/ 6/10
19 1011
man - Ort
Thus = The
radius = 0.5 cm
Angle = 15 Young modulus of steel = 2.0×10"Pa
young modulus of steel = 2.0x10 fa
Constant
fail west = Sinox man
65 x 2.0 x 1011
= Sin 15 x 45 05 x 2 x 10 ¹¹
= 1.16.5 X 10-10
= 1.165 X10
-110 F x 10-10
$= 1.165 \times 10^{-10}$
To the state of th
die totte weight of light = 1.165 x 10-10
die tothe weight of light = 1.165 x 1010

6.	
	¥
1	Sylace
	tree Suface energy; I the materials which are Contain free Suface area
	which are Contain free Surface area
	which consist of a Certain energy wed
	in fide of it.
	2/16: 50 P 1 11
	if This are the bubbles which when
	Combided to the tuber where there
	two bubble rail the same presult
	while create the pressure which are
	ference also where there two buller
	le they not where the tube can not
	busting.
6	6/
0,	137
-	1 Solo
1	a Data given
1	(adis (7) = 5 mm
	anplet =1000
	Inplet :=1000 fulante d' mere s=0.472 kgj-2.
	Work done = Force x distance
	whee
	W.d= Fxd
	Force = Mass xaccele
	TE MIA
	Distance - length/tine.
	Time.
	,

In extract 20.2 the candidate wrote incorrect answers to all parts of the question. In part (c) (iii) for example he/she wrote formulas based on the concept of Newton's laws of motion instead of properties of matter as required in this question.

3.6 Question 7: Atomic Physics

This question had four parts (a), (b), (c) and (d). In part (a), the candidates were required to give the meaning of the terms: (i) Atomic mass unit (a.m.u) (ii) Binding energy and (iii) Mass defect. In part (b) they were required to calculate the binding energy per nucleon for phosphorus $^{31}_{15}P$, given that $^{31}_{15}P$ =30.97376 a.m.u and $^{1}_{1}H$ =1.00782 a.m.u. In part (c), the candidates were required to: (i) write down the $^{226}_{90}Th$ originally at rest equation for the disintegration of thorium nucleus decays to form a radium nucleus $\frac{222}{88}$ Ra, α -particle and γ - rays (ii) determine the energy of x-rays, when an alpha particle is emitted with energy of 2.38MeV, given $^{226}_{90}Th = 226.0249a.m.u$, $^{222}_{88}Ra = 222.0154a.m.u$ that the rest mass of and α - particle = 4.0026 a.m.u. In part (d) the candidates were required to calculate the mass of helium nucleus produced when a nucleus of deuterium (hydrogen-2) fuses with nucleus of tritium (hydrogen-3) to helium nucleus and neutron, when 2.88 x 10⁻¹²J of energy is released while given the equation for the reaction as ${}_{1}^{2}H + {}_{1}^{3}H \rightarrow {}_{2}^{4}He + {}_{0}^{1}n$.

The question was attempted by 56.1 percent of the candidates, who obtained the following scores: 68.1 percent scored from 0 to 6.5 marks including 13.6 percent scoring 0 marks; 23.5 percent scored from 7.0 to 11.5 marks and 8.4 percent scored from 12 to 19 marks. These data indicate that the performance in this question was generally poor as illustrated in Figure 21.

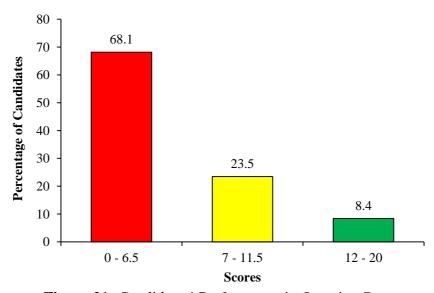


Figure 21: Candidates' Performance in Question 7.

The candidates who attempted this question correctly managed to identify criteria for stable and unstable nucleus and analyse the relation between nuclear mass and binding energy. Most of them defined correctly all the asked terms; atomic mass unit, binding energy and mass defect and applied the correct formula in calculating the energy of gamma ray and the mass of helium nucleus produced. This implies that they were familiar with the concepts of atomic physics specifically nuclear physics. Extract 21.1 shows a sample response from a candidate who performed well this question.

