
THE NATIONAL EXAMINATIONS COUNCIL OF TANZANIA

CANDIDATES' ITEM RESPONSE ANALYSIS REPORT FOR THE ADVANCED CERTIFICATE OF SECONDARY EDUCATION EXAMINATION (ACSEE) 2018

THE NATIONAL EXAMINATIONS COUNCIL OF TANZANIA

CANDIDATES' ITEM RESPONSE ANALYSIS REPORT FOR THE ADVANCED CERTIFICATE OF SECONDARY EDUCATION EXAMINATION (ACSEE) 2018

131 PHYSICS

P.O. Box 2624,
Dar es Salaam, Tanzania.
© The National Examinations Council of Tanzania, 2018
All violate managed
All rights reserved.

Published by:

The National Examinations Council of Tanzania,

TABLE OF CONTENTS

FOF	REWO	RD	iv
1.0	INTR	ODUCTION	1
2.0	ANAI	LYSIS OF THE CANDIDATES' PERFORMANCE IN EACH	
	QUES	STION	2
2.1	131/1	PHYSICS 1	2
	2.1.1	Question 1: Measurement	2
	2.1.2	Question 2: Newton's Laws of Motion	7
	2.1.3	Question 3: Projectile Motion	12
	2.1.4	Question 4: Simple Harmonic Motion	17
	2.1.5	Question 5: Gravitation	22
	2.1.6	Question 6: Rotation of Rigid Bodies	25
	2.1.7	Question 7: Heat (Thermometers)	30
	2.1.8	Question 8: Heat (First Law of Thermodynamics and Thermal	
		Radiation)	34
	2.1.9	Question 9: Current Electricity (Electric Conduction in Metals)	38
	2.1.10	Question 10: Current Electricity (Alternating Current, A.C)	42
	2.1.11	Question11: Electronics (Semiconductors)	47
	2.1.12	Question 12: Electronics (Transistors)	52
	2.1.13	Question13: Electronics (Logic Gates)	57
	2.1.14	Question 14: Environmental Physics	60
2.2	131/2	PHYSICS 2	63
	2.2.1	Question 1: Fluid Dynamics	64
	2.2.2	Question 2: Vibrations and Waves (Wave Motion)	71
	2.2.3	Question 3: Vibrations and Waves (Physical Optics)	78
	2.2.4	Question 4: Properties of Matter (Surface Tension)	84
	2.2.5	Question 5: Properties of Matter (Elasticity and Kinetic Theory of	
		Gases)	90
	2.2.6	Question 6: Electrostatics	97
	2.2.7	Question 7: Electromagnetism	. 103
	2.2.8	Question 8: Atomic Physics (Quantum Physics and Nuclear Physics)	. 110
	2.2.9	Question 9: Atomic Physics (Structure of the Atom and Nuclear	
		Physics)	. 117
3.0	ANAI	LYSIS OF THE CANDIDATES' PERFORMANCE PER TOPIC	. 129
4.0	CON	CLUSION AND RECOMMENDATIONS	. 130
	4.1	Conclusion	. 130
	4.2	Recommendations	. 131
App	endix	A	. 132
App	endix	В	. 133
App	endix	C	. 134

FOREWORD

The National Examinations Council of Tanzania is pleased to issue the Candidates' Items Response Analysis Report in Advanced Certificate of Secondary Education Examination (ACSEE) on Physics Subject, 2018. The report was prepared in order to give feedback to students, teachers, parents, policy makers and the public in general about the candidates' performance.

The Advanced Certificate of Secondary Education Examination marks the end of the two years of secondary education. It is a summative evaluation which among other things shows the effectiveness of the education system in general and the education delivery system in particular. In actual fact, the candidates' responses to the examination questions are a strong indicator of what the education system was successful or failed to offer to the students in their two years of secondary education.

The analysis presented in this report is intended to contribute towards the understanding of some of the reasons behind the performance of the candidates in Physics subject. The report highlights some of the factors which made the candidates fail to score high marks in the questions. Such factors include failure to comprehend the concepts in the question items, lack of mathematical skills, misconception of some principles and laws in physics and their applications in solving the questions. The feedback provided will help the educational administrators, school managers, teachers and students to identify proper measures to be taken in order to improve the candidates' performance in future examinations administered by the Council.

The National Examinations Council of Tanzania will highly appreciate comments and suggestions from teachers, students and the public in general that can be used in improving the future reports.

Finally, the Council would like to thank the Examiners and different stakeholders who participated in the preparation of this report.

Dr. Charles E. Msonde **EXECUTIVE SECRETARY**

1.0 INTRODUCTION

This report analyses the performance of the candidates who sat for the Advanced Certificate of Secondary Education Examinations (ACSEE) in 131/1 Physics 1 and 131/2 Physics 2 papers conducted in May, 2018. All these papers examined the candidates' competences and skills as stipulated in the Physics syllabus of the year 2010 which adhered to the 2011 Examination format.

Physics paper 1 comprised of fourteen (14) questions which were categorized into three sections A, B and C. Section A was composed of six (6) questions and sections B and C had four (4) questions each. The candidates were required to answer ten (10) questions by choosing four (4) questions from section A, three (3) questions from section B and three (3) more questions from section C.

Physics paper 2 had three sections namely A, B and C. Each section consisted of three (3) questions making a total of nine (9) questions. Candidates were instructed to answer five (5) questions by choosing at least one (1) question from each section.

A total of 19,547 candidates sat for Physics papers in May, 2018. The results reveals that 86.48 percent of them passed this examination with the following scoring grades: A (70), B (821), C (2,658), D (5,159), E (5,872) and S (2,225). On the other hand, 2,628 candidates failed by scoring F grade. Generally, the candidates' performance in the year increased by 0.7 percent as compared to the year 2017 where 85.78 percent of the candidates passed the examination.

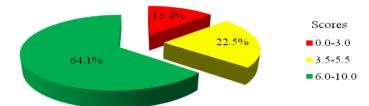
The next section of the report analyses the candidates' performance in each question. It describes what the candidates were required to do in each question, their performance levels and possible reasons for the observed performance. Sample answers to the questions have been extracted from the candidates' scripts and attached to illustrate the cases presented. The graphs or charts have been used to summarize the candidates' performance in particular questions. The performance in each question is rated as good, average or weak if the percentage of candidates' marks are in the range of 60-100, 35-59 and 0-34, respectively. These categories of performance are also indicated by using special colours, whereas the green, yellow and red

colours denote good, average and weak performance, respectively as seen in the graphs or charts and in the Appendix. It is expected that the report will be useful as it provides recommendations that may help to enhance the teaching and learning of Physics subject and therefore promote the candidates' performance in the future.

2.0 ANALYSIS OF THE CANDIDATES' PERFORMANCE IN EACH QUESTION

2.1 131/1 PHYSICS 1

This paper comprised of short answer questions constructed from six topics as indicated in the analysis part. Each question carried a weight of 10 marks and the performance of the candidates were regarded as weak, average and good in score ranges of 0 to 3, 3.5 to 5.5 and 6 to 10 marks, respectively. The pass score for each question was taken from 3.5 and above. The following section shows the analysis of performance in each question.

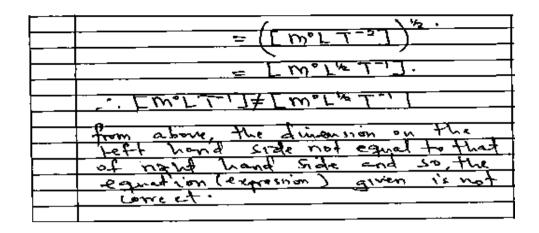

2.1.1 Question 1: Measurement

This question was divided into two parts: (a) and (b). Part (a) required the candidates to: (i) explain how random and systematic errors can be minimized during an experiment and (ii) determine the precision of the Young's modulus, γ of the wire given that $\gamma = \frac{4Fl}{\pi d^2 e}$, tension F = 500 N, length of loaded wire l=3 m, diameter of wire d=1 mm, its extension e=5 mm and errors associated with these quantities as 0.5 N, 2 mm, 0.01 mm and 0.1 mm, respectively. In part (b), they were required to: (i) state the law

of dimensional analysis, and (ii) apply dimensional analysis to check whether the given expression $v = \sqrt{\frac{T}{m}}$ where v, T and m are transverse wave along the wire, tension and mass, respectively, is correct or not.

A total of 18,914 candidates equivalent to 96.8 percent attempted this question. The analysis shows that 13.4 percent scored marks ranging from 0 to 3, 22.5 percent scored 3.5 to 5.5 marks and 64.1 percent scored 6.0 to 10 marks. These scores imply that the candidates' performance in this question was good since 86.6 percent passed the question with marks

ranging from 3.5 to 10. The pie chart (Figure 1) illustrates the performance of the candidates in this question.


Figure 1: Candidate's performance in question 1

Those candidates (86.6%) who scored pass marks had a good mastery of the content as they were able to perform error analysis in estimating the precision of Young's modulus of the wire. A good number of them had adequate skills on the applications of dimensional equations in analysing physical quantities to check the validity of the given expression. Extract 1.1.1 shows a sample of responses from one of the candidates who performed well in this question.

Extract 1.1.1

2/1/4 WVV 2/2/2		
1 (1) Random errors can be minimized		
through.		
In a series experiments and finding		
The soult collected so		
The average of lesons officers		
-doing many experiments and finding the average of results collected so as to get occurate answer. - Being carefully during the true of doing experiments		
- Being carefully during the time		
of doing experiments		
Systematic error can be minimulad		
b~1.		
by. - carefully design and calibration of the apparatus that are to be used in experiment - checking for zero error and elimin - nating it if possible before darling duing the experiment		
of the anaratus that are to be		
the manage of the same of		
Charling Commenced almin		
- Checking to 200 dies said extrem		
- hating it 14 possible before straling		
duing the experiment		
·		
1 a (ii) From: Y=4FL		
Tidze.		
Apply In both sides		
1 n Y = 1 n 4 + 1 n F + 1 n L - (1 n TI + 2 lm)		
(N) = (N ++ (N + + 11 + (N) 11+ < 11 + 11 + 11 + 11 + 11 + 11 + 11		
Ag error i's maximized.		
1~ 7= 1~ 4 + 1~ F+ 1~ L+1~ T1+2 m d+1 ne		
<u> </u>		
$\frac{1}{2} \Delta Y = 0.5 + 2 + 2 \left(0.0\right) + \left(0.1\right)$		
Y 500 3000 (1) (5)		
then		

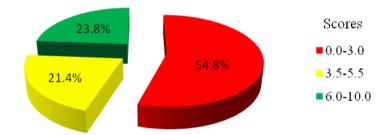
1a(ii)	± ΔY = (1 x 10-2) + (6.67 x 10-4) + 0.02 + 0.02
	± D. 041667
	~
	-: Pelatin error in young's modulus is - DY= 0.041667.
	# AY= 0.041667.
	then recent cas come: 1's
	then percentage error i's
	<u>~</u>
ļ	= 0: 041667 × 100/,
	= 4.1667%
	Precision = 100% - percentage em
	= 100% -4.1667 %
	= 95.83/3.
	The precision to which the youngs
-	-1. The precision to which the youngs modulus can be determined is = 93.83%.
16	the time of the second states
1 40	"The physical relation is dimensionally
	correct if the dimensions of fundame
	ntal quantities of Length, mass and twice are the same to each term on both sides of the dimensional
	on both sides of the dimensional
	equation."
	(ii) V= T - 0
	$[V] = [m^{\circ}LT^{-1}].$
-	L1]= [WL1-3].
 	5 which tute the above m(i)
	[Word-1-1] = [EWTI-5],
	1 [m]

Extract 1.1.1, a sample of a candidate who explained how random and systematic errors can be minimized. He/she used the given formula to estimate the Young's modulus γ of the wire, state the law of dimensional analysis and check the validity of the given expression correctly.

Most of the candidates (13.4%) who scored low marks lacked mathematical skills in applying dimensional equations to analyse the given expressions. A number of them had little understanding on the concept of measurements as they failed to estimate the precision of Young's modulus γ of the wire and to check the correctness of a given physical relation. In part (b) (ii), most of them provided the dimension of velocity as LT⁻² instead of LT⁻¹ and therefore failed to make the correct conclusion. Extract 1.1.2 is a sample of a candidate's poor answer.

Extract 1.1.2

1	(a)
	(i) - By Pro
	(i) - By Pro -
	(ii) Y= 4 FL
	TTd2e
	F = 400 N
	L = 2 m
	d = 1 mm
	e=5mm
	-
	Y= 4 (400)(3 × 109)
	11 (1×103)(1×5×10-3)
	$Y = 4(400)(3x10^{-6})$ N
	11 (1x103) (5x10-3) m2
	•
	Y= 3.05 x104
	₹= 3.05 x107


Precision are 3. 05 x104 t 0.5 N mm 3.05 x104 t 0.01 mm 3.05 x104 t 0.1 mm (b) (i)	\dashv
3.05x1014 ± 0.01mm 3.05x1014 ± 0.1mm	- 1
3.05x1014 ± 0.01mm 3.05x1014 ± 0.1mm	\neg
	_
	\dashv
(b) (b)	
1 (11)	
V = \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	\dashv
V - V 199	
V= Velocity Speed	_
V - Vetocity Steed	
T = Tension	-
m= mass	\dashv
Dimensions	\dashv
M = M	\dashv
from $S = M$	
$m = M$ from $S = M$ $m = V^{S}$ $m = [M]$	
m = [1][m]	
m=////	\rightarrow
Velocity	
from	
Velocity = Speed	
time	
V= [LT-1]	_6
$V = \underbrace{\begin{bmatrix} L \widehat{1}^{-1} \end{bmatrix}}_{T^{-1}}$ $V = \underbrace{\begin{bmatrix} L \widehat{1}^{-2} \end{bmatrix}}_{V}$	
V=[LT]	\Box
Tension = T/A = IB	
[LT ⁻²] = V	
[LT~] =	

Extract 1.1.2, a sample of a candidate who wrote the formulae, but failed to use the concept of measurements to estimate the precision of Young's modulus of a wire. In part (b), he/she analysed the dimensions of velocity as LT^{-2} instead of LT^{-1} and therefore failed to provide a logical conclusion.

2.1.2 Question 2: Newton's Laws of Motion

In part (a) of this question, the candidates were required to: (i) give a condition under which a passenger in a lift feels weightless and (ii) calculate the tension in the supporting cable of an elevator of mass 500 kg which was originally moving downward at 4 m/s and brought to rest with constant acceleration at a distance of 20 m. In part (b), they were required to: (i) find the mass of a helicopter whose rotating blades swept out an area of radius 2 m and imparting a downward velocity of 8 m/s and (ii) compute the mass of water striking the wall per second when a jet of water with velocity of 5 m/s and a cross-sectional area of $3x10^{-2}$ m² strikes the wall at right angle losing its velocity to zero.

The data analysis shows that, 53.8 percent of the candidates attempted this question. Of those, 54.8 percent scored marks ranging from 0 to 3.0 while 21.4 percent scored 3.5 to 5.5 marks. Only 23.8 percent scored marks ranging from 6.0 to 10. These data are presented in Figure 2.

Figure 2: The candidates' performance in question 2

The data presented in Figure 2 shows that 45.2 percent of the candidates scored pass marks ranging from 3.5 to 10 indicating an average performance.

The candidates who scored good marks (6 - 10) were capable of applying the concepts of Newton's laws of motion in the daily life situations. Most of them responded correctly on how the apparent weight of a passenger in a lift differs from his/her actual weight. Most of them used appropriate formulae to manipulate the data and determine the tension in the supporting cable of an elevator. Moreover, most of the candidates in this group managed to formulate an equation of a net force at equilibrium to find the mass of a helicopter and the mass of water striking the wall per second.

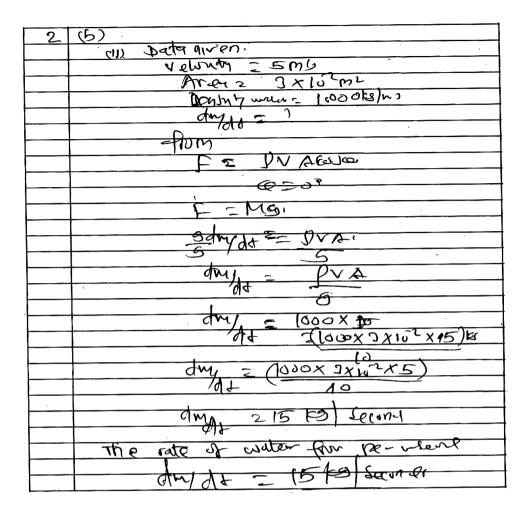
Extract 1.2.1 is a sample of good responses given by one of the candidates who scored high marks in this question.

Extract 1.2.1

02. (a) 1) A passenger in a lift feels weight less when the
lift is Freely falling (i.e a=q)
lift is Freely falling (i.e a=q) i.e R=m(q-q)=0.
G) 50/n
GAVER
M= 500 kg
u= 4m/s
V = 0
S = 20m
T = ?
From
ma = mg - T
V ² =u ² +2a5
0= 112 +205
$\alpha = -u^2$
२ऽ
$q = -\frac{4^2}{m^{s-2}}$
2×26
$= -0.4 \text{ms}^{-2}$
then
T= mg - ma
= m(g-a)
= 508 (10-0.4)
= 4800 N
The boson is 4800N

82.	6) (1) 28h
	Griven
	(= 2m
	V= 8ms-1 g= 10ms-2
	WE?
	then
	$mg = SAV^2$
	$m = 4\lambda V^2$
	9 =3 m²√²
	9
	$= 1.3 \times 3.14 \times 2^2 \times 8^2 \text{ kg}$
	<u> </u>
	= 104.4992 kg
	The mass of helicopter is 104. 4992 kg
ಶ੨.	(b) (in) Gerven
	$V = 5me^{-1}$ $S = 4000 \text{ kgm}^{-3}$ $A = 3xb^{-2}m^2$
	$A = 3x b^{-x} m^2$
	offine =?
	notion to up 2 reduced pro more
	from 2nd Nowbor's law of notion any = d(qv)
	at at
	=d(sar)
	= SA de but de = V
	\-\frac{1}{2}
	= SAV dm/ = 7000 X 3X10-2 X 5
	at .
	= 150 kgs-1
800	
	. The rate of mass textor withing wall is 150 kgs

Extract 1.2.1, a sample of an answer where a candidate provided a correct condition for a passenger in a lift feeling weightless and used the correct formulae to compute the required quantities.


In contrast, the candidates who performed poorly showed little understanding of the concepts of Newton's laws of motion. They failed to recognise that when the lift is moving downward the net force provides the

downward acceleration to the person in such a way that he/she feels lighter as he/she walks about on the floor of the lift. For example, instead of resolving the net force acting on a man in a lift, some of them used the concepts of centripetal force by using irrelevant formulae e.g $F = \frac{MV^2}{R}$ to find the tension. Furthermore, most of them failed to identify the force at equilibrium acting on a helicopter to find its mass. Extract 1.2.2 was taken to illustrate the case.

Extract 1.2.2

2 60 the Rellenser In Not feels weathers. when the continuous at the Common where the continuous for 45 per pendicular to the volunty the wee lift. The Mass of Capto: 500tg.	2
The west lift.	2 2 2
The west lift.	9
The west lift.	9
The west lift.	
- \(\)	
- \(\)	
@ gruph data	
Man of Cablem > DUS43	
Man of Carrell = 1 Man of Carrell = 20 m/1 Action of Carrell = 20 m/1 Action of Carrell = 20 m/1	
dutance = 2 &dm/s	
Lensian supplies = 7	
-fin	
-fin	
f= mr	
. (
7 = tanib	
v 2 vehrady	
ro dutan *	
£ 500 X(4)2	
7 2 500 X 16 2 400 N	
7 2 300 X 16 2 400N	
20	
MODE OFFICERIANT & SULLON TON	

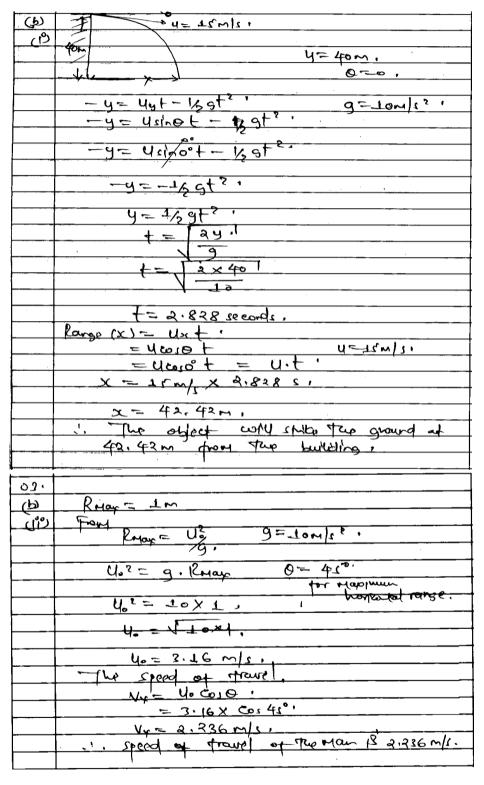
2 (b) Orver data
rediums of QM
relout 2 EMB
Man 2)
Areas
-fn
Area = 172
Me 2 17 x(2)2
Are 2 17 x(2)2 - 2 4 17 12 Ar 2 4 17 12
Ar = 4MA
1. The aven is 417 ML.
8
f = Mq m
F= MVZ
F=M9
9c= 4/2 = (8)(
2
9: 64 2 DIMB
The cecleler-des 5 32 M/st
F- PVA
PMO = QVA
Ma = PVA
100 = OVA
10 Mass = 112 X 8 X 12,50
1/4/1 2 102/16/19
M9J) 2 100,48 to,
"The value of maso of the bods ingit is lovi48th,

Extract 1.2.2, a sample of an answer of a candidate who used an incorrect formula of $F = \frac{MV^2}{R}$ instead of T = m(g - a) to calculate the tension in the supporting cable of an elevator. In part (b), the correct formula was $mg = \rho v^2 A$, but the candidate wrote $mg = \rho vA$ ending with incorrect answers.