Extract 21.1

7 (a)	is Atomic mass unit (a.m.u) is the
	mass which is given as 1/12 bines the mass of Jearbon - 12.
	energy required to separate the nucleons such as portons and neutrons.
	between the actual mass of the aucleus and the total mass
cbs	Total mass of protons; Total mass of protons = 15 x 1.00782 am. = 15.1173 q.m.y
	= 15.1173 a.m.y = 15.1173 a.m.y = 16 × 1.00865 a.m.y = 16.1384 a.m.y

The botal mass of neateons
= 15.1173 a.m. U + 16.1384 c.mu
= 31.2557 atomic mass unit.
Total mass of suclears = 31. 2557 a.m.u
Atomic mass of nucleus = 30.97376 a my
Mass defect = Total mass of nuclegos - Alomi.
enass of aucteus
- 31. 2557 a.m. u - 30.97376cm
5 0.28194 a.n.u.
Binding energy For the phosphorus. 1 a.m. u = 1931 MeV
0 2811 Ta. W. G
=0 262 . 48614 MeV
But
But Binding energy per nucleon = Binding energy Mass number
= 262 48614 MeV
31
= 8.467 MeV
phosphorus is 8.467 MeV

(c)	Sola
	(i)
	226
	90 Th - Ra + d-particle + y-rays
	226 90 Ra + He + 8-rays
	ii) sola.
	= 222 DIS4 a.m. y + 4 0026 a.m. y + 2He
	222 DIST G.M. G T VI SCEEG. M. G T 7
	But Atomic mass of helium is/ques
	from 1 a m. u = 931 MeV'
	7 2.38 MeV
	= 2.38 a.m.u
	921
	= 2.5564 × 15 3 a.m.u.
	Now
	= 222 prisy a.m.y. + 4.0026 a.m.y + 2.5564 x 10 am
	= !
	Fotal mass of products.
	= 222 0154 q.n.u + 4 0026 a.m.u
	= 226.018 a.m.u.

Total mass of goth. = 226.0249 a.m.y
Mass defect = Total mass of the Total
nasc of the products
$= + \left(\frac{226 \cdot 0249 - 226 \cdot 018}{226 \cdot 0249 - 226 \cdot 018} \right)$ $= 6 \cdot 9 \times 10^{-3} \ a.m.u.$
$= 6.9 \times 10^{-3} a.m.u.$
But Energy released in this process Q is given as $a \cdot m \cdot u = 921 \text{ MeV}$ $6 \cdot 9 \times 15^{2} \text{ a. } 2 \cdot u = 2$
giver as 1
C. Q. v. 53 . C. c. v 2
6. 7 10 - 4 4 = 7
Q = 931 × 6.9 × 10 ³ MeV Q = 6.4239 MeV
2 = 6. 4239 MeV
The total energy released in this proxes O = Energy of d-particle & Energy of X-ray
The total energy released in this poxes
Q = DEnergy of d-particle + Energy
ot X-ray.
6.4239 MeV = 2.38 MeV + Energy of X-ray
Faces of Y-ran
27139
the state of the s
Fregy of 8 ray = (6.4239 - 2.38) MeV
= 4.0439 MeV
. П
in the energy of the 8-ray is
JI 4.0439 MeV

d) solo:
2H + 3H -0 4He + 1 + Q.
But mass of 12 = 1.00865 a.m. guen
Total mass of products. - 1.00865 a.m.u. + Mite.
= 1.00865 a.m.u + MHe.
T 1 1 1
Total mass of reactals = 1.00782 a.m.y + 1.00782 a.m.y
= 2.01564 a.m.u.
Mass defect = (2.01564-1.00865)u+M)e mass defect = 1.00699 - MHe.
mass detect = 1.00699 - MHe.
But 1 a.m.u = 931 × 15 × 1.6 × 16 J
? 2.88 X 10 ⁻¹² J
$= 2.88 \times 10^{-12}$ $931 \times 10^{6} \times 1.6 \times 10^{-19}$
931 x 106 x 1.6x10"
muss defect = 0.019334 a.m.u.
mass defect = 1.00699 - mHe.
MHe = 1.00699 - 0.01934 an
$MHe = 0.9814 \ a.m.u.$
Mass of the believe produced
MHP = 0.4814 a.mu

Extract 21.1 shows how the candidate applied the correct formula and procedure in attempting the question. The candidate managed to get the correct answers to many parts of the question and scored high marks. However he/she failed to get the correct answer for part (d).

The candidates who performed poorly failed to respond correctly to the terms of atomic mass unit, binding energy and mass defect. Some of them were not able to write the radioactive equation correctly as $^{31}_{15}P = 16(^{1}_{0}n) + 15(^{1}_{1}H)$ which could assist them in finding mass defect and finally the binding energy per nucleon. Moreover, they failed to apply Einstein's mass-energy equation to determine the energy of gamma ray. These candidates lacked knowledge about the structure of nucleus and properties of radioactive elements. Extract 21.2 is a sample of an incorrect answer from one of the candidates.

Extract 21.2

7.	(a) (i) b the 1/12 of one above of Carbon 12 20 tope,
	(I) Bindma energy - with energy required to separate the nucleum of anothern.
	• 1 .
	(iii) Mass defect - Is the difference [change in mass between the nucleus nucles and the nucleus
	Mayel.
	or Is the drange in moss between the neutrons.
	(b) 319 + on -> 31/H
	Mass of readout = 30.97876+100865
	Mass of products - 31(1.007 \$21)
	But SM2 Mpradate - Moss products

	Mars defect - 31.98241 - 31242451
	DM = 0.739959 a.m.u
	But E > DMX 93/NAV
	F = 0,789959X 931 MeV
	E = 688,90 MeV
	: Binching energy per Nucleon = 688.90 MeV
7.	(C) golh -> 282 Ra -+ The + off (M)
	publicle & Fray
	Maria products = 222.0154+ 4.0026+1.00865 = 1227.02665 a.m.u Maria defeat = 227.02665 a.m.u - 226.0249
	2012 2005 0.W.A
	Mass reject = 1221, 02665 am 11 - 276,0244
_	DM = 1.001750.M.y
	But E = DMX 931MbV
	E = 1.00 175 X 931 MAN
	E= 932.62925MeV
	But Ex= E+.
	Ex= == == == == == == == == == == == == =
	EX 23 1.02 25 10 4 7 - 21.88
	T 2 4 30, x 44 32 WAR
	", The energy of garmmaray (+) = 930, 249 Hor
7.	ENERGY = 2.88X1612 From = 2.88X1612 From = 2.88X1612
	ELEDAN = 2.88×1012
W.	from E2DM X931 X136 EV
	E= DM X 931MeV X1.6 NO
	E= DM X 931MeV X1.6 NO"
	E= DMX931MT
	But has of reacteuts = 1.007 &2 aimin
	+ 1.00783
	= 10 01564 a.M.4

In extract 21.2 the candidates applied wrong formula and procedure in performing calculations hence ended with incorrect answers.

3.7 Question 8: Electromagnetism

This question consisted of four parts; (a), (b), (c) and (d). Part (a) of this question required the candidates to state the law of force acting on a conductor of length l, carrying an electric current in a magnetic field. In part (b) they were required to: (i) draw the diagram of the solenoid with certain number of turns placed in the magnetic field and indicate any suitable directions of the flow of current in it, and (ii) write down the formulae for the magnetic field induced at the centre of the solenoid. In part (c) the candidates were given that it is desired to design a solenoid that produces a magnetic field of 0.1 T at the centre of the solenoid of radius 5 cm, length of 50 cm carrying a current of 10 A. Then they were required to calculate: (i) the number of turns per unit length of the solenoid and (ii) the total length of the wire. In part (d) the candidates were required to: (i) state Biot–Sarvat law (ii) determine the magnetic flux density produced at the site of the proton in the nucleus when an electron is kept moving around its nucleus with a constant speed of 2.18 x 10⁶ ms⁻¹ in a hydrogen atom, assuming that the orbit is a circle of radius 5.3x10⁻¹¹ m.

This question was attempted by 31.0 percent of the candidates, out of these candidates 78.5 percent scored from 0 to 6.5 marks, 16.5 percent scored from 7.0 to 11.5 marks and 5.0 percent scored from 12 to 20 marks. Only one candidate scored full marks in this question. Figure 22 illustrates candidates' poor performance in this question.

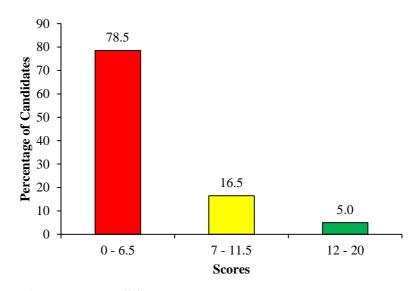


Figure 22: Candidates' Performance in Question 8.