2.1.3 Question 3: Projectile Motion

The question aimed at determining the candidates' knowledge on the concepts of projectile motion. Therefore, part (a) required them to: (i) state the difference between projectile motion and uniform circular motion and (ii) calculate the height above the target at which the rifle must be aimed so that the bullet with muzzle velocity of 1000 m/s would hit a small target at 200 m. In part (b) they were required to: (i) calculate the horizontal distance at which the object would strike the ground when thrown

horizontally with a velocity of 15 m/s from the top of a 40 m high building and (ii) find the speed of travel when a man jumps a maximum horizontal distance of 1 m spending a minimum time on the ground.


A total of 16,359 (83.7%) candidates attempted this question, out of which 40.3 percent scored below 3.5 marks, including 9.0 percent who scored 0 mark. The candidates who scored marks ranging from 3.5 to 5.5 were 38.3 percent while those who scored 6.0 to 10 marks were 21.4 percent. This indicates that the candidates' performance in this question was at the upper margin of average (59.7%).

Some of the candidates who scored high marks (6 - 10) were very systematic in organizing their responses. They showed their competences in analysing the concepts as demanded by the question. Moreover, most of them had a good understanding of the subject matter as they applied appropriate formulae and procedures in attempting the parts which involved calculations. Extract 1.3.1 is a sample of good responses from one of the candidates.

Extract 1.3.1

031
a) In projectile motion acepteration due to gravity
(P) (Eg) 13 perpenditular to the uplocity
(horizontal component) at the Marghum higher
Or point white in Circular Motion
Contributal green praction (= 9c) 19 perpendicular
to 143 velocity at any instant of thing and directed

00.0	•
0366	Howards The Corner of The circle.
	- In projectile Motion horizontal component of
	towards The Control of The circle. In projectile Motion horizontal component of velocity to constant Throughout the Motion
	WHILE In Grawlar Mation Trup Unlocally
	12 changing by changing direction at every
	instant of there.
	- In the projective Motion the acceleration
. <u> </u>	The state of the s
	du to gravity (=9) 12 constant Throughout Try entries Motion WHILE In try chrular Motion, acceptration of try body 13 not
	' (a entre Mation with the Try challer
·	Motion, acceptration of the body 1s not
	Constant 1
03,	
(d)	Colo
(ii)	N= 7000 W/2.
	V= 20000 G= 10m/c2 1
	x= 200 m g= 10m/s?.
	4-3/2 9/2
	Rat += ×/u,
	101
-	y= 1/3. (x/u)
	- av2
	2118
	y= 9x2/ = 10 x (200)
	3 (1000)2
	4=0.2M. = 20 cm.
	-0' The rittle runt be aimed at
	-p.1. The rithe runst be aimed at 0.2m (= 20cm) high above true target
	I'm order to hit the target.
	In aiding the mil into word ble

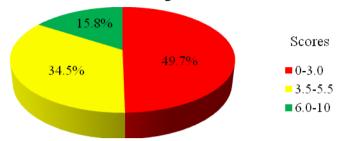
Extract 1.3.1, a sample of an answer of a candidate who was systematic in performing calculations including all important steps, formulae, illustrations and correct substitution of data.

However, most of the 40.3 percent of the candidates who scored low marks (0 - 3) failed to distinguish projectile motion from uniform circular motion. A good number of them were not able to compute correctly the height at which the rifle must be aimed at, the horizontal distance and the speed of travel while others gave responses which did not have a logical flow of ideas. In addition, some used the correct diagrams in attempting the question but failed to identify the proper formulae and procedures in computing the data. For example, one candidate wrote: *Projectile motion is the motion which depends on external forces while uniform circular motion is the one whose acceleration due to gravity remain constant all the time*. Such a response indicates that this candidates' knowledge on the topic of Projectile Motion was weak. The candidates should understand that projectile motion is controlled by acceleration due to gravity, 'g' while in uniform circular motion centripetal force or tension dominate. Extract 1.3.2 shows a sample of a poor answer.

Extract 1.3.2

0	8. as i) - In projective motion the acceleration change in
	both magnitude and direction but in circular mili-
	on acceleration charges in magnitude.
	- In projectile motion acceleration (g) make an
	are with velocity (It perpendicular to v) white
	on circular do not from angle with velocity.

03.6> 1>	From. $V = [U_x^2 + U_y^2]$
	Vx = 15m15
	Fram R U'y
	<u>S</u>
	R= Nx, F.
	pm + = 10H
	13
	f = SXHD
	10
	t= 2.85.
	R=15x218.
	R = 40.4m.
	40.4 = V#
	1 6
	Un = 424, 2640687
	Un 20.6m/s.
	34
	R = 43.4m.
	: ! It strike 42.4m.
717	solution,
	therein Range = 1m.
	From R=Ux++
	1 = Ux ·1s.
	$U_{x} = A_{s}$.
	as ux = 1mls.
, , , , , , , , , , , , , , , , , , , ,	1
	· : speed of a man = 1 mis.
	111041


Extract 1.3.2, indicates a sample of response of a candidate who used diagrams in attempting the question, but applied the incorrect formulae in performing calculations and therefore he/she obtained incorrect answers.

2.1.4 Question 4: Simple Harmonic Motion

This question had three parts namely (a), (b) and (c). In part (a), the candidates were required to give the meaning of (i) periodic motion and (ii) oscillatory motion. Part (b) required the candidates to: (i) list four important properties of a particle executing simple harmonic motion and (ii) sketch a labelled graph representing the total energy of a particle executing simple harmonic motion (S.H.M). In part (c), they were required to find the time interval of a body executing simple harmonic motion from time t=0 at which its displacement be half its amplitude given that the periodic time is 4 seconds.

Data analysis reveal that, 81.9 percent of the candidates attempted this question and had the following scores: 49.7 percent scored marks ranging from 0 to 3, 34.5 percent scored 3.5 to 5.5 marks and 15.8 percent scored 6

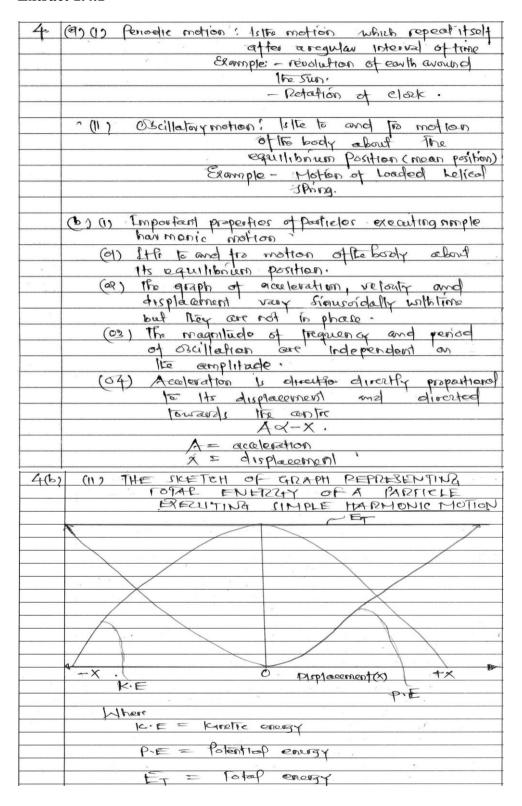

to 10 marks. These scores imply that the candidates' performance in this question was average because 50.3 percent of the candidates scored marks ranging from 3.5 to 10 as summarized in Figure 4.

Figure 4: *The candidates' performance in question 4*.

The performance of those who scored average marks (3.5 - 5.5) in this question could have been contributed by the candidates' ability to comprehend correctly the concepts on some parts of the question items. Most of them gave four important properties of a simple harmonic motion, but failed to sketch a well labelled graph that represents the total energy of a particle executing simple harmonic motion. Nevertheless, those who scored higher marks (6 - 10) had good mathematical skills in applying formulae and procedures to calculate the time interval of a body as demanded in part (c) of the question. Extract 1.4.1 is a sample answer taken from the script of one of the candidates who performed well in this question.

Extract 1.4.1

4(0)	Date '
10,7	
	Period (T) = 45 Time Interval (t) =?
	Initial time (ti) = 0.
	duplacement (x) = 3
	9
	Amplitude = 9.
	From
	$\chi = asimut$.
	$X = a \leq inwt$.
	0.2 = 710(511) F
	310-(0.E) = (211) +.
	3107(0.2) = (all) +.
-	310-1(0.E) = AT / F.
	4
	310 (0.5) = (1) 1-
	9/
	$\Omega O^{\circ} = (\Gamma) + \cdots$
	, 9/
	(30° X2) = F
-	180
	t = (6) 5 = (1) seconds
	$F = \begin{pmatrix} 6 \\ 18 \end{pmatrix} S = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ Seconds
	Time interval = 0.33 5 or 1/3 seconds.

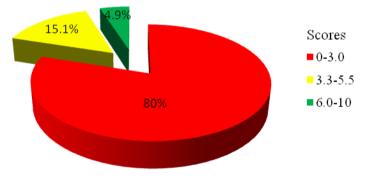
Extract 1.4.1, a sample of an answer of a candidate who was very systematic and accurate in presenting his/her work in all parts of the question. This indicates that he/she had understood well the concepts, properties and principles governing simple harmonic motion.

On the other hand, the candidates who performed poorly (49.7%) failed to comprehend correctly the demands of most of the question items. Most of them had poor mathematical skills required to attempt the part which needed calculations. Besides that, they confused between potential energy (P.E) and kinetic energy (K.E) in sketching a graph by labelling these energies interchangeably. This reveal that they lacked knowledge on the principles concerning simple harmonic motion. For example, one candidate wrote: The four important properties of a particle executing simple harmonic motion are; must be small, low density, low molecular weight and must be less denser than water. In this case, he/she provided the

physical properties of a body which basically affect the behaviour of a particle to execute simple harmonic motion. Extract 1.4.2 shows a sample of poor responses.

Extract 1.4.2

f. (a) spenodic motion (w) Oscillatory motion
(w) Oscillatory motico
(= 0) = = 0 II 0 0 0
Involve the distante and time at the
I move the distante suite at the
Same true
26) Acallet an amornia
18) Osallatory motion 18 the kind of motion which involve to whaten of moving badies
13 the state of mines beautiful thousand the
Mountain to imouting states
(D(1) must be small.
(DI) must be small.
(III) low prolecular watglit
(1) Nust be less deuses than water
(C) Solution
trme = 4sec
trme = 4sec
how at to = ?
-t= 1 4807
1/9
6
d=9.8
h = ?.
to.t
t ₁ = 45c
to = t_1
to zary t
9.5 to 20,45ec
district him is a second to the second to th


Extract 1.4.2, a sample of an answer of a candidate who wrote incorrect responses to all parts of the question. For instance in part (b) (i), instead of writing the basic properties possessed by a particle executing simple

harmonic motion, he/she provided the physical properties which in actual fact do not support the motion.

2.1.5 Question 5: Gravitation

In part (a) of this question, the candidates were required to: (i) determine the orbital speed and (ii) find the gravitational potential energy for a satellite of mass 600 kg kept in circular orbit at a height of 2×10^6 km above the earth's surface. In part (b), they were required to: (i) state what would happen if gravity suddenly disappears, (ii) calculate the height of the mountain above the sea level where the gravitational field strength at the base of mountain is 9.81 N/kg and that at the top of mountain is 9.7 N/kg.

The question was attempted by 10,943 candidates corresponding to 56 percent, out of whom 80 percent scored marks ranging from 0 to 3, 15.1 percent scored 3.5 to 5.5 marks while only 4.9 percent scored 6 to 10 marks. These scores suggest that the general performance in this question was weak. The following pie chart divulges the information given above.

Figure 5: The candidates' performance in question 5

A larger number of candidates who performed poorly failed to apply the concept of gravitation in almost all parts of the question. Most of them were not able to predict precisely what would happen if gravity suddenly disappears. These candidates were unaware that, gravitational force holds all bodies in the universe and if it disappears nothing would exist on the earth due to centrifugal force. Besides that, their responses had various errors and misconceptions on gravitational and mechanical potential energy, hence they failed to apply the correct formulae in the question items. Extract 1.5.1 is a sample of responses from one of the candidates who provided incorrect answers to all parts of the question.

Extract 1.5.1

.5	a) Solution
	Mass = books
	lociclet = 2x 106 km
	Solution. Mass = 600kg Weight = 2x 106 km ii) Gravitational potential energy = Mgh Where g= 10m/s² = 600kgx 10 m/s²x km 2x106km = 1.2 x 1010 joule
	Where a = Ipm/s2 = Gover 10 m/s2x low 2x106xm
	= 1.2×1010 inula
	Coveritational potential energy - 12x101
	Gravitational potential energy = 1-2×10'5.
	6)i) bodies will not be able to writer their Mothon (i)
	No how
	ic)
51	e) i) Solution
	06 Orbital Speed = Mass + breight
	e)i) Solution Ob Orbital Speed = Mass * breight = 6 600 kg + 2×106 km. = 1.2×109 kg/m.
	= 1.2 × 169 kg/km.
	= 1.2 × 16 9 kg/km. - Orbital Speed = 1-2 × 10 kg/km. = 1.2 × 10 9 kg/km.
	= 1.2x109kgkm.
	100
	b)ii) Solution.
	Grantational field Strength = 9.81N/kg
	(mourtational firefal at the top = 9.7N/kg.
	height of the Mountain above The Sea bevel
	= 9.8/
	6)ii) Solution. Gravitational field strength = 9.81N/kg. Gravitational field at the top = 9.7N/kg. height of the Mountain above the Sea bevel = 9.81 9.7
-	:Height of the Mountain above the sea bevel = 1.011m
	Height of the Mountain above the Sea bevel = 1.011 mg

Extract 1.5.1, a sample of an answer of a candidate who used the formula P.E = mgh instead of $P.E = \frac{gr_e^2m}{r_e+h}$ to calculate the gravitational potential energy. In part (a) (i) he/she calculated the orbital speed using the formula, "orbital velocity = mass x height" which is dimensionally not correct.

On the other hand, few candidates (4.9%) who scored higher marks (6 - 10) had a good understanding on the topic of Gravitation as they applied appropriate formulae and procedures in determining the orbital speed and

gravitation potential energy of the satellite. Moreover, they were able to calculate the height of mountain above the sea level. However, 15.1 percent of the candidates who scored moderate (3.5 - 5.5) marks attempted some parts of the question items and scored average marks. Extract 1.5.2 shows the responses from one of the candidates who answered this question correctly.

Extract 1.5.2

5	Di/ Doluhan
	who G= grantation combon
	From O'rbital speed = I Gite M= Many the earth.
	From Orbital speed = Take M= Many the earth h= required high?
	n = required high
	R, radius of the early = 6.4 x 10° lon
	R, radius of the early = 6.4 × 106 km h, height above the early's suggested 2 × 106 km G Me = a R ² = 10 × (6.4 × 10 ⁹) ² a);/
5	a_{i}/a_{i}
5	a) ,/
	064 10×(6,4×109)2
	Orbital speed = 10 × (6.4×10°)2 / (6.4×10°4 2×10°)×103 m
	Orbital speed = 226820.979 m/s
	1
	il Grantebron potential energy, U
	·
	U= - GHEH (R+b)
	(1-16)
	= -g R2 M
	Rih
	$= -10 \times (6.4 \times 10^{9})^{2} \times 600$ $(6.4 \times 10^{9}) \cdot (2 \times 10^{9})$
	(6.4 x104)4 (, 2x104)
	= - Q. 9257 4286 × 10 ¹³ J.
	2 - 2. 123/142004(0 3
5	Di/ le armente suddeal dissanceral things would start
	eloating into space because nothing would be
	holding object to the ground. The object would
	bi/ le gravity suddenly dissapeared things would start floating into space because nothing would be helding objects to the ground. The objects would keep on bloating until inginity (theoretically).
	, , , , , , , , , , , , , , , , , , , ,

5 Diil aduhan
from mg = GMe or Vention's law of gravitation
g = GMe R ^t
g'= GMe (R+b) ²
$\frac{g'}{g} = \left(\frac{K}{K_1 h}\right)^2$
$g = (1+h)^2$
$\sqrt{\frac{9.81}{9.7}} = \frac{1}{R+h}$
h = 1.005654119-1
h=(6.4x106(5.654118564x10-3))km
h = 36/86.358821cm above sea level.

Extract 1.5.2 shows how a candidate was systematic and accurate in presenting hi/her responses in all parts of the question hence scoring good marks.

2.1.6 Question 6: Rotation of Rigid Bodies

This question aimed at assessing the candidates' knowledge on the topic of Rotation of Rigid Bodies. Thus, part (a) required them to: (i) explain why a flywheel is designed such that most of its mass is concentrated at the rim and, (ii) estimate the couple that will bring the wheel to rest in 10 seconds given that its wheel radius of 40 cm and mass of 3 kg is rotating at angular velocity of 3600 revolutions per minute. In part (b), the candidates were required to: (i) explain why an ice skater rotates at low speed when she stretches her arms and a leg outward and (ii) calculate the moment of

inertia of a sphere about an axis which is tangent to its surface given the mass and radius of the sphere as 10 kg and 0.2 m, respectively.

Only 27.8 percent of the candidates attempted this question and their scores were as follows: 65.2 percent scored below 3.5 marks, including 26.4 percent who scored 0 marks. 20.4 percent scored marks ranging from 3.5 to 5.5 while 14.4 percent scored 6 to 10 marks. These data reveal that the candidates' performance in this question was at a very lower margin of average because only 34.8 percent passed the question by scoring marks ranging from 3.5 to 10.

The candidates who scored average (3.5 - 5.5) marks were noted to perform well in part (a) (ii) and (b) (ii), but provided wrong responses to other parts of the question. This could have been contributed by the failure of the candidates to understand the basis of conservation of angular momentum and its applications into everyday experiences. A small group of candidates (14.4%) presented the responses which agreed with the demands of the question items. They provided reasonable arguments as well as applying the concepts of moment of inertia to estimate the couple. Extract 1.6.1 is a sample of good responses taken from the script of one of the candidates to illustrate this case.

Extract 1.6.1

6(9) 1) Mass of the time ore concentrated
at the sim in order to increose
woment of inected so as to prevent
the Change of rotational
ration when it retate.
(1) Data
fine (f) = Josec
Easion (5) = 40 cm = 0 - 4m.
mass (m) = 3kg
fat direct (f) = 3600 x.b.w.
toque (T)= ?

	fans.
	Toque (T) = Moment of inectiat) x angular
	Toque (T) = Moment of inertial)x ungular ocatoratio(a)
	T = I d.
	Sut
	MI du Wheel
	T = 1 WAS
	~
	= / X 3 kg X (0,1)2.
	~ ^ 2 ! \
	I = 0-54 pdms.
	(1001)(12 0118/011/2018)
	angular accoloration (x)
	V 2 33 1 7 1
	$\omega = \omega_0 + \alpha t$
	to but we ea.
	$\alpha = (m z)$
6	$\alpha = (2\pi i)$
	1.
	6=3600x.6.w= 80.x.6.7.
	x = (271x60) = 37.699 tol/52.
	(0)
	Siz
	T = J.X.
	T = 0-24 kg m2 x 37.699 106/51-
	T: 9.05 Nm-
	i toque is 9.05 Nm.
•	•

6	b)(i) When Ice shafers stretches their leas and aims they increases moment of inertial home apposition due to relational motion in crease home, their speed of spin decreoses
	legs and aims they ingreases mement
	of inertial home apposition due to
	relational motion in execute here their
	Sters of the golds
	Moment of incitio (M.I) = Required. given mass of sphere (M) - Make redicus of sphere (D) = 02M
	Memore 11 modia (M.I) = Requiral.
	9/1/10
	may a cohero (M) - Nota
	xaling (1) = 0.20
	and the contract of the contra
	Solv
egen an	
6	Le Jaw.
	8.
	Exem 1
	from Pormales axis throrow.
	I = Ic+ mh
	but he R.
	put pe b.
	7/3
	I = 5 WEST WEST.
	I = Subst WKs.
	T 7, mez.
	I = 7 mg.
	5

	ICS SYMES.
	I = Subst WKs.
	I = 7 MB.
	75
+	
	Sul
	I = 7 X10 X 0-52.
	I = 0.38 leg m2.
	: moment of westral is 0.26 kgm2.