Majority (78.5%) of the candidates who performed poorly in this question failed to investigate the magnetic field density due to a conductor carrying current and to analyse the motion of a charged particle moving in a magnetic field. Instead of drawing a diagram of solenoid with a certain number of turns indicating the direction of flow of current and magnetic field lines, some drew a bar magnet. This shows that the candidates lacked clear understanding on the concept of electromagnetism. Extract 22.1 shows a response of one of the candidates who performed this question poorly.

Extract 22.1

8	ay the law of porce acting on a conductor op a
	loods his state for a strought conductor
	on camping current of from a part distance
	op camping current of from a part distance I with a very short distance de with a
-	Ismall anole N gluen by
	de of Idland, dt r2
	dt r2
	de = kIdlemo
	at 12.
	where t= lo
	do - flotderal
	do = lloIdlino
	'
	Coil
-	h
·	27 NORFERENCE
-	
	<u> </u>

86	ij B= NI
	25
	where
10	B = magnetic field
	N = number op turns
	Iz current
. 1	r= ragues.
80	Data
	Magnetie field B=0.1T length=500m x102m
	radius op solenoid r= 50cm = 60x102m
	Current I = 10A
	y number of burn per und log l= 1/2
	B= 'NI + H ar
	N = 2BT
	T
	N 2 2 X0, 1 X 60 × 10 7
	11220112601101
	. 10
	No a-and a and
	N20-0N 0.01 turn
	1 = 0.01
	11 - BOXLOT
	N = 0.02
	1 - 0 - 0 - 0

In extract 22.1 the candidate provided a wrong response in each part as he/she failed to show the correct directions of current and magnetic field lines and used wrong formulas in performing calculations which led to incorrect answers.

A few candidates (21.5%) that performed well in this question were able to analyse the motion of a charged particle moving in a magnetic field, to state the laws, to

draw the diagram of a solenoid indicating the directions of current and magnetic field lines. They also able to calculate the number of turns per unit length of the solenoid as well as the magnetic flux density produced at the centre of the proton in the nucleus. This indicates that these candidates were conversant with the concept of electromagnetism. Extract 22.2 present a response from one of the candidate who answered this question correctly.

Extract 22.2

8.6)	" When a stronglet Current Carrying
,	conductor of length L is placed
	in a uniform magnetic field,
	The force produced on it is
	direct proportional to the
	magnetic strength of field, B,
	the beingth, I of the conductor,
	the steady current I and
	the sine of an angle the
	Conductor make with uniform
	magnetic field"
	F & BIL Sino.
(b)(c)	uniform magnetic field, B
	AT AT AT AT
	1 - Cureut
	solenoid Coil
	30(000000000000000000000000000000000000
0.55	
(ù)	B = Uon I
	where B- magnetic field strength
	Mo-permeability of free spale.
-	n-number of turns per
-	unit bength
	I - Steady Current flowing.

(cXi)	· Criven B=011T
(30)	(z 5 cm
	1 = 50 cm
	J = LOA'
	from B= Mon I
	n = B = 011 T
	10 I 4 a × 10-7 + m-1 × 10 A
	n= 7962 turns per metre.
(ú)	circumference of the solenoid = 7TT
	= 20×0'05m
	20,316 m;
	But N = n:
	L
	NZNL
-5	= 7962 × 0'5 turns
	= 3981 turns needled
	But I turn has 0'314m length
	3931 turns will have
	length = 3981 x 0'314M
	= 1250.034 m.
(d)(i)	The small drange in magnetic
	field Strength, dB dt a point
	around a current carrying conductor
	is direct proportional to the
	Steady Current, I flowing, the
	Small change in length of Conclutor
	9000

	the sine of angle to which a point					
	makes with the small change in being ty					
	of a conductor and inversely proportional to the square of the separation distance of a conductor					
(ii)	triven:					
(0.)	V=2'18×106m5-1					
	r = 5.3×6-11m					
	1 - 2 3					
	0-					
	as the					
1						
	from B= No I					
	But I ≥ Q = e/					
	t ti					
	But time taken to comprete					
	one revolution, +2 C = 300					
	V V					
	I = e(W).					
	(/201)					
	Bz Uoe(V)					
	28 (2007) = HUX 10-7 x 1.6x10-19 x 2.13x106					
	2 HUX 10 X (8X00 1 X X 16X10 1 X X 16X10 1 X X 16X10 1 X X X 16X10 1 X X X X 16X10 1 X X X X X X X X X X X X X X X X X					
	B = 12'417 T					

In extract 22.2 the candidate correctly wrote the formula and determined well the number of turns per unit length of the solenoid.

3.8 Question 9: Atomic Physics

This question was divided into three parts; (a), (b) and (c). In part (a), candidates were required to calculate the shortest wavelength of the Balmer series using the Rydberg constant, $R_H=1.0974x10^7m^{-1}$. Part (b) required them to use the Bohr 's theory for hydrogen atom to determine the: (i) radius of the first orbit of the

hydrogen atom in A units, and (ii) velocity of the electron in the first orbit. In part (c), the candidates were required to: (i) give the meaning of ionization potential of an atom (ii) show that the ionization potential of hydrogen is 13.6eV and (iii) account for the chemical behaviour of atoms on the basis of the atomic electrons and shells.

A total of 12,336 (66.6%) candidates attempted this question, out of which 61.3 percent scored 0 to 6.5 marks, 26.6 percent scored 7 to 11.5 marks and 12.1 percent scored 12 to 20 marks. These data show that the question was averagely done as illustrated in Figure 23.

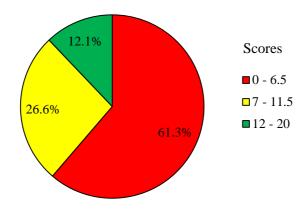


Figure 23: Candidates' Performance in Question 9

The candidates who performed well in this question understood the concept of atomic physics especially the structure of the atom. They were able to describe Bohr's theory of hydrogen atom and use Rydberg constant $R_H=1.0974 \times 10^7 m^{-1}$ to calculate the shortest wavelength of the Balmer series, the radius of hydrogen atom and velocity of an electron in the first orbit. In addition, they were able to show that the ionization potential of hydrogen is 13.6_eV and explain the chemical behaviour of atoms basing on atomic electrons and shells. Extract 23.1 shows a response from a candidate who provided a correct solution to this question.

Extract 23.1

9,	(9) Solution							
	Given RH = 1.0974×107m-1 required the shortest wavelength (1) of							
	required the shortest wavelenath (1) of							
	the Ralmer Genta.							
	from $1 = R_H \left(1 - 1 \right)$							
	$\frac{1}{\lambda}$ $\frac{1}{(\eta_1^2 - \eta_2^2)}$							
	$\eta_{i} = 2$							
	0 = 4							
	Then 2 1 = Ry / 1 - 1							
	λ $\left(\frac{1}{1}, \frac{2}{2}, \frac{2}{2} \right)$							
	$1 = R_{H}/1 - 1$							
	$\frac{1}{\lambda} = K_{H} \left(\frac{1}{2^2} + \frac{1}{4^2} \right)$							
	$I = k_{H}$							
	$\lambda = \frac{\pi}{4}$							
	$R_{H}\lambda = 4$ $\lambda = 4/2 = 4$							
	RH 1.0974X107							
	-9							
	$\lambda = 3.645 \times 10^{7} \text{m}$							
	$\lambda = 364.5 \text{nm}$							
	. The Phontest walength is 364.5 nm.							
	(b) (i) Solution							
	from myr = nh							
	शा							
	Then my = nh							
	श्राद							

$\frac{q\cdot (b)(i)}{(mv)^2} = \frac{(nh)?}{(2\pi r)}$
$m_0 \Lambda_5 = v_4 V_5$
$m\sqrt{2} = \frac{65}{4\pi^{5}}$ $m\sqrt{3} = \frac{100}{4\pi^{5}}$ $m\sqrt{3} = \frac{100}{4\pi^{5$
$W(W\Lambda_{x}) = U_{x}U_{x}$
$m \wedge 5 = u_5 \mu_5$
412 m r ²
$\frac{1}{1} m v^2 = n^2 h^2 - \cdots $ (1)
$\frac{10}{\text{Mo}} \frac{\text{Mo}^2}{\text{Mo}^2} = \frac{e^2}{2}$
7 4118,02
$m\sqrt{2} = e^{2} (ii)$
720
Equating the two equations
4178mr 2 41780r
$\frac{n^2h^2\ell_0}{\pi me^2} = r$
$\int_{1}^{2} = 1^{2} x \left(6.63 \times 10^{34} \right) \times 8.854 \times 10^{2}$
1
r, = 0.53A°
i' The radius of the first orbit of the
hydrogen atom is 0.53A.
(ii) Yelo after of the elochron in the plat
from m V r = nh/21