Extract 1.6.1 shows how a candidate was conversant with the topic of Rotation of Rigid Bodies as he/she was able to provide the correct responses to all parts of the question.

Nevertheless, a larger number (65.2%) of candidates who scored low (0 - 3) marks were not able to provide concrete reasons on part (a) (i) and (b) (i). They lacked competences of conveying the concept based on the law of conservation of angular momentum in relation to daily life situations and other possible phenomena. Most of them just listed down the data as given in the question items, but failed to grasp the intended formulae in tackling the question. Extract 1.6.2 gives a sample of responses of a candidate who performed poorly in this question.

Extract 1.6.2

G.	as to flyaheel = curt
	Because at in many the moment of inertial
] = MF-
1	in sclution
	data
	Time = lusercools
	rachus = 40cm = 0.4m
	Rebulations = 3600 per minute
	Couple ?1

From
Ccuple = fr
Ccuple = Fr
F= mass x cicceleration
but a = w
w=z lif
@=211×3600
a=1.36 x106
F=3×1.36×106
F=4.07 X10GW
6 asri) Cauple = Fr
Couple =1.63 × (08 a)
Couple = 1.63 ×108 N
(ouple = 1.63 ×10 ~
1. 50(
os is solution
cleetce
Mass = lute
Racher = 02M
Mement of inertial (I) = ?! but
but
$T = Mi^2$
I = lotey x(0.2m) ² I = 0.4kg/m ² Moment of inertial = 0.4kg/m ²
7 - 0.4/salm2
Alemant as weight - College land
There of there - 0.4 hg in

Extract 1.6.2 indicates responses of a candidate who lacked knowledge on the concepts of moment of inertia, torques and the law of conservation of angular momentum which were the focus points for solving this question.

2.1.7 Question 7: Heat (Thermometers)

This question had three parts namely (a), (b) and (c). Part (a) required the candidates to: (i) identify the type of thermometer which is suitable for calibration of other thermometers and, (ii) explain why at least two fixed points are required to define a temperature scale. In part (b), they were required to: (i) list two qualities which makes a particular property suitable for use in practical thermometers, and (ii) describe how mercury in glass

thermometer could be made sensitive. Part (c) required them to: (i) give the meaning of a triple point of water and, (ii) evaluate the temperature in Kelvin if the pressure recorded by a constant volume gas thermometer is $6.8 \times 10^4 \,\mathrm{Nm}^{-2}$ and pressure at a triple point 273.16 K is $4.6 \times 10^4 \,\mathrm{Nm}^{-2}$.

Majority (95.8%) of the candidates attempted this question. Out of them, 33.8 percent scored marks ranging from 0 to 3, 36.4 percent scored 3.5 to 5.5 marks and 29.8 percent scored 6 to 10 marks. Generally, the performance in this question was good, having 66.2 percent of the candidates scoring the pass marks ranging from 3.5 to 10.

The candidates who scored high marks (6 - 10) were able to provide the acceptable responses. A larger number of them responded correctly in most parts of the question indicating that they had good mastery on the subtopic of thermometers. In addition, those who scored average marks ranging from 3.5 to 5.5, attempted a few question items. Most of them failed not only to describe thermodynamic scale of temperature, but also to evaluate the temperature in Kelvin based on the given requirements. Extract 1.7.1 is a sample of good responses from the candidates who performed well in this question.

Extract 1.7.1

1./.	(a) (i) It is gas thermometer. This is
	because such thermometer is begins the
	with the account of the time a minimum .
	(ii) Two fixed point are required to
	define temperature scale since any temper
	rate in construction of temperature
Ŀ	there should fundamental interval so
	indoing so the two fixed points are
	required so as to establish temperature
	scale, where the Fundamental interes
	of such temperature scale 13 obkined
	(b) (i). The thermometric property should
	be sensitive to temperature change.
	· The thermometric property should
	vary lineary and continously with the
	temperature change.
+	

(i) D somewas conflore type of
(ii). By narrowing capillary tube of the thermometer.
· By increasing surface areas of the
bulb of mercury.
· By narrowing walls of bulb to
ensur faste heat conduction across
walls of bulb.
walls of bulb. At the vaccum part above the
mercury should be evacuated to allow
free expansion of to mercury.
(c) (1) Is the temperature at which
cc) (i) Is the temperature at which all states of matter that is water vapour, liquid water and ice co-exist in equilibrium. It normally
water vapour, liquid water and Ice
Co-exist in equilibrium, it normally
occurs at 273.16K.
7. (c) (ii) Data Given. Pressure at limperature given PT = 6.8 X 1.5 M/m Pressure at triple point (Ptr) = 4.6 X 1.5 M/m² Temperature at Miple pirt (Ttr) = 277.16 K
Pressure at lemperature given PT = 6.8 X 1. Tille
Pressure at triple point (Ptr) = 4.6 X 109N/W
Required
Temperature (To) at given pressure
From
Ptr & Ttr-D PT & To-D
Ptc - Tv
Ptr = Tr Pt To.
TO = Pt Ttr
(Ptr)
T= 6.8×104 ×277.16K
4.6×109
/1-2 C: K
= 403.80K,
Recorded temperature = 403.80K.
, , lacotace telliaries _ (-3.80)

Extract 1.7.1 indicates how a candidate was able to give correct explanations and procedures in performing calculations to score good marks.

However, the candidates who scored low marks (0 - 3) had inadequate knowledge on the thermometric properties of substance as they failed to classify types and uses of thermometers. Most of them provided responses with illogical flow of ideas deviating from the demands of the question items. Some of them also failed to apply the formula and use of correct

procedures to calculate the temperature in Kelvin scale. Extract 1.7.2 represents responses of one of the candidates who had poor performance in this question.

Extract 1.7.2

7@	(2) mercury thermometer.
	(5.) 0 - 1 - 1 - 1 - 1
	(2i) Because temperatur become high value in
	C so its need two fixed point to define
	C so ils need two fixed point to define l'emperature scale.
70	(1) Tripal point of mater Is the end boiling point + y water at c.
	+ y water at c.
	(ii) Dala given
	Temperature 273.16K Force 4.6 × 10-4 Nm-2
	force 4.6 ×10-4 Nm-2
	772 // / 710-6 // 7/0-2
	273.16 K 4.6 X10-4 Nm-2 ? K 6.8 X104 Nm-2
	3.7. 2 8.8 7.10 70.11
	4.6 ×10-4 K = 273.16 K × 6.8 ×104
	but 273.16 -273 = 0.16c
	1 Cx1544 - 0.16 x 6 8
	4.6×10-4K = 0.16×6.8
	K = 10880/0.00046
	K= 23652173.91 + 273
	K=23652446.91
	K= 23.65 × 10 6
	". Temperature in Kelvin 23.66 x106
	,
7B	(2) and lities ushied make a particular proper
70	(?) qualities which make a particular proper ty huilable for Ule in particular thermom
	etir are
	1 - Temperature 2 - Umate changing.
	g- capital staying.

Extract 1.7.2 indicates one of the candidate who provided incorrect answers to all parts of the question. For instance in part (c), he/she failed to recall the formulae to solve the question.

2.1.8 Question 8: Heat (First Law of Thermodynamics and Thermal Radiation)

This question had two parts namely, (a) and (b). In part (a), the candidates were required to determine: (i) external work done, and (ii) the increase in internal energy when one gram of water becomes 1671 cm³ of steam at a pressure of 1 atmosphere and latent heat of vaporization at this pressure is 2256 J/g. In part (b), they were required to: (i) explain why during emission of radiation from black body its temperature does not reach zero Kelvin, and (ii) find heat radiated by black ball of a radius of 1m in 4 seconds which is maintained at a temperature of 30 °C.

74.1 percent of the candidates opted for this question. Out of them, 56.2 percent scored marks ranging from 0 to 3 marks, 24.4 percent scored 3.5 to 5.5 marks and 19.4 scored 6 to 10 marks. Therefore, 43.8 percent of the candidates who attempted this question scored marks above the pass mark (3.5 marks), implying that, the performance in this question was average with the inclination towards the lower margin. This performance indicates that, most of the candidates were not competent on the assessed topics, particularly First Law of Thermodynamics and Thermal Radiation.

Those who scored 0 to 3 marks (56.2%) included 19.6 percent who provided wrong responses to each question item, therefore, scored 0 marks. Most of them lacked knowledge on the topic, hence attempted very few items and gave incorrect responses. The other 36.6 percent who scored some few marks were able to provide responses or steps which were partially correct in some question items. For example, some of them were able to recall the formulae for external and internal energy in part (a), but failed to apply it to derive the required formulae for calculating the required parameters. Some of them listed the given data in (b) (ii) and wrote Stephan's law, but failed to compute correctly the required parameter. Extract 1.8.1 shows an example of the work of a candidate who scored low marks in this question as a result of some errors mentioned above.

Extract 1.8.1

8@ 1)	Solution
	$m = 1 \times 10^{-3} \text{ kg} \approx 19$ $Vol = 1671 \text{ dm}^3 \approx 1671 \text{ cm}^3$
	Vol = 1671 dm3 = 1671 cm3
	P=1atm L=22563/9
	L = 2256J19
<i>i</i>)	mm 1st law of thermoducaniers
	21 smanybornest Fr was the more with the sale
	but,
	ur = Pdur
	$w = 1 \text{ Retm } \times 1671 \text{ cm}^3$ $= 1671 \text{ J}$ $workdone = N67 1671 \text{ de} \text{ J}$
	= 16717
	Workdone = NEX 1671 dr.]
(ii	
	$\Delta 0 = \Delta u + W$
	but DO = ML
	$ML = \Delta U + U $
	DU = MI - W
	$=(1 \times 2.56) - 1671$
	$\Delta U = M 1 - 10^{\circ}$ = $(1 \times 2.056) - 1671$ = 585.7
b 3)	A black body tend to emit all radiations
_	completely that fall on it hence tit
	produce high temperature from it onever
	produce high temperature from it power is directly proportional uto it I'm Kellin.
ii)	blutton
	$\frac{1+30^{\circ}C}{P=?}$
	P = ?
	+ = 1(160

08	From Stefan's law
	P = 86A74
	but P = heat [energy]
	tome
	heat = EGATY. teme
	A = 1 Tr2
	$=3.14~\text{m}^2$

 workhander = 1 x (5.67 x 10 8) x 3.14 x 3034
POLUEY = 1.5007 X103]/sec
1 sec = 1.5007 x 103]
AZEL =X 3
Heat = $6.003 \times 10^3 \text{ J/sec}$
$= 6.003 \times 10^{3} \text{ tug+}$

Extract 1.8.1, a sample of an answer of a candidate who retrieved well the laws and the formulae for calculating the required parameters in each of the performed items, but failed to perform correctly the required calculations. He/she also gave incorrect explanation in part (b) (i).

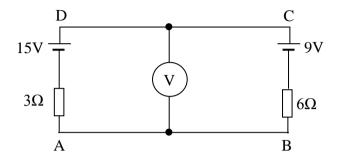
Most of those who performed well in this question had adequate knowledge on the concepts of Thermodynamics and Thermal Radiations, hence were able to recall and apply the formulae for external work done and internal energy of a gas in solving the question in part (a). Most of them were also capable of recalling and applying Stephens law in part (b) (ii) to find the heat radiated by the ball. Extract 1.8.2 presents a sample from the work of one of the candidates who responded well in this question.

Extract 1.8.2

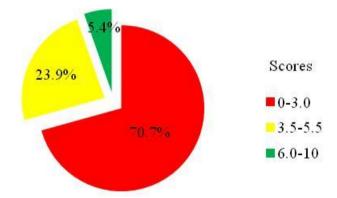
Ons.	(a). Given: 1 gran ag worter = 1 cm2, Vw.
	Volume ap stem, Vs = 1671cm3.
	Volume ap stem, Vs = 1671cm3. Proseure, P = 1 afm. = 1:013 X10 nm²
	Lv = 2256 J/q
-	(i). external wort done,
	From; die = Pdv.
	ω dw = J P dv νω ω-ο = P J d ν
	٧ωۜ؍
	w-0 = P
	νω
	W-P[V]
	$w = P(V_s - V_\omega)$
	-
	M= 1.013 X10 5 nm-2 x (1671-1) x 10 m3.
	w = 169·171√
	- External work dans = 169.775

Ou &	(10). Increase on Internal energy, by
	97)
	Form at a dw + su.
	1 u= dH-dw
	Lus H- w.
	where;
	H= heat supplied = mx Lv
'	= 19 × 22561/9
	= 2256J.
	Then;
	Du= 2256J - 169.77J
	JE8-8205 = Ud.
	Internal mengy = 2086,83J.

Ons.	(b) 10 - During the ensuren of radiations from
	the black body. He temperature do not bero
	me zoro Kelvin because it also
	alcombe moderal energy from the Surroul
	ings white emothing of the same toone.
	- In accordance to Provest's theorythe
	blackbody enith every to surrouding and
	absorb energy from the surrouding at the
	same rade when seaches equalibrium. As-
	a result the it's temperature never be ok


in. Given: radous, T = 1 m.
Temperature, T= 30°c = (20+272)K.
= Box Ic
time, t= 4 seconds
Regiond: Heat radiated AH.
From', stefan's law
P = 5 E A T 4.
8+/ = TEAT!
1 1 24+
du - 5-E 274.Q+
-Same aball to black body: E= 1 while 1+'s area = 4717?
17 11 11's area - 471's
White 112
Then: DH= (5.67 × 10° × 4T1 × 1° × 302 4 × 42) I
du = 24.01 × 103 T
dH = 24.01 × 103 J ; Heat radiated = 24.01 × 103 J.
i). Given: radous, r= 1m.
Temperature, T= 30°c = (204272)K.
= Bozic
tions t = 4 seconds
Regumed: Heat radiated AH.
From's stefan's law
P = 5EAT4.
P = DEAT!
d+
du = 0 = 274.0+
-Same about to black book; E = 1
-Since aball is black body: E= 1 while 1t's area = 4717?
While It's area = 4111.
0 /T « T « T « T » 4 4 \
Then: QH= (5.67 x 103 x 411 x 12 x 30x 4 x 42) J
dH = 24.01 × 103 J ; Heat routentel = 24.01 × 103 J.
: Heat routented = 24.01 x103 J.

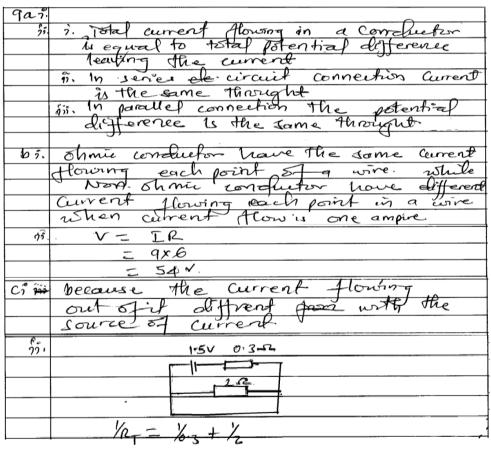
Extract 1.8.2, a sample of an answer of a candidate who responded correctly and systematically to most parts of the question. For example, in part (b) (i), he/she gave strong reasons for why the temperature of a black body does not reach zero Kelvin when emitting radiations.


2.1.9 Question 9: Current Electricity (Electric Conduction in Metals)

This question had parts (a), (b) and (c). Part (a), required the candidates to: (i) give the definition of the term node as applied to the electric circuit, and (ii) outline three important points which are usually referred as sign

convection in solving Kirchhoff's second law problems. Part (b) required them to: (i) differentiate between Ohmic conductor and Non-ohmic conductor and give one example in each case, and (ii) study the following circuit then find the reading on the high resistance voltmeter V.

In part (c), the candidates were required to: (i) explain why e.m.f of a cell is sometimes called "a special terminal potential difference", and (ii) calculate the current flowing in the circuit when three similar cells each of e.m.f 1.5 V and internal resistance of 0.3 Ω are connected in parallel across a 2 Ω resistor. The question was attempted by 89.7 percent of the candidates of which, 70.7 percent failed as they scored 0 to 3 marks. 23.9 percent scored 3.5 to 5.5 marks and only 5.4 percent scored 6 to 10 marks. These data are presented in Figure 6.

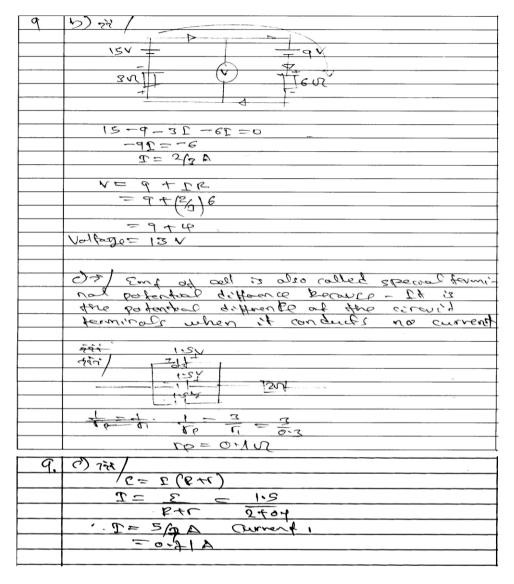

Figure 6: *Performance of candidates in question 9*

From the data given above, the performance of candidates in this question was weak since 29.1 percent only passed the question.

Most of the candidates who scored low marks in this question were not able to respond correctly to most of the question items. They provided correct responses to either one or two question items, especially (b) (i) and (c) (ii). For example, in item (b) (i), most of them gave correct examples of Ohmic

and non-ohmic conductors, but gave a wrong distinction between the two types of conductors. Some of them also skipped to answer some question items indicating that they were incapable of attempting them. Among the challenges which might have contributed for the candidates to show weak responses in this question include: inability of most of them to respond precisely to some question items that required explanations due to language problems and lack of knowledge of Kirchhoff's laws and their applications in solving the question from the given circuit. Other candidates did not understand the term node. In this case, most of them defined node using the concept of wave instead of referring to the concept of electricity. The following extract shows the responses given by one of the candidates who had poor performance in this question.

Extract 1.9.1

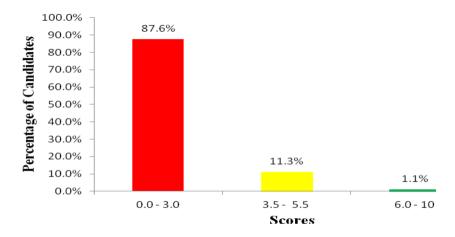


Extract 1.9.1, a sample of an answer of a candidate who provided responses with various errors to most of question items performed. For example, in (a) (ii), he/she stated that "total current flowing in a conductor is equal to total potential difference leaving the current". This statement is incorrect conceptually as well as to the demand of the question.

Most of the candidates who scored well (6 to 10 marks) in this question managed to give correct responses to many question items. It was noted that most of them missed 1 to 3 marks to score all the marks in this question. Most of them, were challenged with items (a) (i) or (c) (i) or both. The challenges in (a) (i) were due to the fact that, the term node is more common in the topic of Vibrations and Waves than in Current Electricity where it is explained under the discussion of Kirchhoff's laws as the junction of three or more branches of current. Item c (i) was also challenging because it required critical thinking from the candidates. Nevertheless, there were few a candidates who had superior competences in the topic of Current electricity, hence provided correct answers to each part of the question and scored all 10 marks allotted in this question. Extract 1.9.2 is an example of the work of one of the candidates who managed to perform well in this question.

Extract 1.9.2

9.	a) of Made - Is a junction in the coverity where by current mapts or beautiful the circuit.
	where by current mapped or Leaves
	the circuit.
	31/ Important lows points in Kirchoffs IRIO.
	nd law
	1. Choose as many a possible loops in
	the circuit.
	2. Show the direction of the current through the veristers. 3. Write the voltage relation and Ele- chromative force and some the equations to obtain the potential difference drops.
	through the verestors.
	3 Write the voltage relation and Ele-
	chromative force and salve the
	equations to obtain the potential
	difference graps.
-	b) ? Ohmic curductors le the type of
	conductes which obeys Ohm's law, that
	1) 18 now variation of current and voltage
	conductor which obers Ohm's law, that it linear variation of current and voltage at content Resistance.
	Example cupper mul
	Wholo
	Han Chung and where I the hone of
	andusper which does not obe short land
	and arquar which goes not open opur, lon and arquar which goes not open opur, lon
	Example
	Ection.
	2011

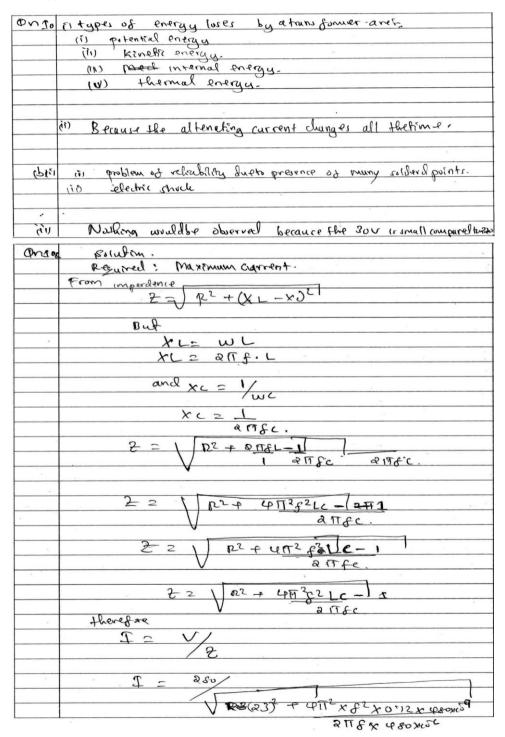

Extract 1.9.2, a sample of correct responses provided to most parts of the question. For example, the candidate was able to apply Kirchhoff's law to solve correctly the question item in (b)(ii).