9,	(b) (ii) myr = nh							
1	217							
	Y = nh							
	อบัพา							
V = h								
	211ML							
	but 1, = 0.53A							
	10							
	V = 6.63×10-34							
	$\frac{211 \times 9 \cdot x 0^{-3} x \circ .53 \times 10^{10}}{\sqrt{2.188 \times 10^{6} \text{ m/s}}}$							
	$\frac{1}{\sqrt{1-x^2}} = \frac{1}{\sqrt{1-x^2}} = \frac{1}$							
	. The Volocity of the electron in the first ortall is 2.188 x 106 m/s.							
	Д 2.18X 30 ПД							
	(C)(1) on ization potential of an atom B a potential required by the atom to - remove completely electron from the outerment shall.							
	a potential required by the adom to -							
	remove completely electron from the							
	enterment shall.							
	(ii) Solution.							
	From total enemy of any orbit (n)							
	€ = K·€ + b·€							
	En = e2 + -e2							
	En = E2 + - E2 1							
	$E_{\eta} = -e^{2}$							
	AT70 C							

9. (c)(ii) but 1 = n2h280
Time?
£ = -62 TM62
$f_{0} = -62 \text{ im } 62$ $4 \text{ ii} 8 \cdot 0^{2} h^{2} 8$
$E_0 = -e^4 m (1)$
48545 (1)
$F_0 = -(1.6 \times 10^{-19})^4 (9.1 \times 10^{-31})$ / \bot
$\frac{4(8.854\times10^{12})^{2}(6.63\times10^{-34})^{2}}{10^{2}}$
En = -2.176x10-18 J
$\frac{E_{0} = -2.176 \times 10^{-18}}{0^{2}}$ $E_{0} = -13.66 \text{ V}$
$E_{2} = -2.176 \times 10^{-18} / 1.6 \times 10^{-19}$
02
Fn = -13.6eV
1 12
then for isnization of hydragen
$\Delta E = E_2 - E_1$
AE = 0 - (-13.6eV)
XE = 0+13.6eY = 13.6eY
in the isnization potential of hydrogen
is 13.6eV Hence shoesy,
(iii) The chamizal behaviour of atoms
is determined by the number or
elections that are occupied by an
atom in the auterment Stellinis Dalue
to the fact that they are involved in
channel reachbons of an othern.

Extract 23.1 shows that the candidate was able to recall the Rydberg formula and to apply it to determine the shortest wavelength of Balmer series.

The candidates who performed poorly in the question were not able to describe Rutherford and Bohr models of the atom in the process of analysing atomic energy levels. Most of them failed to perceive that, the shortest wavelength of Balmer series is obtained when the quantum numbers $n_1 = 2$ and $n_2 = \infty$, since some wrote $n_1 = 2$ and $n_2 = 3$. Apart from that most of them failed to give the correct meaning of ionization potential and apply Bohr's second postulate to determine the velocity of electron in the first orbit. These candidates lacked knowledge on atomic physics essentially on the structure of an atom. Extract 23.2 shows a sample of an incorrect response from one of the candidates.

Extract 23.2

9. (a RH=1.0974 x10tm-1.					
	for the shostest travelength in Delmor series.					
	N=2					
	n = 3					
	$\frac{1}{\lambda} = R_{H} \left(\frac{1}{\lambda} - \frac{1}{q} \right)$					
-	//					
	= 1.0974×18 (= -4).					
	1					
	1= 6.5634 × 157m.					
96)	Radius of the first orbital.					
	from Mrs = nh.					
	From Mv8 = nh.					
1	THAT HOMES MURINGER (FEORY)					
	mvr = nh.					
	211'					
-	where !					
	N= Mass of the election.					
	n-number of critical.					
	,					
	$\frac{mv}{2\pi} = nh$					
	MVZIT MVZIT					

$\gamma = nh$.
21 mev.
26 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
8 = 1x6.626 x10-34.
511 × 9-10 ×13 ×3×108,
8= 3.8629 ×103 Å.
The Radius of the first orbit is 3.8629 x 1032
(b) (i) from '. = +13.6 eV.
(b) (c) from ! (b) = +13.6 eV.
1/2/2 +12/6 21/1
$\frac{1}{2}mV^2 = +136eV$
1
$mv^2 = 2(-13.6)$.
m me.
A. 2
V = 2(-13.6)
we.
12 /
V= 4.784 ×10 2 m/s.
The - sign is neplected.
90 onization potential of an alon: Is the
amount of energy required to excilean
electron the from the surface of the material.

(4)	(h) 12.6eV
	To show that ionization potential is 13.6eV.
	(5 13.6eV.
	frm:
	$mv_{\delta} = nh$.
	211'
	Bret = 13.6ev.
	· · · · · · · · · · · · · · · · · · ·
	Fn=1 E=13.6eV.
900	An increase of electrons in the atom is associated with an increase in number of shells. Then the atomic electrons increase in the shells Statem the atom become regactive and because there is a decrease of nuclear force of
	with an increase in number of shells.
	When the atomic electrons increase in its shells
	8 atom to atom become regactive and
	because there is a decrease of nuclear force of
	attraction.
	Reactivity increase in an atom?
	The plumber Tivell's liverese an along 27 41143
	Poresample Sodium and Hydrogen.
	\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \
	Sodium aton.

In extract 23.2 the candidate failed to identify that for the shortest wavelength in Balmer series, the quantum numbers $n_1 = 2$ while $n_2 = \infty$ and not 3. He/she also failed to use Bohr's second postulate to calculate the velocity of electron in the first orbit and to explain the chemical behaviour of atoms on the basis of atomic electrons and shells.

4.0 ANALYSIS OF CANDIDATES' PERFORMANCE PER TOPIC

The analysis of the candidates' performance in each topic reveals that, in Physics paper 1, out of six (06) topics which were tested, three (03) topics of *Measurements, Environmental Physics* and *Electronics* had good performance and two (02) topics of *Heat* and *Current Electricity* had average performance. The average performance was due to lack of sufficient knowledge by most of the candidates on the concepts as they skipped some parts of the questions requiring detailed explanations. Some of them also showed poor background in mathematics as they failed to analyse the given data and perform the correct calculations. The topic of *Mechanics* in the same paper had weak performance. The reasons behind weak performance in this topic include; failure of the candidates to distinguish and derive different physical quantities, failure to describe the methods of dimensional analysis and failure to interpret and apply the laws in attempting the given problems.

The analysis also shows that in Physics paper 2, out of six (06) topics which were tested, four (04) topics of *Vibrations and Waves*, *Electrostatics*, *Fluid Dynamics* and *Properties of Matter* had good performance while one (01) topic of *Atomic Physics* was averagely performed. The average performance in Atomic Physics was due to failure of the candidates to describe Rutherford and Bohr models of the atom in the process of analysing atomic energy levels.

The analysis further shows that, one (01) out of six (06) topics that were examined in Physics paper 2 had weak performance. This topic was *Electromagnetism*. The reasons for weak performance in this topic include; lack of knowledge on the concept of magnetic field density due to a conductor carrying current and therefore inability to analyse the motion of a charged particle in magnetic field. The summary of candidates' performance in each topic tested in ACSEE 2017 for both paper 1 and 2 and as compared to year, 2016 is shown in the appendices A & B.

5.0 CONCLUSION AND RECOMMENDATIONS

5.1 Conclusion

The analysis of the candidates' performance per question in physics revealed that, majority of the candidates attempted questions well although some of them faced challenges in responding to the questions. The major challenges which were identified through this analysis are as follows:

- (a) Inadequate knowledge which caused some of the candidates to provide incorrect responses in many parts of the questions. This may have been due to ineffective revision of the candidates, poor coverage of some topics by teachers or lack of practice which could enhance candidates' understanding and easy recalling of the acquired knowledge.
- (b) Failure to identify the demand of the questions which led some candidates to provide responses which were incorrect. This challenge may have resulted from inadequate exercises which could help to build and improve candidates' experience in responding correctly to the questions.
- (c) Few candidates skipped some parts of the questions. This challenge may have been due to either failure of the candidates to manage the given time in attempting questions or lack of knowledge required to answer the asked concepts.
- (d) Poor background in mathematical skills which made some candidates to fail to correctly apply formulas in solving analytical problems.