2.1.10 Question 10: Current Electricity (Alternating Current, A.C)

This question was divided into three parts: (a), (b) and (c). In part (a), the candidates were required to: (i) mention four types of energy losses suffered by a transformer, and (ii) explain why choke coil is preferred over resistance to control alternating current. In part (b), they were required to: (i) identify two difficulties which would arise when two straight wires are

used to transmit electricity direct from the source to the city station, and (ii) explain what could be done to light a 30 V bulb from a 220 V A.C supply. In part (c), they were required to determine: (i) maximum current flowing in the circuit, and (ii) source frequency for which the current is maximum, given that, a series LCR circuit with inductance L=0.12 H, capacitance C=480 nF and resistance R=23 Ω is connected to a 230 V variable frequency supply.

A total of 7,891 candidates (40.4%) attempted this question. Analysis of the performance of the candidates revealed that the majority (87.6%) of them scored low marks ranging from 0 to 3 while 11.3 percent scored 3.5 to 5.5 marks and the minority (1.1%) scored 6 to 10 marks. (Figure 7).

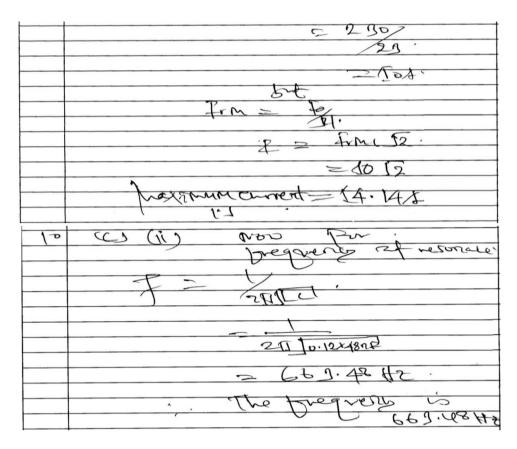

Figure 7: Performance of candidates in question 10

The data depicted above indicates that the performance of the candidates in this question was weak since only 12.4 percent passed the question by scoring marks greater or equal to the pass mark (3.5).

Responses from most of the candidates who scored marks from 0 to 3 were noted to possess various errors including writing wrong formulae, incorrect calculations and provision of invalid reasons to some explanations. The responses of those who scored 0 marks (46.3%), revealed lack of the basic knowledge on Alternating Current. Therefore, they failed to give correct answers to some question items like, (a) (i) and (c) which required them to recall basic concepts or formulae related to A.C. Such a big failure in this question indicates that the assessed areas of the topic were not understood by the majority of the candidates or probably not covered in class or

through students' self initiatives. Extract 1.10.1, shows the responses given by one of the candidates who had poor performance in this question.

Extract 1.10.1


	Since frequence unit possibled the numerical value of I willy bentiumed and therefore the mentionem curent will be
	T 2 250
	I = 520
	2118 x 480 x 59 Ampere
	\$
(j)	sauhur.
	Reguired: Source frequency.
	From
	5= 1 65 + × 15 - × 55
	5, = K, + (XT-xc),
	Fr = Wr + (XT - XT)
	Sme XL = WL
	22 - 82 + (111 - 1)2 /wz
-	we we
	22 = R2 + (21791- 1 12.
	22 = 12 + (WL - 1)2. Sme x = W and x & = V 27 = 12 + (WL - 1)2. 37 = 12 + (ATT- 1)2. 37 = 12 + (ATT- 1)2.
	$5_{5} = 6_{5} + 8 \frac{\alpha_{4} 5_{4} 7_{5} - 1_{5}}{8 \mu 4 c}$ $5_{5} = 5_{5} + (6 \frac{\alpha_{5} 5_{5}}{10^{5}} - \frac{1}{10^{5}}$
	2 (Tfc)
	55 = 65 + 8 LL 86 15 - Is
	72-62 = 311, 25, 12 - 1
	c2.
ania	then 22- 22 +1 = 2772 f2/2
	maltfly by c2 both roler:
	(52-85+1) C2 = 845 85 12
	Rivale by 2019; buth order
	5 -
	$f^2 = (2^2 - R^2 + 1) c^2$
	2 Ti2 L2
	Square both sples
	$f = \sqrt{\frac{2^2 - n^2 + 1}{2^2 n^2 + 1}}$
	V 2 11 L2
	of the thou and will be 1 102 as all of
	is the frequence will be 1 (22-p2 +1)er

Extract 1.10.1, a sample of an answer of a candidate who provided incorrect responses to most of the question items. For example in (a) (i), he/she listed various kinds of energy which are studied in mechanics and heat topics instead of types of energy losses suffered by a transformer.

A few candidates in the category of those who scored high marks (6 to 10 marks) were able to answer correctly each part of the question, hence scored all the marks. The rest in this group were not able to give correct responses to some question items especially (a) (ii) and (b) (i). These question items were meant to measure the ability of the candidates to reason critically, hence evaluating higher cognitive level. Extract 1.10.2 shows an example of good responses for this question.

Extract 1.10.2

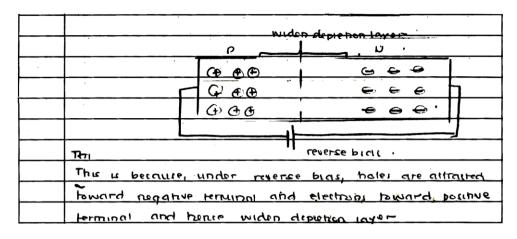
10	Types of Friend Lossein Tensfor Men. - Non Low - copper low. - He steres low.
	Knifor Men.
	- hon low
	- Rother 1031.
	- the steres low.
	- Magnetic Hlux 1031.
	(i) choke will has no
7 b	Appear 1011 In Howstern ,
10	(1)(1) - Heating reflect when
	(b)(i) - testing effect - wheel
	- Mper delle jovease
	5 the Home Increase which
	The Home Invesse which we fire the fire properties
	4
	DI W Store the Supplied
	DI (i) Since the dupolitic of high voltage a the source of though the Appeal of own of steers down transfurmer
	though the form
	3 Slex JOMI) hadrings
0-1	Ces (p) 52/4/1000 1 = 0.124 12 = 28 SL. 22/00.
	1 = 0.124.
	12 = 213 12.
	V 2250V
	6 = 180 UE.
	For Marie D. L. Thornes
	tale and observed thouted be at.
	Industrie XL = Xe (capacillire mediare)
	Profit
	V = 12
	$\mathcal{L} = \mathcal{L}_{\mathcal{O}}$.

Extract 1.10.2, a sample of correct responses given to most of question items except in part (a) (ii) where the candidate wrote, "choke coil has no power loss in transmission" instead of "choke coil has small amount of electrical power loss".

2.1.11 Question11: Electronics (Semiconductors)

This question consisted of three parts namely (a), (b) and (c). Part (a), required the candidates to: (i) list two chief properties of semiconductors, and (ii) explain why it easier to establish the current in a semiconductor than in an insulator. Part (b), required them to: (i) state a condition that could be employed to make an insulator conduct some electricity, and (ii) distinguish between conductor and semiconductor on the basis of their energy band structures. In part (c), the candidates were required to: (i) give the meaning of a depletion layer as used in p-n junction device, and (ii) describe the effect of applying a reversed bias to the junction diode.

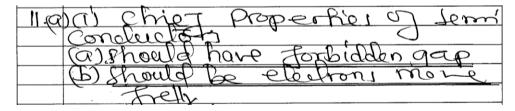
The candidates who opted for this question were 19,094 which is equivalent to 97.7 percent of the candidates who sat for 131/1 Physics


Paper 1. Among them, 43.1 percent scored marks ranging from 0 to 3, 39 percent scored 3.5 to 5.5 and 17.9 scored 6 to 10 marks. These data implies that the performance of the candidates in this question was average, since 56.9 percent of them scored marks greater or equal to the pass mark (3.5 marks).

Some candidates, among those who performed well, scored all the marks after providing correct answers to each question item. They were conversant with the concepts related to semiconductor and insulators, hence listed correctly the chief properties of semiconductors and explained perfectly well the reasons for why it is easier to establish the current in a semiconductor than in an insulator. Basing on the physical properties which reduce the resistance of a material, most of them were able to state the condition that could be employed to make an insulator conduct some electricity. Majority of them also gave clear distinctions between a conductor and a semiconductor in terms of energy band structures. In addition, a good number of them were capable of applying the knowledge of formation of junction diode to define the depletion layer as used in p-n junction device. Furthermore, most of them described clearly the effect of applying a reversed bias to the junction diode. Extract 1.11.1 shows the responses of one of the candidates who provided good answers in this question.

Extract 1.11.1

	that of
	(a)(1) Its resistivity lies between of candilitors and
	insulators ,
	(ii) & semicanductors have regative temperature
	coefficient, resistance.
11	(ii) This is because forbidden band in an insulation is
	large campand to that of semicanductors, iterce,
	valence electron in semicandultors require less anicunt
	of energy to jump to conduction band compared with
	that of insulators. Hence, It is easily to establish
	current in a semi-conductor
ь	(i) Under high temperature and high witage to
	cause electrons to sump from valence band to
	conduction band,


11 (c) conductore: These materials, their canduction band
and valence bound everlap to each other such that
14 is easily for electron to JUMP Fram valence band,
ta candication band. No forbidden band.
6
conduction band
A A A A A A A A A A A A A A A A A A A
Eurola over(ubius tediou
(ev),
valence band .
Semicanductors: Thuse materials, conteun, conduction,
restricten and valence band. There is no overlaping
of canduction band and valence band. The politiden band
is smail
1//
Energy A / / / , canduction band .
(PV), JERNMY Gap
valence band
CII Depletion layer !- Refers to the region on either
side of prijunction which is depleted of
charge contiers. This acture to recombination of
holes and electrons.
the same diagram and a grate
Il (c) (ii) Applying of a reverse bias to the junction diade cause
widen of depietion layer and hence voltage bastler depietion layer
totreate b
1
1 + + - = - 0
Forward biat
i journal and

Extract 1.11.1, a sample of correct responses presented in each part of the question. Well labelled diagrams were drawn to support the given explanations.

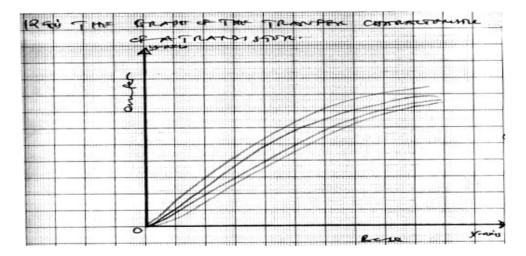
On the other hand, most of the candidates who answered this question poorly (43.1%), provided correct responses on part b (ii) only which required them to distinguish between conductor and semiconductors, but failed in most of the other question items. This might be due to the fact that the distinction between conductor and insulator is familiar to students since they were covered in ordinary secondary education. The main reason which could have led to low performance for most of the lower achievers includes: lack of semiconductor knowledge, poor understanding and interpretation of the demands of the question, lack of synthesis and evaluation competences. These led to most of the candidates failing to provide correct answers to some question items especially in parts (a) (ii) and (c) (ii) which required critical thinking competences. Extract 1.11.2, shows an example of responses from one of the candidate who failed in this question.

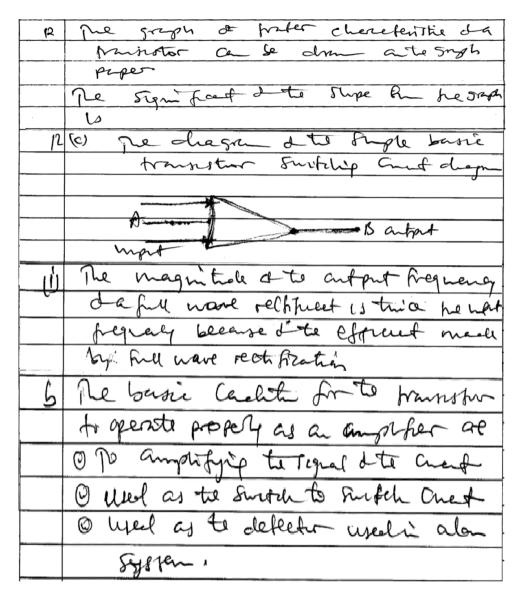
Extract 1.11.2

If earier to establish te current in a seron conducte tron in an Insulator because: semiconductor allow electron current to Clow Booud out-Enreletor I allows curred does not to recone electrons -Ol M(D) (1) method which used - Co-emplo Ned to make an insula Conduct some electricity a) Should have a fort Tox elee mond of a Mor Should wrapted DIN 1000 in order current to flow through Conductors are the materials allow aires eleelmi more when forbidden read o The lossell Si'c ofh Diagram-d anneil electron Con more freelh whi Do Sem conductors are the materials while does not allow airect or electrons to more each pontain

Extract 1.11.2, shows a sample of a candidates' responses which do not fulfil the demands in most parts of the question items and hence scored low marks.

2.1.12 Question 12: Electronics (Transistors)

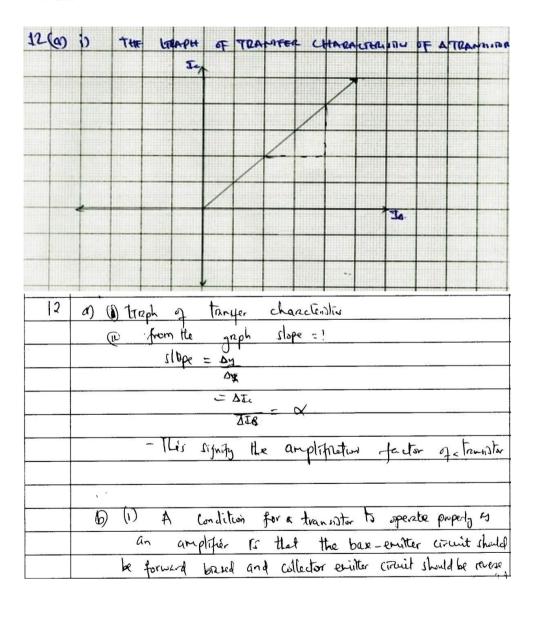

This question consisted of three parts (a), (b) and (c). In part (a) the candidates were required to: (i) sketch the graph of transfer characteristic of a transistor, and (ii) state the significance of the slope from the graph in (a) (i). In part (b) they were require to: (i) give basic conditions for a transistor to operate properly as an amplifier, and (ii) explain how a junction transistor can be connected to act as a current operated device. Part (c) required the candidates to: (i) explain why the magnitude of output frequency of a full wave rectifier is twice the input frequency, and (ii) draw a simple basic transistor switching circuit diagram.

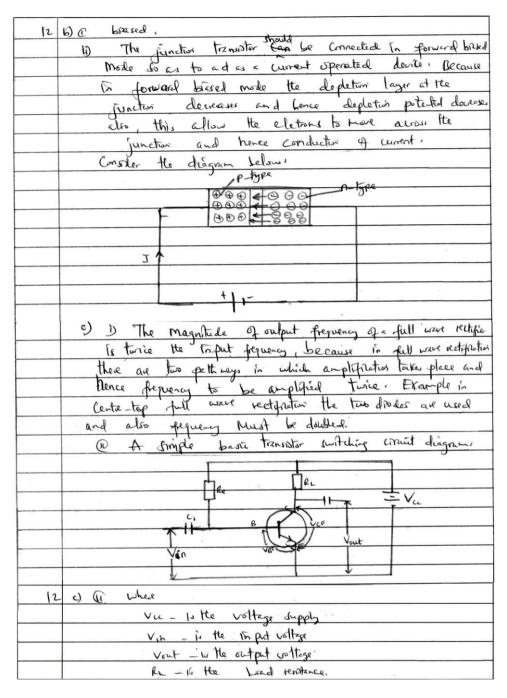

The question was attempted by 55.5 percent of the candidates. Among them, 82.8 percent scored marks ranging from 0 to 3, 13.6 scored 3.5 to 5.5 marks and only 3.6 percent scored 6 to 10 marks. Therefore, the performance of the candidates in this question was weak since only 17.2 percent of them were able to score above the pass mark. This indicates that,

majority of the candidates had insufficient knowledge on Electronics especially the subtopic of Transistors where the question items came from.

In the category of those who scored low marks (0 - 3), 44.3 percent of them scored 0 marks. Among the factors which led to this worst score includes lack of both knowledge and competence of the content from which the question was constructed. Most of them decided to write anything they learnt in the topic. Some of them had forgotten key terms hence, their explanations or definitions missed validity. It is also possible that, this topic was not well covered in the class or by the students through self study initiatives. Extract 1.12.1 is an example of responses from a candidate with poor scores in this question.

Extract 1.12.1

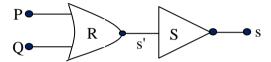


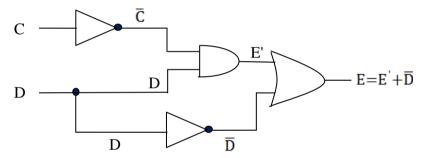

Extract 1.12.1, a sample of irrelevant answers provided in each attempted question item. For example, in part (a) (i), instead of a graph of transfer characteristics, a collector base output characteristics graph was sketched while in part (c) (ii), a logic gate symbol was drawn instead of switching circuit.

Furthermore, most of those who scored marks from 3.5 to 5.5, were noted to perform well in the question items in parts (a), (b) (i) and (c) (ii), but failed those in part (c). This might be due to the fact that the concepts assessed by the former question items are among the common ideas in the subtopic of Transistors. Actually, part (c) required the candidates to have higher cognitive ability and competences beyond just recalling the symbols.

The question item also demanded good organization and drawing skills. Therefore, only 0.1 percent of the candidates were capable of doing that as well as giving correct answers to other parts of the question. Extract 1.12.2 represents the responses of one of the candidates who scored all 10 marks in this question.

Extract 1.12.2




Extract 1.12.2, a sample of an answer from a candidate who responded correctly and systematically in each part of the question items. For instance in (b) (ii) correct explanations with supporting diagram were given to show how a junction transistor can be connected to act as a current operator device.

2.1.13 Question13: Electronics (Logic Gates)

This question had three parts namely (a), (b) and (c). In part (a) the candidates were required to: (i) give the meaning of the term "logic gate", and (ii) list three basic logic gates that make up all digital circuits. In part (b) they were required to: (i) identify the logic gates marked R and S in the following figure, and (ii) write down the output at 's' when P = 1 and Q = 1 as well as when P = 0 and Q = 0.

In part (c), they were required to obtain the truth table for the circuit shown in figure below.

97.8 percent of the candidates attempted this question and the performance was as follows: Those who scored marks ranging from 0 to 3, 3.5 to 5.5 and 6 to 10 were 14.6, 19.3 and 66.1 percent, respectively. These data implies that the performance in this question was good since 85.4 percent of the candidates scored marks above the pass mark. This indicates that most of the candidates acquired the intended knowledge and were competent in the topic of Electronics, particularly in the subtopic of Logic Gates.

The group of candidates who had good performance (66.1%) comprised of 4.1 percent of those who managed to answer correctly each item in this question. Those were having adequate knowledge of logic gates, since they were able to define correctly the term logic gate as applied in digital electronics and listed accurately the three basic logic gate that make up all digital circuits. They were also able to identify that, the logic gate marked R was a NOR gate and S, was a NOT gate. They were also capable of applying operational principles of binary numbers (0 and 1) to construct appropriately the truth table of the given logic circuit and find the output at

"s" in part (c). Extract 1.13.1 shows good responses for this question from a candidate who managed to provide correct answers to most of the question items.

Extract 1.13.1

13	al of the 1 sax and leather two a deadours
1	a) of the Logic gate - to the type decisions overt which makes logice decisions with two or more input and grup out only one output. Example Ob-gate
	(in cost mise) makes logice decisors
	with two or more input and grup
-	out only one output.
	Example Otr gerto
	is Roses loding do for
	# Bose logie gater A. OR-gate 2. AND-gate 3. NOT-gate
	2. AND-gate
	3. MOT-gode
	b) of R- Mor-gerts S MOT-gerts
	S MOT-garle
	ri/ Angut Output
	18 0 12 0 9
	when P=1, P=1 The output at s is 1.
	The order of the six 1
	ha continue and I is It.
	Jan. D. Jan. J.
-	Input Output PQ s' S O O 1
	7 9 3 3
	0 0 1
	U.Sh. a D and a
	When P=0, Q=0 The output s=0
	The output s = 0
1 2.	
	logit Output C D C D E E
	C D E D E E
	0 0 1 1 0 1
	0 1 1 0 1 1
	1 0 0 1 0 1
	1 1 0 0 0 0

Extract 1.13.1, a sample of an answer of a candidate who managed to provide precise definition of logic gate and was able to find correctly the output at "s". He/ she also constructed a correct truth table in part (c).