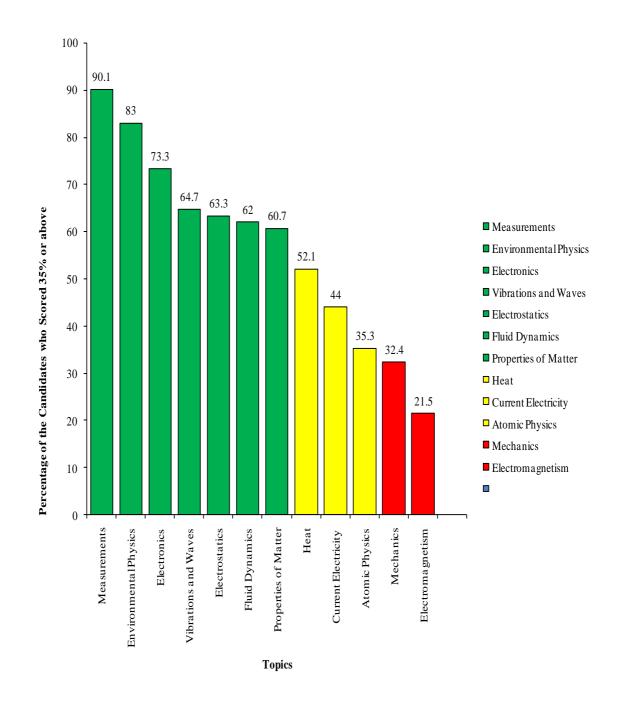
Despite of the explained challenges in attempting questions in ACSEE, 2017 for both Physics paper 1 and 2, it has been observed that, the candidates' performance in 2017 has improved as compared to 2016. This is due to the fact that, a total of seven (07) topics out of twelve (12) had good performance, three (03) topics had average performance while only two (02) topics were poorly done. This indicates that many candidates were conversant with the subject matter which lead them to give appropriate and sufficient responses to the questions asked.

It is expected that the feedback given in this report will enable students, guardians, education stakeholders, teachers and public at large to take the necessary measures to improve the candidates' performance in ACSEE Physics examinations in the future.

5.2 Recommendations

In order to improve performance in future, it is recommended that:

- (a) Students have to prepare well, read carefully and understand the demands of the questions when doing examinations;
- (b) Students have to concentrate on conceptual understanding of theories and the subject matter of each topic covered under the syllabus and should not rush to solve questions without adequate theoretical knowledge;
- (c) Students should work hard in attaining mathematical skills to improve their learning so that they can be able to solve problems with calculations:
- (d) Students have to apply theories, laws and principles of Physics to manipulate skills acquired so as to attempt the questions correctly;
- (e) Teachers should encourage students to do more practical work during normal learning hours. This will improve the level of understanding of the content and improve students' level of competence on the subject matter; and
- (f) Teachers should inculcate a sense and ability for self study to the students in order to develop their interest in Physics subject.


Appendix A

COMPARISON OF CANDIDATES' PERFORMANCE IN EACH TOPIC BETWEEN 2016 AND 2017

	Topic	2016 EXAMINATION PAPER			2017 EXAMINATION PAPER		
S/n		Number of Questions	% of Candidates Who Scored 35 Percent or Above	Remarks	Number of Questions	% of Candidates Who Scored 35 Percent or Above	Remarks
1	Measurements	1	53.6	Average	2	90.1	Good
2	Environmental Physics	1	33.4	Weak	1	83.0	Good
3	Electronics	3	43.1	Average	3	73.3	Good
4	Vibrations and Waves	2	23.9	Weak	2	64.7	Good
5	Electrostatics	2	36.2	Average	1	63.3	Good
6	Fluid Dynamics	1	35.2	Average	1	62.0	Good
7	Properties of Matter	1	11.5	Weak	2	60.7	Good
8	Heat	2	43.4	Average	2	52.1	Average
9	Current Electricity	2	53.3	Average	2	44.0	Average
10	Atomic Physics	2	35.6	Average	2	35.3	Average
11	Mechanics	5	39.3	Average	4	32.4	Weak
12	Electromagnetism	1	54.2	Average	1	21.5	Weak
13	Rotation of Rigid Bodies	1	16.8	Weak			

Appendix B

CANDIDATES' PERFORMANCE IN EACH TOPIC IN THE YEAR 2017