In the group of those who performed poorly, 4.9 percent provided wrong answers for each question item hence, scored 0 marks. The other 9.7 percent were able to answer correctly a few question items particularly those in part (a) and item (b)(i). These items required a recall of the concepts (knowledge level of cognitive domain). Generally, the concepts examined in these question items are very common ones in the topic of Electronics. Most of the candidates failed to answer parts (b) (ii) and (c) which required higher cognitive levels involving application, analysis and synthesis of ideas. Extract 1.13.2 shows the work of one of the candidates who attempted this question poorly.

Extract 1.13.2

3	al all	A logic go	te ia gate	whateby custom
	iý s	3 basic R	paic ades OR - ade R - ade ANN - ade	ato:
	b/ ÿ	R = OR go	gate	
	ij	P & O O	3 V	When $P = \emptyset 1$ $Q = 1$
		When $P = 0$ $Q = 0$ $1 0$ $1 1$		
13.	c)	##	D E' 1 0 0 C 1 C	E = E' + B

Extract 1.13.2, a sample of responses which were incorrect with respect to the demands of the question items. For instance, in (a) (ii), the candidate mentioned various logic gates he/she knew instead of the basic logic gates.

2.1.14 Question 14: Environmental Physics

This question consisted of three parts namely (a), (b) and (c). In part (a), the candidates were required to: (i) give a meaning of solar constant, and (ii) list two factors on which the solar constant depends. In part (b) they were required to: (i) give two advantages of photovoltaic system, and (ii) explain briefly how photovoltaic cell works. In part (c), the candidates were required to: (i) estimate the maximum power available from 10 m² of solar panel, and (ii) calculate the volume of water per second which must pass through when the inlet and outlet temperatures of the panel are at 10 °C and 60 °C, respectively under the assumption that waves carry away energy at the same rate as the maximum power available.

The number of candidates who opted for this question was 9539, corresponding to 48.8 percent. Their performance was as follows: 75.8 percent scored marks ranging from 0 to 3, (including 44.2 % who scored 0 marks), 15.9 percent scored 3.5 to 5.5 marks while 8.3 percent scored 6 to 10 marks including nine (9) candidates who scored all the 10 marks allotted in this question. The performance of the candidates in this question is presented in Figure 8.

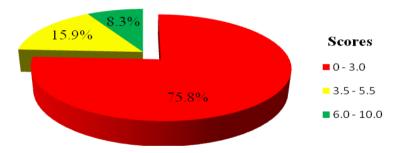


Figure 8: Performance of candidates in question 14

The general performance in this topic was weak since only 24.2 percent of the candidates scored marks within or above the pass mark. The performance on the same topic for last year (2017) was good as 83 percent of the candidates passed (Appendix A). This big drop of performance (from good to weak) indicates that some areas of the topic were not well understood by the students. Therefore, it is advised that during the teaching/learning of this topic, concentration should be given to each

objective of the topic as contained in the syllabus to make students conversant in all areas.

Most of those who scored marks within the failure range (0 to 3 marks) were not able to define solar constant in (a) (i), hence, failed to respond correctly to part (c) since it required the concept of solar constant. Most of the candidates within this category lacked knowledge on the principle of photovoltaic cell, thus, failed to mention its advantages and mechanism. Extract 1.14.1 shows one of the work of a candidate with low performance in this question.

Extract 1.14.1

14@(i) Solar Constant.
is the amount of ractiant energy (ractiations) emitted
by the sun toward the other body due to the absolute
temperature.
(ii) The Solar constant depends.
01. Absolute temperature.
es. Radius of the sun and that of the body
(b) Advantagar of photovoltanic system.
01. It is used in the establishment of gadvanec colls.
C2. (f is used
(O(1) Griven: Area, A = 10 m2.
reduired, Power.
From, P = SEOAT4.
but solar constant = UAT4.
P = F58474.
= 5.67x10 8 X 10 X74.
P = \$ E S = T 4 . = S · G 7 x 10 x 7 4 . = S · G 7 x 10 7 T 4 .
- Power available = 5.87x10-774 interms of
temperature available.
14 (C) (ii) Griven; Temperature T, = 20°C.
Temperature To = 60°C.
Required; volume of water.
From: P = / S & AT 4 .
V/= 5 67 X10
C
Firm. Provastis law.

Extract 1.14.1, a sample of an answer from a candidate who gave incorrect definition of solar constant and used incorrect formula to calculate maximum power from the solar panel. The other given responses were also incorrect hence he/she scored 0 marks in this question.

A total of 9 candidates who scored all the marks in this question had adequate knowledge hence, they were able to recall the concept of solar constant and the factors on which it depends. They also gave precise explanations on the advantages and mechanism of photovoltaic system. Moreover, they were capable to interpret the demands of the question and link them with the concepts of Heat as well as Fluid Dynamics. A good number of them estimated well the maximum power in a solar panel and the volume of water per second which must pass through the panel. Such precise responses demonstrated their interpretational, analytical and synthetic reasoning competences with regard to the subtopic of Energy from the environment, particularly Photovoltaic System. Extract 1.14.2 shows one of good responses for this question.

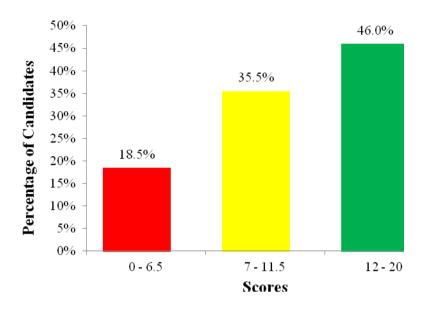
Extract 1.14.2

14	(a) (i) Solar constant is the amount of
	sider enous received per second per unit
	surface area placed perpendiculary with the
	Sun rays on earth's Surface
	(ii) (1) The orientation of the place
	unt respect to sun rans (labtude)
	(ii) The time during the day as the sin energy reaching the earth changes
	Sun energy reaching the earth changes
	as with change in bine of the day
	(b) (c) (a) Phytovoltare system do not
	produce any waste to the environments (ii) Philosophianic cells can be currenged in series and perallel to provide the required Noltage and ourrent
	(ii) Photo voltario cells can be
	currenged in series and parallel to
	provide the regimined voltage and ourrent
	(b) (ii) Phytorottai cell consists of
	Sernicundenters. in which one is possible
	and enother is negative. As light from the sun falls on It, electrons are Knocked off from negative some-and-
	the sun falls on It, electrons are
	Knocked off from negative some-and-
	process electron store force is
-	process electron struc voice is
	Severated
	(c) (i) Data siven:
	(c) (i) Data 51ven: Area (A) = 100m² Silver Constant(c)= 1,41cmm²
	Maximum power = A.C
	LICAIUM DONA I HIC

14	=> Pmax = (10x 1.4x103) (mx w m-2)
	Pmax = 1400W,
	Pmax = 14000 W. .; Maximum power = 14000 W
	(c) (ii) Carro Q1 = 10°
	(c) (ji) Como 01 = 100
	from: Pm xx = (m/t) (cw) so But
	But Pman - 1400W
	Pmea = 1400 W CW = 42007/5/00 ⁻¹ DO = 60-10 = 500
	\Rightarrow $m(e) = e^{mx}$
	,
	=> (M/c) = (14000) +351
	=> m/+ = 0.0000+ part
	$\frac{1}{2} \left(\frac{1}{2} \right) = \left(\frac{1}{2} \right) = \frac{1}{2} \left(\frac$
	$= 0.06667 \text{ ks}^{-1}$
	$4 = 6.67 \times 10^{-5} \text{m}^3 \text{s}^{-1}$
	, " Valuma perseend = 6.67×10 mg-1

Extract 1.14.2, a sample of an answer from a candidate who presented neat and correct responses to each question item. For example in (c) (ii) he/she was able to calculate systematically the volume per second of water which must pass through the panel.

2.2 131/2 PHYSICS 2


This paper consisted of short answer questions constructed from six topics as indicated in the analysis Each question carried a weight of 20 marks and the performance of the candidates were regarded as weak, average and good in the score ranges of 0 to 6.5, 7 to 11.5 and 12 to 20 marks,

respectively. In this paper, 7 to 20 marks was taken as the range of pass marks.

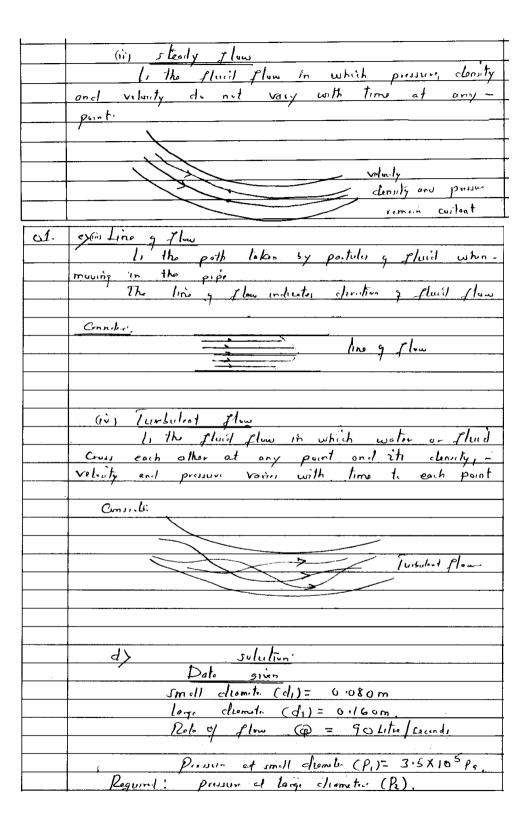
2.2.1 Question 1: Fluid Dynamics

This question had four parts namely (a), (b), (c) and (d). In part (a), the candidates given Bernoulli's were equations: $p + \rho g h + \frac{1}{2} \rho v^2 = constant$, then they were required to: (i) explain what does each term on the left hand side of the equation represent, and (ii) mention any three conditions which make the equation valid. In part (b) they were required to calculate the flow rate and the velocity at the outlet of the pipe in the second floor bathroom given that: water is supplied to a house at ground level through a pipe of an inner diameter of 1.5 cm at an absolute pressure of 6.5×10^5 Pa, with a velocity of 5 m/s and the pipe line leading to the second floor bathroom 8 m above has an inner diameter of 0.75 cm. Part (c) required them to define the terms: (i) non-viscous fluid, (ii) stead flow, (iii) line of flow and (iv) turbulent flow as applied to fluid flow. In part (d) the candidates were given a stem of question which reads: "A horizontal pipeline increases uniformly from 0.080 m diameter to 0.160 m diameter in the direction of flow of water. When 96 litres of water is flowing per second, a pressure gauge at 0.08 m diameter section reads 3.5×10^5 Pa". Then they were required to calculate the reading of the gauge at the 0.160 m diameter section while neglecting any loss.

The question was opted for by 93.1 percent of the candidates whereby 18.5 percent of these candidates scored marks ranging from 0 to 6.5 (including 1.4 percent who scored 0 marks out of 20 marks), 35.5 percent scored 7 to 11.5 marks and 46 percent scored 12 to 20 marks. The performance for this question was good since the majority of candidates (81.5%) passed the question by scoring marks greater or equal to 7. This implies that the candidates had acquired the intended knowledge, skills and competences on the assessed areas of the topic of Fluid Dynamics. The data stated above are summarised in Figure 9.

Figure 9: Performance of candidates in question 1

The candidates who scored 12 to 20 marks showed a good understanding of the question as they presented their responses systematically and correctly. Most of them were able to identify and apply the principle of continuity and Bernoulli's Principle which were necessary for carrying out the calculations in this question. Their responses were also free from errors, indicating that they mastered well the content of the topic of Fluid Dynamics and they were having adequate mathematical skills to carry out the calculations. Extract 2.1.1 shows a sample of responses of one of the candidates who did well in this question.


Extract 2.1.1

01.	(9)
	Given: P+ Soh+ Ysv2= K.
	is Required: Representation & each expression.
	Then: P , Prossure energy por unit volume
	39h " Patential enougy por unit Valume
	1/2 3 V2 is Kinetic energy per unit volume.

	(ii). Conditions for volidity y Bornowhis Thorn
	· · · ·
	(4) The fluid must be non- viscous
	(b) The fluid must be Incompressible fluid
	co The fluid flow must be steady fluids
	flow
	(d) The fluid must be Irratational fluid
	(b) solution.
	Dota siven
	Inno- chamble (di) = 1.5 cm
	Inn. piessur (P1) = 6.5 × 105 Pa.
	height & seem! flow (hz) = 8m
	height & seem of floor (hz) = 8 m
	diameter (d) = 0.75 cm.
	Regulni: Velouty (V1) and Prisure (P1) on outlet
	flee g bothroom
S	b) Corneli.
	र्वा = ० वर्ष
	/ //
	ha= 8m
	d1 = 1.5cm
	14
	Pi = 6.5 x 1.5 Ps
	•
	From: Continuity principle.
	/ /
	$A_1V_1 = A_1V_2$
	71111 711121
	V.= 4.VI

Az

	•
	$V_2 = \widetilde{\Pi} X (1 \le x i \epsilon^2)^2 X \le m/j$
	4
	11 (0.75 X 10-2)2
	4
	V2 = 20m/
	: The Velouty on outlet to second floor of both room a 20 mls.
	both on 11 20 ml
	2011/1
	Al.:
	Also: From: Bernaulis therain
	TAN DEMONITY PROFILE
<u> </u>	
01.	b) P+ /3v2+ +9h= k
	Pi+ /svi2+3sh, = Pi+ /svi2+ 1sh,
	$\frac{h_1 = \omega}{P_1 + \frac{1}{2} \int_{V_1}^{V_2} dv} = P_2 + \frac{1}{2} \int_{V_2}^{V_2} dv + f dv,$
	P1+ 1/tv2 = P2 + 1/fv2 + 1/5h,
	72
	Po= Pi + 1/3 (Vi2- V2) - fsh.
	13-11-11-11-11-11-11-11-11-11-11-11-11-1
	R = 6.5 X10 + 1/ X100 0 x (52-242) - 100x9.5x 8
 	R = 03/16 / Alternation
	P2 = 3.84 X10 8 Pa.
	12 = 3.04 X10 14.
	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	The pressure on outlet bothroom 11 3.84 × 105 Pg
	C) (F) Non- Vucous fluid
	Is the fluid which do not have internal
	frictional forus between the adjount layers.
	• •

OJ	d) From: Bernulis Theorem
	Pi+ 35h,+ 1/30,2 = Po+ 35h2 + 1/30,2
	For huntental pipe h= h= a:
	$P_1 + \frac{1}{2} \int_{1}^{2} V_1^2 = P_2 + \frac{1}{2} \int_{2}^{2} V_2^2$
	But: 0= AV.
	96 X10 = II X (6 U8) X V1
	V ₁ = 19.1 m/s
-	· Alu:
	Continuity principle AIVI = AIVZ.
	$V_{2}: A_{1}V_{1}$
	V2 = 11/4 (0.08) × 19.1
	T4 (0.16)2
	V ₂ = 4.77 m/1,
	Thun,
	3.5x10 5 + /x1000x19.12 = P2 + /x1000 x 4.77
	0 - C - 21 X10 Po
	P2 = 5.21 X10 Pq : The reading pressure in 5.2 X105 Pq.

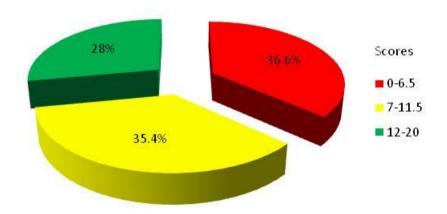
Extract 2.1.1, a sample of an answer from a candidate who managed to provide correct responses to each part of the question. For example, he/she was able to explain and illustrate by clear diagrams as shown in parts (b) and (c).

Those who scored 0 to 6.5 marks provided incorrect answers to many parts of the question while some of them solved a few parts of the question and skipped the others. Generally, the responses of lower achievers in this question showed that most of them were having inadequate knowledge on the topic of Fluid Dynamics, hence, provided inappropriate answers to most parts of the question. Extract 2.1.2 shows a sample of the responses of one of the candidates who scored poorly in this question.

Extract 2.1.2

1	(4) SECTION A	
	(i) P + Bgh + 12 V2 = Constant	
	(N) T (O) T	
	P - represente · Pressure.	
	f - represents density of liquid g - represents gravitation constant h - represents height	
	n - morrint anutation construt	
	h - raprovents height	
-	v - represents velocity.	
	(i) Fr spanal + 1, mv2 =	
	(ii) Eq strugh + 1 mv2 =	
	The state of the s	
	Et = 89h + 1802	
	72	
	Conditions:	
	- Energy total is cought to the extensi	al energy
	- Energy total is equal to the potential and scinchic energy ENV= + + 58/h + 1500 - Presure is equal throughtout P=1	-
	Property Is equal termeliated P=1	$P_1 = P_2$
	- Involver both of which and dynamic	prague
	otatic account - fall	·
	. static pressure = &gh: - dynamic pressure = 18V2	
	agrant & product - 2	
	(6), solu	
	4 = 1.5cm.	
	P, = 6.5 x (05 Pq.	
	V= 5mb	
	ik = 8m.	
	V = K	
	P = x	
		.0
1	(b)(i) solu	
	V=s	
		= legh
	P2 = P1 [12 - P3 [1] 12	= 8m1
		20.73
		= 4-7-3 115
	P ₁ Γ ⁴ (2 = P ₃ Γ ⁴ (1 h	
	7762 124	3 29
	h	- 52 - 52
	P3 = (P, r, 4/2) (r2/1)	1.3. h = 1.3.
	(r,412) (r,414)	4-1.3/
		

(-814
F3 = 3X6.5X105X(1.5X10) X(0.75) X (1.3)
(1.cx/cz/x 8 x (1.cx/c)) x (1.31)
63 = 3 x c x x (2 x 2 x 1 2 x 0.31 6 x 1.3
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
fg = 1.06808×(a) (.027×10)
1.027 × 10-15
P3:= 1:04 X1012 Pq.
P3: = 1:04 × 10 12 Pq. Pressure after pipe 15 1:04 × 10 12 Pq
(ii) velocity:
from,
Q = 4TI r
188
Y = 411EY
रि इगार
U/ 2(47/x(0.75)9)
1 = (4 t/x (6.75) 9)
V/L = 0.3164
V/1 = 0.0197 V/1 = 19.7 X 10 m sec


Extract 2.1.2, a sample of an answer from a candidate who gave incorrect answers to each question item. For instance, in (a) (ii) he/she named the symbol contained in each term of the given expression instead of writing the names of the quantities represented by each term.

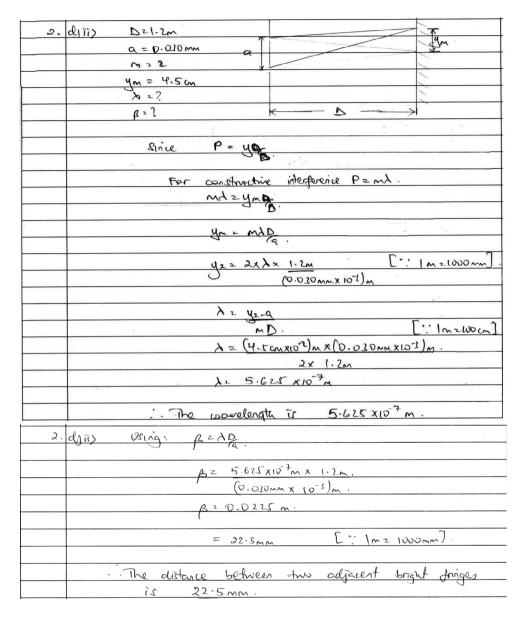
2.2.2 Question 2: Vibrations and Waves (Wave Motion)

This question consisted of four parts namely (a), (b), (c) and (d) of which, part (a) required the candidates to give the meaning of: (i) progressive waves, (ii) refraction of waves, (iii) diffraction of waves and (iv) standing waves. Part (b) required them to determine the amplitude and phase angle formed when two opposite progressive waves represented by: $Y_1 = 5\sin\left(wt + \frac{\pi}{3}\right)$ and $Y_2 = 5\sin\left(wt - \frac{\pi}{3}\right)$ form a standing wave. In part (c), the candidates were required to determine the end correction of the tube and the velocity of sound in air given that the shortest lengths of the resonance tube closed at one end are 31.6 cm when resounded to a fork of frequency 256 Hz and 20.5 cm when resounded to a fork of frequency 384 Hz. In part (d), they were required to: (i) define the term interference of waves, and (ii) determine the wavelength of light and the distance between two adjacent bright fringes given that: a viewing screen is separated from a

double - slit source by 1.2 m, the distance between the two slits is 0.030 mm and the second order bright fringe (m = 2) is 4.5 cm from the central line.

A total of 11,726 (60%) of the candidates attempted this question whereby 36.6 percent of them scored marks ranging from 0 to 6.5, 35.4 percent scored 7 to 11.5 marks and 28 percent scored 12 to 20 marks. These scores indicate that the performance in this question was good since 63.4 percent of the candidates scored more than one-third of the allotted marks in the question. Figure 10 illustrates the information given above.

Figure 10: *Performance of candidates in question 2.*


Among the candidates who performed well in this question, 4,690 candidates (0.4%) scored all the 20 marks allotted in this question as they were able to define correctly the terms progressive waves, refraction of waves, diffraction of waves and standing waves. Moreover, they derived correctly the equation of resultant waves formed by a superposition of given waves, hence deduced the required amplitude and phase angle of the resultant wave. They also used a correct formula to relate the end correction, length of the resonance tube and wave length, hence, computed the required values of end correction and velocity of sound in air. Others missed to score all the marks due to skipping some important steps in doing the calculations as well as provision of incorrect conditions which makes Bernoulli's equation valid. Extract 2.2.1 shows the responses given by one of the candidates who did well in this question.

Extract 2.2.1

۵.	a)i) Progressive wave is the periodic disturbance of particles
	that causes tronsfer of energy from one point to another.
	It is also referred to as travelling wave
	17 11 COLD INFORMATION TO BE THOSE MAIN COLD
	in Rytrashion of worsel is the bending of wouse as they pers from one neclium to another due to difference in the natural properties of those natural media.
	pars from one medium to another due to difference in
	the natural properties of these national media.
	ray air medium
	3
	glass medium
	Jan Henry
	"Graved ray
2.	april Diffraction of waves is the spreading of waves as
	they pass though an aperture.
	- Arthrolic - somes clappeds on the Gil or another I mall
	appeture mean greater diffraction and viewers.
	approprie mean great cuffrains, and vice of
	-1 C 1'- those are realtest would for all whose
	in) Standing weres these are resultant waves formed when
	the progressive waves with same amplitude, coowdergth and
	frequency travelling opposite against each other are superimposed
	in a certain medium.
)	
۷.	b) From Principle of Superposition of would.
	y z y r t y z
	The state of the s
	42 5 sin (wt+ m) + 5 nin (wt- m)
	3) (3)
	y=5 (sin (wt+1) + sin (wt-1))
	3 (3)
	From the fector formula:
	sin Pf sin Q 2 2 Sin (P+R) con (P-R)
-	y= 5 2 (in wit + m + m - m) cos (in + m - wit + m)
	3 3 (-2)

	4 = 10 sin (wt) cos (y)
,	y = (10 cos T) sin (w+0)
	O (3)
	Comparing with yz Asin (wit + 8)
	A 2 10 cm Ty
2.	b) A 210XI
	y A 2 2 units
	Here the resultant amplitude is a with
	where [A] = L < thus units can be mether, certimetre
	Alto. 0 from the comparison.
	Hence the phase angle formed is 0 rootions-
2.	b) A 210 X1
	7
	y Az 2 units
t restrainment	
	Here the resultant amplitude is 2 units
	where [A] = L thus units can be mether, certimetre
	Alto. Dz 0 from the comparison.
	Hence the phase angle stamed is O rooting-

	1 L 1 L
ಎ.	
	12 20 .5cm 12 31-6cm
	12= 384 Hz
	f1 = 256 Hz.
	From the illustration above;
	× = 1+c.
	l a la
	> zhte and > zbzte.
	But Vz.fl.
	But V2 ft. (4002+0)}
	V = 4f, Chec) = 4fr(12+c)
	4. (4+c) -4. (4.c).
	Hence for live
	de lite.
2	
2.	c) filit fic = felstfic.
-	A
	fili - fili : (fie - fie)
	c (fr-fi) = fili-fili.
	c = (fili-fili)
	(di d)
	C = (fili-fil) (dz-fi) C = (250 Hz x 31.6 cm - 2844 Hz x 20.5cm)
	() CHI () () () () () () () () () () () () ()
	(384H+ - 256H+)
	C 2 217.6 Hz.cm.
	128-42.
	c = 1.7 cm
	The end correction is 1.7cm.
	Section 17
	But v= 4filite) = 4fillite).
	sa v= 4. critc) = grante.
	N = 110 (1)
	V = 4f. (Litc).
	V = 4x25CH2(31.Ccm+ 1.7cm).
	V = 34099.2cm/s
	But Inzionen.
	22 34099.2cm
-	= 34099.2cmx/m
	100 cm
	· V = 340.992 m/s
	Hence the relatify of bund in air is 340.992 mls.
	A 11A
2.	distracturate of waves is the phenomenan of overlapping of
	the pre-more wants at the same that are manchingarts and
	two or more works of the same that are monochomadiz and
	coherent when they are superimposed on the same medium
	at the same time
	ou we same mine

Extract 2.2.1, a sample of an answer from a candidate who wrote correct explanations and showed clear illustrations and steps in performing calculations.

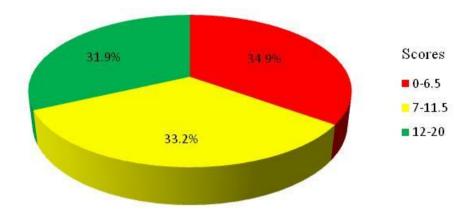
On the other hand, those who scored marks ranging from 0 to 6.5 marks in this question were lacking basic knowledge of the topic of Vibrations and Waves and some of them were having difficulties in understanding the demands of the question items. For instance, it was observed that some candidates failed to define the terms "refraction of waves" and "diffraction of waves" which are among the basic concepts in the topic of vibrations

and waves. Extract 2.2.2 shows the responses of one of the candidates who performed poorly in this question.

Extract 2.2.2

2 (a) (1) Progressive wave - Are the wave consisting of node and antinode.
(ii) Refraction of wave-
(ni) Diffraction of wavels -
and trades were referred to the wave which
(iv) Standing wave-refers to the wave which are stationary in given point.
ary speciality of the second
$\alpha \vee - \tau \circ (1, \pi)$
(b) Y, = 5 Sin (wt + T/3)
Y = 35in [wt - 1/3]
Salà
From
trom Y = a Sin (wt + 2πx)
Amplitude a = 5m.
,
$2\pi \times = \pi/2$
3
$\begin{array}{c} x = \frac{1}{2} \\ x = \frac{1}{2} \end{array}$
X = 7/3
3

2. (c) Solution
Data given
Frequency (Fi) = 256 Hz.
Frequency (Fe) = 384.
Fragisency (Fp) = 384. Length L, = 31.6cm
Lenghth Lz = 20:5cm.
F + F = FB,
256+ 384 = 640Hz
31-60m= 6.316 m
20'5 cm 2 0,205 m,
8.316+0,201 = 0.521 m
- 840 H
0:521
= 1228.4


Extract 2.2.2, indicates a sample of an answer from a candidate who attempted to define stationary waves by using the properties of progressive waves leaving other quantities undefined. Also he/she applied incorrect formulae in performing calculations ended with incorrect answers.

2.2.3 Question 3: Vibrations and Waves (Physical Optics)

This question comprised of four parts namely (a), (b), (c) and (d). In part (a), the candidates were required to define the term coherent source of light. Part (b) required them to: (i) mention three methods (apart from double slit experiment) that can be used to form interference pattern, and (ii) explain whether transverse or longitudinal waves could exist if the vibratory motion causing them were not simple harmonic. In part (c), the candidates were given a stem of the question which reads: "A beam of monochromatic light of wavelength 680 nm in air passes into glass". Then they were required to calculate: (i) the speed of light in glass, (ii) the frequency of light and (iii) the wavelength of light in glass. Part (d) required the candidates to find: (i) the angle to the normal of a second order maximum, (ii) largest number of orders that can be visible and, (iii) the angular separation between the third and fourth order images given that, light of wavelength 644 nm is incident on a grating with a spacing of $2.00 \times 10^{-6} m$.

A few candidates (29.2%) opted for this question. 34.9 percent of them scored marks ranging from 0 to 6.5 (including 4 percent who scored 0 marks), 33.2 percent scored 7 to 11.5 marks and 31.9 scored 12 to 20 marks (Figure 11). Based on these data the performance of the candidates in this

question was good since 65.1 percent scored more than one third of the marks awarded to the question. The performance in this question is higher than that of question 2 (constructed from the same topic) although the former question attracted majority of the candidates.

Figure 11: *Performance of candidates in question 3.*

Most of the candidates (31.9%) who did well in this question were able to give a correct definition of coherent sources and applied the required formulae for calculating the speed, frequency and wavelength of light in glass. Majority of them used appropriate formulae for finding the angle to the normal of second order maximum, the largest visible number of order and the angular separation between the 3rd and 4th order images. However, most of them failed to give logical reasons in 2 (b) (ii) which required them to explain whether transverse or longitudinal waves could exist if the vibratory motions causing them were not simple harmonic. Extract 2.3.1 shows an example of good responses for this question.

Extract 2.3.1

3. (a) Coherent sources of light are the s	cources producing	
	indire com continues	
(b) V. Newton's Hings-		
· Monda willow	· Mende burdes. · Lifetur (1,7 pibu;ur. · Menteur, Hust.	
House Bridge.		
· weeds turches		
(c) Data given: Wavelength of light \ \ \ = 680 nm = refractive index of glass, \(\mathbb{P}_3 = 1.5 \) i/ Let V2 be speed of sound light		
Wavelength of light \> 1 = 680 nm =	(200x10-dw)	
refractive liber of a lass the = 1.5	2 ·	
i/ Let V2 be speed of sound light	10 alenti	
	(-	
Ma = \ = V	(i)	
X2 X 2		
Mg = V1		
$ \begin{array}{c} $		
12 - 1		
3. (c) Where: $V_1 = Speed of light i$ = $3 \times log ms^{-1}$. = $P = V_1$ $V_2 = 3 \times log ms^{-1}$ $V_3 = V_1$		
3. (c) When: 1 = 5peco of 1911 1	n aur	
= 3×10-1112 .		
-		
11 3 XID8 mo-1		
1,52		
:. V2 = 1-97X108ms-1	•	
ii Let fi be frequency of Lie	lpt:	
· Francis		
\(\sigma \sum_{\epsilon} \gamma_{\epsilon} \gam		
$f_1 = \sqrt{1} = 3x$	(08 mo ~1	
, >/ 68c	XIOGE	
$V_1 = \lambda_1 F_1$ $F_1 = V_1 = 3 \times 1$ $F_2 = 4.41 \times 10^{14} Hz$	2 `	
0 - 1 60 11 tub	`	
: fi = 4.41x101 HZ		
iii/ 1 mt do by 11/m/docoth at 1	whit in alans.	
iii/ Let 1/2 be Wovelength of 1 From eqn(D): 18 = 2, = 2	-edici (c) dime	
· Louischich.	J.	
7,8 - 75/ =	\ \ \(\sigma_2 \)	
11/12		
#		
$\lambda_2 = \lambda_1 = 0$		
1 2 2		
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	080X10 m	
Ma	1.52 .	
:. X2 = 4·4736	8X10 for (= 44 J.36mi	

3.	(d) · Vala given;
	Wavelength \ = 644nm (=644x10m)
	Grating spacing, d = 2x10-6m.
	Colution:
	(d) · Dala alven: (Navelength) = 644nm (=644x109m) (Trating spacing, d = 2x1006m. (Solution: (Let 0 be augle to the normal for second Order maximum (163 n=2).
	maximum (63 122).
	• [700]
	$n\lambda = ds'n\theta$
	$\Delta n = \Delta n = \Delta n$
	a.
	$\Phi = \sin^2\left(\frac{d}{dx}\right).$
	d
	=Sin (2x 644 X10 m)
	=Sin (2x 644 X10 m) 2x 10 m
	= 40°.
	$\therefore \Theta = 40^{\circ} \cdot$
	iv Let Amex be largest number of Orders that an
	be Visible;
	iv Let Max be largest number of Orders that any be visible;
	- Max is Oblained when sin 0=1
	$\Rightarrow n\lambda = d$
	nmax = d = 2x102m
	> 644X109m
	- Mmax is Oblamed when sin 0=1 - Mmax = d = 2x10 mm - Mmax = 3 : 644x10 mm
	(Imax = 3.
2	(iii) Lat A be anauler commented:

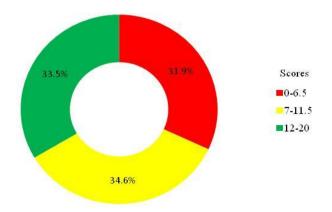
3. (iii) Let 0 be anguler separation.
· From:
$\theta = \theta_2 - \theta_3 \qquad -(1)$
1step; Find Oz.
From:
$\omega = dsig \circ$
$\sin \theta = 3\lambda$
3 d
02 = Sin (3)
7 (d)
= sin-1 (3x644x10 h.)
2 X10-6m
93 = 75°.

· For O4:
04 = SUR (4x644X159m)
of (started)
Fourth image an not be Oblaved since the maximum
Fourth image an not be Oblained in maximum NUMber of orders is 3.
Thus;
$\theta = \theta_3 - \theta_4$
$\theta = \theta_3 - \theta_4$ $= 75^{\circ} - \infty$
0 = 75
The angular reportation is 75°
'
(b) is It to Vibration, motion is not simple harmonic motion, Longitudinal waves would exist.
mutimi Long Etudural waves would exist.
- Thus is due to the fact that vibraling particles
(4) to oscillate to and two appear parallel
- Thus is due to the fact that vibrating particles (ii) to excitate to and for and tonce appear parallel to the direction of wave motion as in source when

Extract 2.3.1 shows the work of a candidate who was systematic in performing the question as he/she used the correct formulae and procedures except for part 3 (b) (ii) which was found to challenge most of the candidates.

Most of those who scored low marks in this question (34.9%) defined partially the term coherent source and mentioned incorrect methods that can be used to form interference pattern. Most of them were also not able to apply correctly the formula of refractive index of light passing from one medium to another to determine the values of velocity and wavelength of a monochromatic light in glass. This implies that during the teaching/learning process some candidates did not get enough exercises especially on the tested area of the topic. Extract 2.3.2 is the sample of responses given by one of the candidates who did all parts of this question and scored 0 marks.

Extract 2.3.2


	1-11
3, 0	Josefont seuros a light - P. Fre sources a light which produce bright firinge of port Tringe in Monochrometre wave in a schoon.
	- p for sources of light which produce bright firinge of
	Dork Tringe in Monochrometic Wall in a school.
	b) i'/ - pokroids - biffractions
	- biffractions
	- Rostmoto C
	- Remaction
	The second secon
	ill Trans verse wave will exist due to to Tollowing reason's
	if It is primed Mechanial by energy transformation and
	ill Trans verse Wave will exist due to to following reason's if It is promed Mechanial by energy flansformation and needs proberials to travell ill Are the one whose they propagate and Ulbate Perpeadically to others.
	I'/ to the one whose they prepagate and Vibrate Perpendic
	aller to others.
	o) Dat:
	o)
	• 1
	9 0 = .
	1) V = 1; From . Ug = V/
	Ug = \$\frac{1}{2}
	1.52 = V 680
	680
	1.52 =
	1.52 = t
	1.52 V = 1.
	1.52V = 680
	1.25 1.25
	V = 447.37 m/s.
	· ·
	V = AF.
	447.37 = 6807
	but $V = 17$. 447.37 = 6807 680 680 - 5 Frequency = 0.658 H2
2.	4)
	Date
	Maldonath - GG4AM.
	Date Watelength = G64 nm. Spacing = 2.00 × 10-6 m. Angle = 1.
	spainty = 2.00 x 10 - m.
	Anyle = '.
	from ·
	O = M1
	a.
	sin a = 2×669
-	a -00 X10-6
	5-0 = 6.64×10-7
	-5 Q = @ 12 3.7 X166

Extract 2.3.2, shows a sample of an answer from a candidate who explained the effect of interference of light produced by coherent sources instead of defining the term coherent source. He/she also provided reasons which do not carry any idea on explaining "whether transverse or longitudinal waves could exist if the vibratory motion causing them were not simple harmonic

2.2.4 Question 4: Properties of Matter (Surface Tension)

This question had four parts namely (a), (b), (c) and (d). In part (a), the candidates were required to mention any two factors which affect the surface tension of a liquid giving two typical examples to each factor. Part (b) required them to explain the reason for the molecules of a liquid at the surface of the liquid to possess high potential energy than those within it. In part (c), they were required to: (i) derive an expression for excess pressure inside a soap bubble of radius R and surface tension γ when the pressure inside and outside the bubble are P_2 and P_1 respectively, and (ii) calculate the excess pressure inside the soap bubble of a diameter 5 mm if the atmospheric pressure is 10^5 Pa and the surface tension of soap solution is 2.8×10^{-2} Nm⁻¹. In part (d), the candidates were given that: "water rises up in a glass capillary tube to a height of 9.0 cm while mercury falls down by 3.4 cm in the same capillary tube". Then they were required to determine the ratio of surface tensions of mercury and water assuming the angles of contact for water - glass and mercury - glass are 0° and 135° , respectively.

More than two thirds (70.1%) of the candidates attempted this question. 31.9 percent of those who attempted this question scored marks ranging from 0 to 6.5, 34.6 percent scored 7 to 11.5 marks while 33.5 percent scored 12 to 20 marks (Figure 12). The performance in this question was generally good since 68.1 percent of the candidates passed the question by scoring 7 marks and above. This implies that majority of the candidates who opted for this question understood well the concepts related to the topic of Properties of Matter.

Figure 12: *Performance of candidates in question 4.*

Most of the candidates who had good scores (12 to 20 marks) in this question were capable of providing logical factors affecting surface tension and supported their explanations with vivid examples. Moreover, a good number of them wrote correct reasons on why molecules on the surface of a liquid have more potential energy than those inside the liquid. Most of them also derived correctly the expression for excess pressure inside a soap bubble and substituted clearly the data for calculating the pressure inside the soap bubble. Extract 2.4.1, shows an example of the responses from one of the candidates who had a good score in this question.

Extract 2.4.1

1. Temperature. Increase In temperature lowers surface tension. Example. I Hot soup are tasteir than cold ones. because hot soup spread over a wider area on the binguise due to low surface lension. II. Hot water is better in cleaning washing. Clothes as it have higher penetrating power due to lower surface tension. II. Presence of impurities. Impurities do lower surface tension of the liquid. Examples. I. Soapy water is better drawing than pure water. Soapy water penetrate more the fabric due to lower surface tension. II. Oils and detergents are spilled on pond in order to I all marguito eggs. This is by lowering surface lension of water the right drawing surface lension of water the right discussion of the liquid have no net intermolecular force of attraction
Increase In temperature lowers surface tension Example I Hot soup are tasteir than cold ones because hot soup spread over a wider area on the tengage due to low surface lension. II Hot water is better in cleaning / washing Clothes as it have higher penetrating power due to lower surface tension. Il Presence of Impurities Impurities do lower surface tension of the liquid Examples: I Soapy water is better deaning than pure water. Soapy water penetrale more the fabric due to lower surface tension. II Oils and detergents are spilled on pond In order to I all marguito eggs. This is by lowering surface tension of water the regas drawn
Increase In temperature lowers surface tension. Example: I Hot soup are tasteir than cold ones because hot soup spread over a wider area on the tengane due to low surface lension. II Hot water is better in cleaning / washing Clothes as it have higher penetrating power due to lower surface tension. II Presence of Impurities Impurities do lower surface tension of the Isguid: I Soapy water is better dearing than pure water. Soapy water penetrale more the fabric due to lower surface tension. II Oils and detergents are spilled on pond In order to I all marguito eggs. This is by lowering surface tension of water the eggs drawn
Example 1. Hot soup are tasteir than cold ones become hot soup spread over a wider area on the language due to low surface lension. 11. Hot water is better in cleaning / washing Clothes as it have higher penetrating power due to lower surface tension. 11. Presence of impurities Impurities do lower surface tension of the liquid. Examples. 1. Soapy water is better dearing than pure water. Soapy water penetrale more the fabric due to lower surface lension. 11. Oils and detergents are spilled on pond In order to I all marguito eggs. This is by lowering surface lension of water the regas drawn
because hot soup are tasteir than cold ones because hot soup spread over a wider area on the tengane I due to low surface lension. II Hot water is better in cleaning / washing Clothes as it have higher penetrating power due to hower surface tension. II Presence of Impurities Impurities do lower surface tension of the liquid. Examples. I. Soapy water is better deaning than pure water. Soapy water penetrale more the fabric due to lower surface tension. II Oils and detergents are spilled on pond in order to I all marguito eggs. This is by lowering surface tension of water the regis drawn
because hot soup spread over a wider area on the longouse due to low surface lension. II. Hot water is better in cleaning washing Clothes as it have higher penetrating power due to lower surface tension. II. Presence of impurities Impurities do lower surface tension of the liquid. Examples. I. Soapy water is better dearing than pure water. Soapy water penetrale more the fabric due to lower surface lension. II. Oils and detergents are spilled on pond In order to I all marguito eggs. This is by lowering surface lension of water the eggs drawn
on the longue I due ho low Surface lension. 11. Hot water is better in cleaning / washing Clothes as it have higher penetrating power due ho lower surface tension. 11. Presence of impurities Impurities do lower surface tension of the liquid. Examples. 1. Soapy water is better deaning than pure water. Soapy water penetrale more the fabric due to lower surface tension. 11. Oils and detergents are spilled on pond in order to I all marguito eggs. This is by lowering surface tension of water the eggs drawn
Clothes as it have higher penetrating power due to hower surface tension. Il Presence of Impurities Impurities do lower surface tension of the liquid. Examples: I. Soapy water Is better deaning than pure water. Soapy water penetrale more the fabric due to lower surface tension. II Oils and detergents are spilled on pond In order to I all marguito eggs. This is by lowerness surface tension of water the eggs drawn
Clother 95 it have higher penetrating power due to hower Surface tension. Il Presence of Impurition Impurition do lower surface tension of the liquid. Examples: I. Soapy water Is better deaning than pure water. Soapy water penetrale more the fabric due to lower surface tension. II. Oils and detergents are spilled on pond In order to I all marguito eggs. This is by lowerned surface tension of water the eggs drawn
Il Presence of Impurities Impurities do lower surface tension of the liquid Exampless: 1. Soapy water 1s better dearing than pure water. Soapy water penetrale more the fabric due to lower surface tension. 11. Oils and detergents are spilled on pond In order to I all marguito eggs. This is by lowering surface tension of water the eggs drawn
In Presence of Impurition Impurition do lower surface tension of the liguid Exampless: 1. Soapy water 1s better dearing than pure water. Soapy water penetrale more the fabric due to lower surface tension. 11. Oils and detergents are spilled on pond in order to I all marguito eggs. This is by lower surface tension of water the eggs drawn
Exampless: 1. Scapy water 1s better dearing than pure. water. Scapy water penetrale more the fabric due to lower surface tension. 11. Oils and detergents are spilled on pond In order to I all marguito eggs. This is by lowering surface tension of water the eggs drawn
Exampless: 1. Soapy water 1st better draving than pure. water. Soapy water penetrale more the fabric due to lower surface tension. 11. Oils and detergents are spilling on pond In order to I all marguito eggs. This is by lowering surface tension of water the eggs drawn
Exampless: 1. Scapy water 1s better dearing than pure. water. Scapy water penetrale more the fabric due to lower surface tension. 11. Oils and detergents are spilled on pond In order to I all marguito eggs. This is by lowering surface tension of water the eggs drawn
Exampless: 1. Soapy water 1s better dearing than pure. water. Soapy water penetrale more the fabric due to lower surface tension. 11. Oils and detergents are spilled on pond In order to I all marguito eggs. This is by lowering surface tension of water the eggs drawn
1. Soapy water 15 better drawing than pure water. Soapy water penetrale more the fabric due to lower surface tension. 11. Oils and detergents are spilled on pond In order to I all marguito eggs. This is by lowering surface tension of water the eggs drawn
due to lower surface tension. 11. Oils and detergents are spilled on pond In order to I all marguito eggs. This is by lowering surface tension of water the eggs drawn
due to lower surface tension. 11 Oils and detergents are spilled on pond In order to Iail marguito eggs. This is by lowering surface tension of water the eggs drawn
In oils and detergents are Spilled on pond In order to Iall marguito eggs. This is by lowering surface tension of water the eggs drawn
lowering surface tension of water the eggs drawn
b. The liquid in the interior of the liquid
b. The liquid and the interior of the liquid
b. The liquid in the interior of the liquid
\mathcal{A}
have no net Intermolocular force of altraction
On It as it's equally attracted from both sides.
Now when the man the male was to
workedone has bee to be done against the downward force experienced this klork is then converted and stored
the downward force experienced This
Work 1s then converted and stored
In form of potential energy when the
In form of potential energy when the motione reach the surface thus higher potential

A).	Chergy
	consider
	(A)
	net downward force
	ofathradion
	ho net force
	of attraction
	· · · · · · · · · · · · · · · · · · ·
4_	C. Beriving expression of excess pressure
	Inside Soap bubble
	Consider
	P ₁ (g)
	The surface of the Contest
	The soap bubble has two surfaces in contact with air thus force due to surface tension
	th-
	40 = 8×411R.
	but the force exter exerted due to the
	presure outside
	$P_{i} = P_{i} \pi R^{Q}$
	but also the force due to pressure Inside.
	42 = P2 MRZ
	Now
	f2 = f, + fo'
	P2 17 R2 = P1 17 R2 + 417 R8
	thus Patira-PITIRA = 4TIRX
4	$(P_2 - P_1) \Pi R^2 = 4 \Pi R \delta$
 	
ļ	thus '
	$(Pa-P1) = 4\Pi R \delta$ $\Pi R a$
	$(Pa-P1) = \frac{48}{R}$
	$(P_{a}-P_{1}) = 48$
	R.
	Whereby
	(Pa-Pi) = Excess pressure Inside
	Whereby (Pa-Pi) = Excess pressure Inside the bubble
	the bubble. The bubble of the bubble.
	P = Radius of the bubble.
	Kdamm of the possile

ií y from
0 0 - 4x
$\rho_{\alpha}-\rho_{1}=4\sigma$
$P_{a} = 48 + P_{1}$
R lab P (and a lab lab lab the
but P1 (pressure outside) is the atmospheric Pressure
' · · · · · · · · · · · · · · · · · · ·
Pa = 48 + Pa .
but also & = diameter
$p = 5 \times 10^{-3} = 2 \cdot 5 \times 10^{-3} \text{ m}$
Pa = 4x2-8x10-2 + 1x105
2 5x10-3
P2 = 100, 644-8 Pq.
The pressure Inside hubble = 100,044-8Po

4d	consider
	7 2
	90cm
	3-4cm
	water mercuny.
	Now from: h = 28 coso Sgr: but for water: hw= 28 w coso Swgr
	h = 28 coso
	fgr'
	but for water
	hu= 27m (050
	Swar
	J
	Jw = hw Swgr (1).
	2 COLO

but for mercuny
hm = 27mcaso,
ingr.
O
Vm = hm Smgr (11).
2 (00)
Now equation (11) by (1) we have.
m = hm3m x Caso,
Sm (0283 pmgm)
then
$\delta m = -3.4 \times 10^{-2} \times 13.6 \times 10^{3} \times \text{Cos o}^{\circ}$
σω Cos 135° 9x10-2x1x10.3
= 7.27:1

Extract 2.4.1, a sample of an answer from a candidate who mentioned correct factors affecting surface tension including logical reasons to support the answers. He/she attempted correctly all other question items.

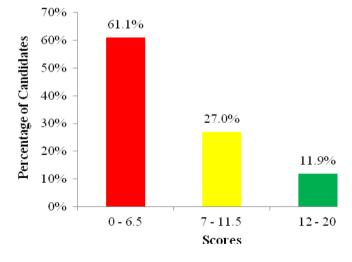
Conversely, most of the 31.9 percent of the candidates who had poor performance in this question, gave incorrect responses in relation to the factors affecting surface tension and were unable to derive appropriately the expression for excess pressure inside the soap bubble. In addition, it has been noted that, most of these candidates used wrong formulae, hence, failed to obtain the correct answers in question items which required calculations. Extract 2.4.2 shows an example of the responses of one of the candidates who had poor performance in this question.

Extract 2.4.2

04.	(a) factors affecting surface tension of the liquid
-	
	1. surface area of that hours
	aluxys large surface area expensive lausures tensión borco surface tensión i preportand to be
	tension Lonco sufaco tensión i preparand total
	Shall area
	example prend states when you put sopp with
	in the water of large surple the bubbles soon disapport
	in the water in longe surprese the bubbles soon disapport
	_
	2. Pressure exested on the suspect of the hours
	the pressure exected on the surple of the liquid peal
	of the surface tension (as It'is large pressure in shall some
	Lence the pressure applied should be low
	example the high pressure when applied to to super
	block the surpea tension bernier to support thing
	We floating needle and pound scater

(b) This is because the Holeculer on the surper can used to act for the surface tension also the molecules within are high accumulated up well as flay hold those of orefer hence the order Lolember Leve more potential energy.
buble below of Rdius R and surpre fersiony when the pressure inside the buble is Prad
*** The state of t
let the pressure act on the artiste of the bubble we consider as almoplan's pressure (P2)
C(1) The difference in pressure it given by The plance pressure — hards pressure P2 — P1 Since P = F
lener to supre tersion = F
F = surper tension (Y) R-P1 = Y
but A in given dieneter D = 2R P2 -P1 = 2R laree steam
P2-P1= 2R Leve stown
Y

4 (1)	Pata Given
(4)	Directer = $5mm = 5x lo^{-3}m$
	Pheophia = 105 Ra
	Pressure usate-?
	X = 5.8 × 0-5 Mm]
	(4.15)
	Salahan
	Rente formed R-P1 = 2R = D
	R-11-ZR-D
	$P_2 - P_1 = D$
	V
	Pr = P + P1
	Y
	,
	5-8×10=54+12262
	5.8 X (c) 54/2
	P2 = 0.1786 + 103 Pa
	N = 0 1186 + 10 13
-	B = 1.786 × 10-5 Pa
	1) 1100 / (0)
	Lenco to pressur exerted Insiste is 1.786x0 To
020	pata Crien
(d)	height rie = 900 cm (urty)
	least full = 2:40 (1. (Lerun))
	Leight full = 3.4 (Leruny) augle of contact (wetr-gloss) = 00 cc
	aple of contet (conny glas)= 1310
	ratio of sufface tension sof Leruny and water
	Tille of soul accession 200 mind and and bed


Extract 2.4.2, indicates a sample of an answer from a candidate who provided long explanations to support incorrect factors affecting surface tension. He/she also applied incorrect arguments to derive the formula for excess pressure inside the soap bubble while in part (d) he/she analysed the data without using them.

2.2.5 Question 5: Properties of Matter (Elasticity and Kinetic Theory of Gases)

This question consisted of parts (a), (b), (c) and (d), of which part (a) required the candidates to give brief explanations on the following two observations: (i) bridges are declared unsafe after long use, and (ii) iron is

more elastic than rubber. Part (b) required them to calculate the force which stretches a composite wire of a diameter 1 cm by 1.2 mm given that the wire is made up of copper and steel of lengths 2.2 m and 2 m, respectively and the Young's Modulus for copper and steel are 1.1×10^{11} Pa and 2.0×10^{11} Pa, respectively. Part (c) required the candidates to explain what do they understand by the terms: (i) a perfectly elastic material, (ii) the ultimate tensile strength, (iii) an elastic limit, and (iv) Poisson's ratio. In part (d), it was given that: "two rods of different materials but of equal cross - sections and lengths of 1.0 m each are joined to make a rod of length 2.0 m. The metal of one rod has coefficient of linear thermal expansion $10^{-5}/^{o}C$ and Young Modulus 3×10^{10} N/m² and the other metal has the values of $2\times10^{-5}/^{o}C$ and 10^{10} N/m², respectively". Then, the candidates were required to calculate the pressure which must be applied to the ends of the composite rod to prevent its expansion when a temperature is raised by $100^{o}C$.

A total of 13,234 candidates corresponding to 67.7 percent attempted this question. Out of them, 61.1 percent scored marks ranging from 0 to 6.5, 27 percent scored 7 to 11.5 marks and 11.9 percent scored 12 to 20 marks (Figure 13). These results imply that the performance of the candidates in this question was average, but leaned towards the lower margin as only 38.9 percent passed the question.

Figure 13: *Performance of candidates in question 5.*

The candidates who had a poor performance in this question provided answers with many errors. Most of them gave incorrect reasons on parts which required brief explanations. Their responses indicated that they lacked knowledge and various skills which were required to make them competent in solving the questions. For instance, most of them were able to extract data given on the stem of the question, but failed to recall or derive the appropriate formula for substituting those data. Extract 2.5.1 shows the answers given by one of the candidates who performed poorly in this question.

Extract 2.5.1

5	(a) (i) The Bridges are declared unsafer after long use
	because when extending for a longtime it become weaker
	where it can undergo elastic limit and cause of to
	break.
	(ii) hon is more elastic than rubber becomes nubber
	can undorgo deformation before reach elastic limit
	While Inn break after reach elastic limit.
5	(b) d = 1cm
	L1 = 2.2M
	Lz = 2m
	e = 1.74M
	-(au = 1.1 × 10 Pa
	-1 = 2x10" Pa
	F= Y. Dalo
	F = 1/2 EAe
	(c) (i) A perfectly plastic material is the type of elastic.
	Material Which
	(92) The ultimate tensile strength is the strong Material,
	Which are elastic in nature.
	(PC) Elastic limit is the point where elastic is
	not exceeded:
	(iv) poisoni ratio
5	(d) L. = 1.0 M
	L2 = 1:0 m
	$\alpha_1 = 10^5 / \%$
	7 = 3x13°NM
	x. = 2x10°/c
	Mr = 1010 hws
	0. = 100°C
	$F = 7 \cdot \Delta \propto \cdot \Delta \Theta$ $Q_1 = 0 \tau$
	Ay = (3x1000 - 1000) = 2x1000
	$\Delta \propto = (15^5 - 2x_15^5)^2 = -1x_15^5$
	A0 = (100 -0)°C = 100°C
	F = 20 X 106 N.
	P = 8/4
	x = 10-2h.
	Process of - day of day
	= (3x10304 10P) NM2
	= 4 X (3.0 NM
	.: The pressure applied is 4 X 10 0 N M-2

Extract 2.5.1, indicates how the candidate provided incorrect responses to each question item. For instance, in part (b) he/she used the formula $F = \frac{1}{2} \frac{EAe}{L}$ instead of $F = \frac{EAe}{L}$ and therefore received incorrect answer.

Those who scored high marks (11.9%) in this question included a 0.4 percent who provided correct answers to each part of the question, hence, scored all the 20 marks awarded for this question. The rest were challenged by some parts, especially those which required explanations. This implies that those candidates understood the demands of each question item and were having adequate knowledge and competence on the topic of Properties of Matter. Extract 2.5.2 shows an example of the work of a candidate who managed to give correct answers to all parts of this question.

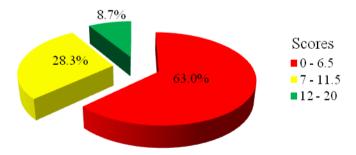
Extract 2.5.2

(ک 5	Bridges applyaged unsage after long
	Brigader gestactog morale after land
	Subjected to stress for a long time they become weak hance as stress
	they become weak hance as stross
	sucrease also their strain increase
	hence they will finally break.
	il) Iron is more plastic than rubber
	Sociales when the same force applied in
	Exam is applied in rubber for rubber
	ixon is applied in white for cappaged to
	iron honce its modulus of chaticity become
	small compored to rear, have iren is
	more plantie than rubber.

5.7	Data.
	Righter (d) = 1(m.
	lough of colbest (10) = 5.5W.
	langth of sleet (12)= zm.
	total extension (et) = 1.5 mm;
	Vouna Modular of Corner (XI) - H Kis 180.
	Young muching of steel (2) = 2x16/1 Pa.
	2
	Force (F) = is yequired.
	5 dyn 1 2-2 m
	L(= 1, = 2M
	t Capper Stral.

26/2
total extension ex = eten
= extension of copper (81) + extension of year(82)
xxxevien of (ett. (1) + (x/x/2)
et= 21+ 82.
des
from Young modulus ()= Stress (A)
Strain (X)
Y = FL
As:
R= FL7
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
$copp_{4x}. \qquad stepl$
A Y, AY,
b F. Fl.
$E_{T} = F_{1} + F_{2}$ $AV_{2} = F_{1}$
$R_{T} = F \left(\begin{array}{c} L_{1} + L_{2} \\ \hline A \end{array} \right)$
A 1 7, Y2
F= 2. A
2 (L1 + 12)
7, 7
$8L = 1.5 \text{ Ww} = 1.5 \text{ X/O}_3 \text{ W}^-$
4 = 11 d; = 11 (0.01) = 1.82 X 102 W3
4 4
Soy force.
$\frac{1+x^{n}}{5\cdot 5} + \frac{5 \times 1^{n}}{5}$ $\frac{1-5 \times (9.3 \times 3-85 \times 10.2)}{5}$
2.2 , 2
11/X1/1 + 5 X10/1)
T. M.
7)) - 1)
F = 3141.59N.
-'- Farcx ic 3141-59 N
- TOTCX 1. 0141 01 10

,0	
J. (1) longed plastic Majerials
	- are the materials which do not
	regain its the original size and
	reach his an anti-roof
	epetho offer sommer of goldinised
	forc x.
	is almala tensila strangth
	-> falous to the maximum stress 11 force
	cas losses a bush or many constant
	with stand without breaking or before it
	PLEAK.
	in Flatic limit of extension - tegers to maximum points in which material can regain to its original size and shape after removed of deforming force.
	- regers to maximum points in which
	material (an regain to its original
	SIZE and shape after removal of
	solowing tores.
	ix) Poisson's & gatio
	JY Poisson's & ratio - Pagers to the ratio of lateral strain to longitudinal strain.
	Strain to longitudinal strain.
	AL,
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
2.9	Data.
-	Total length (L1) = 2 m.
	Total length (LT) = 2M
	coefficient of more expansivity (x) = 10-10c
<u> </u>	Young Makely of (Y) = 3x(6 AM
 	Cofficial & WI = 40,000.
	Young Holdy of (Y) = 3x100 Mm² Coxflictant of linkor exponsivity (x) = 2x10-5/2 Young notulus & (x) = 100 N/m? Lemperature Change (AD) = 100 °
	Proserve (B) = Required.
	total extension (RT) = extension at body 1 (81) + extension of
	1 27 = C1 + R2.5
	also
	1 + 20

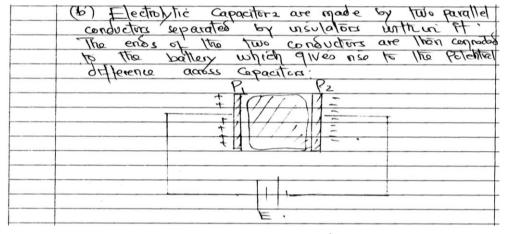

5 d from linear expansivity = e LAB
R= 0/48.
RI = XI, RO.
$\chi_2 = \alpha_2 \setminus \Delta \alpha$.
T
xt = \(\(\frac{1}{1} \) \(\frac{1}{1} \) \(\frac{1}{1} \) \(\frac{1}{1} \)
des, Young - Street (FX)
modulu() strain (%)
Y = F L
As
$C = FL$ $X_1 = FL$ AV_1 $R_2 = FL$ AV_2
$x_1 = \mp L$ $x_2 = \mp L$
AV.
$R_{T} = FL + FL$ $AY_{1} \qquad AY_{2}$
AY, AY,
* = */(\/ - + \/) .
* T = * (\
pat = b (biennie).
$R_{T} = P \cup \left(\frac{1}{1} + \frac{1}{1} \right) \left(\frac{1}{1} \right)$
$\chi_{L} = \chi_{L} \left(\chi_{L} + \chi_{L} \right) = -(1)$
5 than combine equation (i) and (ii).
X, 140+x21 10= Pr (X, + X)
YOV (x, +x,) - PV (1, 1, 1, 2)
$\nabla O \times (\alpha' + \alpha') = b \times (\lambda') + \lambda'$
10 (x,+ x2) = P [Y2 + Y1]
$Q_2 = \Delta \Theta \left(\alpha_1 + \alpha_2 \right) Y_1 Y_2$ $\left(Y_1 + Y_2 \right)$
(11+12)
6 = (109 × (10 + 5×101) (3×198 × 3×1010)) NM3
$6 = (3 \times (0_{0} + 10_{10}))$ $6 = (109 \times (10_{-2} + 5 \times (0_{1})))$ $(3 \times (0_{0} + 10_{10}))$ $(3 \times (0_{0} + 10_{10}))$ $(3 \times (0_{0} + 10_{10}))$ $(4 \times (0_{0} + 10_{10}))$
6 = 55-2×10, MW3.
= Prassuce will be 22.5 x10 N/m2.

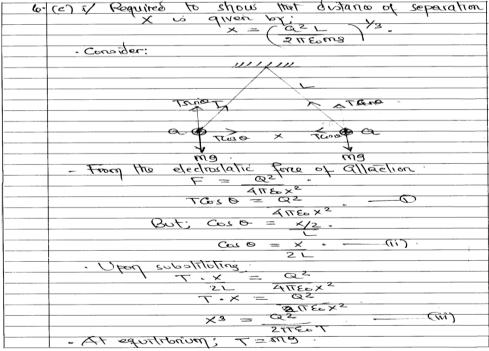
Extract 2.5.2, a sample of an answer from a candidate who was able to provide the reasons on why the bridges are declared unsafe after long use, as well as why iron is more elastic than rubber. Moreover, he/she gave appropriate responses to all other question items.

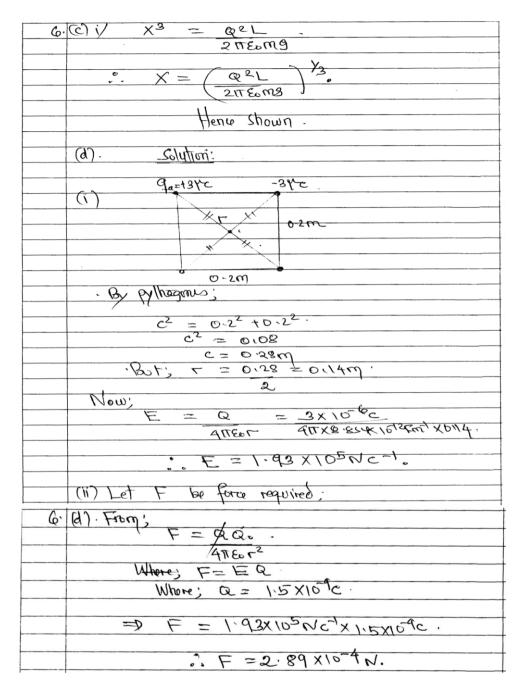
2.2.6 Question 6: Electrostatics

This question comprised of four parts namely (a), (b), (c) and (d). In part (a), the candidates were required to explain the effect of dielectric material on the capacitance of a capacitor when the capacitor is: (i) isolated, and (ii) connected to the battery. Part (b) required them to explain how electrolytic capacitors are made. In part (c), the candidates were given the question which read: "Two point charges each of mass m and charge Q were suspended at a common point by two threads of negligible mass and length L. If the two point charges were at equilibrium show that: (i) the distance of separation $x = \left(\frac{Q^2L}{2\pi\varepsilon_o mg}\right)^{\frac{1}{3}}$, and (ii) the angle of inclination, $\beta = \sqrt[3]{\frac{Q^2}{16\pi\varepsilon_o mgL^2}}$." In the final part (d), they were given a stem of the question which read: "Two charges $q_a = +3\mu C$ and $q_b = -3\mu C$ are located 0.2 m apart in vacuum". Then, they were required to find: (i) the electric field at the midpoint of the line joining the two charges, and (ii) the force experienced by the negative test charge of magnitude $1.5\times10^{-9}C$ placed at that midpoint.

Only 18.5 percent of the candidates opted for this question. Out of them 63 percent scored marks ranging from 0 to 6.5 (including 16.8 percent who scored 0 marks), 29.3 percent scored 7 to 11.5 marks and 8.7 percent scored 12 to 20 marks (Figure 14).

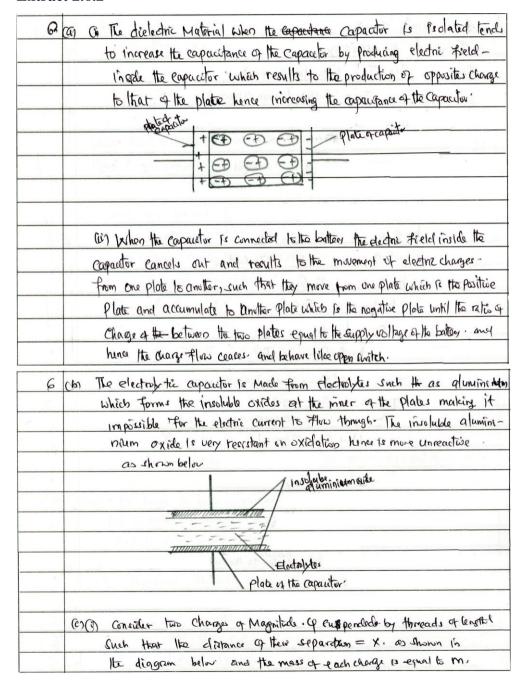



Figure 14: *Performance of candidates in question 6.*


Most of those who had poor performance (63%) in this question provided responses characterised by incorrect concepts, formulae and errors in computation. A good number of them attempted few parts of the question items leaving other parts. Generally it was noted that, their failure in this

question was contributed by various reasons including: low ability to recall the important concepts of the topic, poor competence in derivations of formulae and lack of knowledge of solving questions involving two or more forces acting on a charge. Extract 2.6.1 represent an example of a responses from one of the candidates who had a poor performance in this question.

Extract 2.6.1



Extract 2.6.1, indicates a sample of an answer from a candidate who made incorrect resolution of components of tension in part (c) as well as a wrong illustration of the position of point charge in part (d).

Among those who performed well, 0.1 percent were able to provide correct answers to each question item, hence managed to scored all the 20 marks. Others scored less than 20 marks due some errors which were mostly

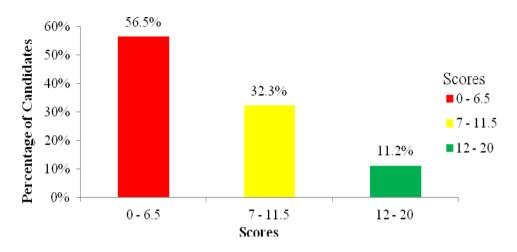
caused by lack of accuracy, and critical thinking abilities in giving answers especially of parts (a) and (b), which required explanation. Extract 2.6.2 shows responses from one of the candidates who responded well in this question.

Extract 2.6.2

6 (6) (6)
L/O/O Tana
T.COG P.
0
F Trinca Trinca F
Xon. mg.
Wen Q= B.
Then, from the diagram above, Toina = Fe
Where $fe = 10000 = 02$
ων Fe = 101001 = 02 4πενχε 4πεχε.
Heno, Taña = 9201;
4(Teax2
Hso, Teoro = mg (il)
durding equation & by (2)
73/nQ = 92
dividus equation & by (i) Trina = 92 Tasa 4180x2 mg.
taa = 92
4ficox emg.
but from the diagram, tand= X
hence, $X = \omega z$
2L 4 Tro x2mg.
2LQ2= Allox3mg.
LQ2 = QTEO x3mg.
Xs = LQe
ર્ગારા મુદ્
Quberrot both rides.
$\frac{1}{\sqrt{3}} = \frac{1}{2} \frac{1}{1} \frac{1}{1}$
Hone, Proved, X= Q2L /2.
217 Forms

6	(c) (d) Angle of inchination from the diagram
	no . In
	15 damies 12 bross 12st 12 = 3 Do
	Ret From the Bliggram, above, tan 18 = X
	But from the Bliggam, above, tangs = X
	when X = 3 cp21 .T.
	्रेशक गुरु
	hence, ten B = qeL
	2178 mg / 8.2L.
	3 = 1 per 7
	2L / 2ligo mg.
	0.21
	9 Q2L
	N (BT2) SILCO WE
	ې مو
	16116 nd 15.
	# . / 01 . 5 1 0
	Hence the angle of inclination is . De
	3 Glisonge.
	Hence Power
6	@1 @1 gwon Pa -+ sMc, and Do =- 3Mc
	d=0.2m
	Electricis field at Mill point/piningthe two change=?
	from E= 19
	4ffeor ²
	There mark.
	4RX
6	(tsuc + suc)
	411&x (0.2)2
	= 6Mc
	4118x (0/2)2.
	= 135x10 Nc.
	-: Electric feeld at the Midpoint printing-between two changes 1.35x106N/c

(12) to force experienced.
Consider he toyo changes.
Pa x Q. 0.2-x. Qa.
0,2
Tandou the distance X: T 9A - 1 9be AllEOX2 AllEO(1.2×)2
1 9x = 1 9x
9a = Sb Re (0.2-K) 2
DISHCX6 = DISHC (DIS-X)2.
$X^{2} = (0.2-X)^{2}$
X== X=-0.4x,+0.04
X5-0.4x 40.04 x 50.
0,4x = 0,04,
x = 0.04
X=0.1m.
hance the force experienced when the change of sophaced
Fa = 9a φ 4π (ο·υ) ²
(6.1)2-
Resultant force = $fatB$ $Fa = 3x16^{6}x \cdot 1.5x6^{6} = 4.05 \times 16^{3.}N$
4152×(0) = 4,05×(0,00)
6. (a) and the force experiences, For = 3x10 x 1.5x109
4/(x(8.85x(c)(2)x (0.1)2.
= 4.05 X16 7 N'
Hence the fire expersionar P = Fatfis.
E = FIOTXIEZN,
= 8.1X123.N.
.: Hence the Force experienced = 8.1×103 N.


Extract 2.6.2, shows a sample of an answer from a candidate who provided a good illustrative diagrams and resolved correctly the components of weight. Also he/she calculated correctly the forces acting on the point charges and verified systematically the given expressions.

2.2.7 Question 7: Electromagnetism

This question consisted of five parts namely (a), (b), (c), (d) and (e). Part (a) required the candidates to: (i) define the term Ballistic galvanometer, (ii) state two conditions to be fulfilled for the galvanometer to be used as a ballistic galvanometer, and (iii) use laws of electromagnetism to show that the charge delivered to the galvanometer does not depend on how long it takes to remove the search coil from the magnetic field. The stems of the

question were given as 'a small flat coil of N turns and area A with its plane perpendicular to the magnetic field of flux density B, a search coil connected to the ballistic galvanometer and the total resistance R of the circuit'. In part (c), the candidates were given a stem of the question which read: "A circular coil of 300 turns has a radius of 10 cm and carries a current of 7.5 A". They were then required to calculate the magnetic field susceptibility at: (i) the centre of the coil, and (ii) a point which is at a distance of 5 cm from the centre of the coil. In part (d), they were required to define: (i) ampere, and (ii) hysteresis. In part (e), they were given a stem of the question which read: "Two parallel conductors A and B are situated 0.16 m apart. Conductor A, carries a current of 4 A and conductor B carries a current of 8 A". Then, the candidates were required to calculate the distance from point A to a point where the magnetic fields due to A and B cancel each other while ignoring the effect of earth's magnetic field.

A total of 2,996 candidates constituting 15.6 percent attempted this question whereby 56.5 percent of them scored marks ranging from 0 to 6.5 (including 9.4 percent of those who scored 0 marks). 32.3 percent scored 7 to 11.5 marks and 11.2 percent scored 12 to 20 marks. The candidates' performance is given in Figure 15. Generally, the performance of the candidates in this question was below average since only 43.5 percent passed the question. This indicates that most of the candidates did not understand well the assessed content in the topic of Electromagnetism. Similarly, the performance in the same topic for the year 2017 was weak (Appendix A) whereby only 21.5 percent of the candidates passed the question. However, despite of the noted improvement, improvements are required on the teaching/learning materials and methodology for the purpose of raising the ability of the students to understand, retrieve and apply thoroughly the knowledge electromagnetism in solving various problems.

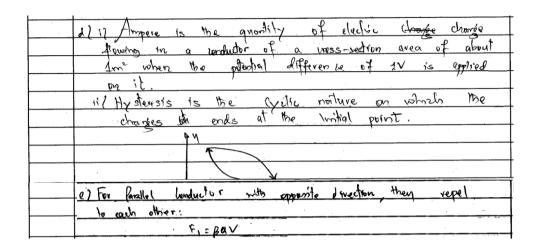


Figure 15: *Performance of candidates in question 7.*

Most of the candidates (56.5%) who scored low marks in this question provided responses which were poorly organized. Their definitions and explanations possessed some misconceptions and contradictions making the responses wrong. Others failed to answer some parts of the question especially those involving calculations. Most of those candidates had poor communication skills and lacked computational ability. Such skills and abilities are deemed important in answering this question, since most of its question items required explanations, derivations and calculations. Extract 2.7.1 show the responses given by one of the candidates who performed poorly in this question.

Extract 2.7.1

	7.	a) i) Ballishie Galvenomater is a device used to measure
		the direction of a wevent due to the influence of
·		majorat torque which leads to the relation of the
		(60)
		111- The Galvamonster should be connected with the external
		devie
	-	The Galvanometer should be under the influence
		of magnetic fields
-		
		c? - Metal, Iron and Steel

Extract 2.7.1, a sample of an answer of a candidate who defined a ballistic galvanometer as a device used to measure the "direction of a current" while it "measures charge". He/she also mentioned magnetic materials as metal, iron and steel instead of ferromagnetic, paramagnetic and diamagnetic. Generally, all responses given in this extract were incorrect.

The group of those who performed well (11.2 %) in this question, consisted of 300 candidates (0.1%) who managed to score all the marks allotted in this question. Those candidates were able to define precisely the term ballistic galvanometer and explained well the conditions to be fulfilled for a galvanometer to be used as a ballistic galvanometer. They were also able to apply the law of electromagnetism to deduce an expression for induced charge in a coil, hence, managed to verify that "charge delivered to the galvanometer is independent of time taken to remove the search coil". In addition, most them showed good ability to recall the formulae for magnetic field strength at the centre and at a point along the axis of the coil and described correctly the three magnetic materials (Ferromagnetic, Paramagnetic and Diamagnetic materials). Extract 2.7.2 shows one of good responses for this question.

att act 2.7.2
to Ballistic Galvanander - Is a device which is used to detect the.
which is used to detect. The
presence of charger by using the principle of electromagnetic (nduction.
Induction.
(oil which have several numberot
coil which have several number of
(b) It must be capable to produce charges when their is achange in- magnetic star linking withing leaching coil. (c) It must have a resistance.
(b) It must be capable to produce
charges when their decharges.
magnetic state (military were)
(d) It must have aresultance.
to (iii) Fran.
Ntony 6
from.
E-IN, E-dND
but I = dq
1 D 10 - 1 N T
had = dND
RdQ -dNQ
RdQ - d(NQ)
ofinist Rd = Nd P
$(\alpha - 1)(\beta)$
Q - NBA
Q - NBA
R
(0) $ RBR$
(Charges) R-
Mondad Charges - NBA
,
This eshaw that Deliveral Charges 15 indep
This eshow that Delivered Charges Is Indeposed and for the franke force to remove the seaching Cost.
He reaching Coil.
ive ,

701	
300 . Cu	en
N =	300°
+ · · ·	= 7.5A
(1) Ma	gnetic field at the tenter of the Cool-
B	- Mc] = (475×75)×300
- 0 0	Magnetic filelel at Melenter = 0.014T
7b. at	0,02m.
B -	= (UONI) x7 = (UTX10 \$300x7.5)x011
	3 0. OIT
(C) (Upplara	magnetic makeriels - are materials which can be weak magnetic in the direction of magnetic field:
(P) D!	magnetic Materials - are materials which can be weak magnetized
	In opposite to the direction. of external magnetic
(c) 1	which can be strongly magneticed in the direction
	of external magnetic
1 1	gnets cheleral Parmagnetus ferromagneta materials materials
Have 1	Vegative Value - Have small Have large
87 m	agretic succeptibility positive positive value of of magnetic
	magneticity fuscestibile
	14 14 14 1 1 1

Fally Ampère Is astrongth of the brent flowing through the two parallel lung wife of infinite length placed I'm opert in a vacume to develope a force of 2x10TN.
flowing through the two prouted
lang withe of infinite length
1 develope a tarce of 7 x10 N.
(il) Hysterius - laging it magnetic their density behind the magnetizing
density behind the magnetizing
force.
7e Gue 1 - 0.16m. IA - 4A IS - 8A.
d = 0.16m.
TA - 4A
15 = 81
Jan. (x x 0, 16x)
B = UoT
217d'
B = UoI 217d' BA = BD UoIA = UoI3 211× 211(0:16-x)
$\frac{1}{2\pi i} = \frac{1}{2\pi i} = 1$
211/2 241(01/6 /9
4 = 8 X (D:16-X) 4 = X
× (D·16-x)
8 0:16-x.
1 - × 2 0:16-x
2
3+ = 0.16
X - 0,023W
The dytance will be 0.055 M.

Extract 2.7.2, shows the responses of a candidate who provided the correct answers in most parts of the question items. For example, in part (b), (c) and (e) he/she applied correctly the formulae and concepts in all calculations and described well the types of magnetic materials.

2.2.8 Question 8: Atomic Physics (Quantum Physics and Nuclear Physics)

This question had four parts namely (a), (b), (c) and (d). Part (a) required the candidates to: (i) define the term photon, (ii) list three properties of a photon, and (iii) state any four laws of photoelectric emission. In part (b), they were required to: (i) briefly explain the factor which influenced de-Broglie to think that the material particles may also show wave nature and give explanation why wave nature of matter is not noticeable in daily life observations, and (ii) prove that de - Broglie wave length $\lambda = \frac{h}{\sqrt{2meV}}$ where m is the mass of the electron, e is the charge of the electron, h is the Planck's constant and V is the accelerating potential. They were also required to: (iii) calculate the work function of the material from which the emitter is made given that "Light of wavelength 488 nm is produced by an argon laser which is used in the photoelectric effect and when light from that spectral line is incident on the emitter, stopping potential of photoelectrons is 0.38V". In part (c), the candidates were required to define and provide one suitable reaction equation of: (i) Alpha decay, (ii) Beta decay, (iii) Gamma decay, (iv) Fission, and (v) Fusion. In part (d), the candidates were given a stem of the question which read: "A freshly prepared sample of a radioactive isotope Y contains 1012 atoms. The halflife of the isotope is 15 hours". Then they were required to calculate: (i) the initial activity, and (ii) the number of radioactive atoms of Y remaining after 2 hours.

The question was attempted by 12,515 candidates making 64.1 percent. Out of them, 39.4 percent scored marks ranging from 0 to 6.5, 37.5 percent scored 7 to 11.5 marks and 23.1 percent scored 12 to 20 marks out of the 20 marks allotted in this question. Generally, the performance in this question was good as 60.1 percent of the candidates passed the question. This implies that the topic was moderately understood by most of the candidates. Nevertheless, the performance was supposed to be higher than observed since the assessed concepts are also covered in Chemistry, therefore, most of the candidates could have studied them twice.

Most of the candidates who scored 12 to 20 marks had shown a good understanding of the concept on photon and its properties. Their ability to recall and state the laws of photoelectric emission as well as concepts of alpha decay, beta decay, gamma decay, fission and fusion was also high. A good number of them were having adequate interpretational and application

competences which enabled them to analyse the data given in the question items of parts c (iii) and (d), and used appropriate formulae to calculate the required parameters. However, some of them lacked evaluation knowledge, hence, failed to give suitable responses in part (b) (i) which required critical thinking. Extract 2.8.1 shows the work of one of the candidates who managed to provide the required responses in this question.

Extract 2.8.1

8	a) i/. Photon;	
	This refers to a guantum of energy carried &	24
	an electromagnetic radiation.	
	iil It trevels with the speed of light It can be diffrected.	
	- It can be diffrented.	
	- It can cause photoelectron emission	00
	a particular surface of matter	
80)	iii) For a particular frequency above the	
	threshold requercy, the intensity of photoelect the directly proportional to the intensity of photons taking or a particular metal surte	Lour
em	the directly proportional to the intensity of	
	aboton, taking or a particular metal suite	ice.
	breeze z record z z z z z z z z z z z z z z z z z z z	
	- No photoelectric emission occurs une	511
	the incident radiation is above a minimum	n_
	Frequercy cauch the threshold trequency.	
	ricginary country in the results in segments	
	- For a particular intensity of incider	u-
80	iil. radiation, the kinetic energy of the emitted	
000	protoelectrons is directly proportional to the	
	Frequency of the incident radiations.	
	1109	
	- Photoelectric emission is an instantaneous	
	process of order of 10-95.	
6	il. It was the reason that led to be - Broguie	
	to think that material particles may also	
	show wave nature was that it was observed	
	From Einstein's law of relativity that matter	
	can be converted to energy and since nature	
	wes symmetry, he it was postulated that	
	material particles could also show wave properti	2.4
	The wave nature of marter is not	
	noticeable in our daily objervations where due to	
	the large mass of objects surrounding us	
	For instance a moving ball; and since the wavele	nath
		9.50
	or matter waves it inversely proportional to the mass or the body, the wavelength becomes too	
	man to be detected by any apparetus including	
	our naked eyes.	

86			
	il. me = h		
	7.		
	-1 = h = wavelength of mouter mc waves/be broggie wavelength		
	me waves be Broglie wavelers		
K.E = eV = 1 mu².			
	R		
	v=c=\2eV (i)		
	V m		
	substituting the above equation into the		
	de Brogue wavelength;		
	morev me sev		
	The state of the s		
	$1 \therefore \lambda = \lambda$		
	Vanev.		
	迎1. 1 = 488×10−9 m		
	V1 = 0.88V.		
	Epopa Facilità de la companya de la		
	From Einstein's photoelectric equation: hf = Wo + Vs. e. : Wo = hf - e.Vs. h = c.		
	WF = WO + Us. e.		
	: Wo = hf - e.Us. h = c		
	and .		
_			
	Wo = hc - eV4.		
	WO = 6.63×10-34J1 ×3×108 M1-1-1.6×10-19Cx		
	488 ×10-9 m		
	Wo = 3.467819672×10-19J.		
	Wo = 2.167387295 eV.		
8	O U. Alpha Lecay.		
	This is the spontenous emission of an alpha partice		
	ve Helium nucleus by ar an unstable heavy		
	nucleur nuclide to form a nuclide two steps		
	ending in the remodic table.		
	838 H. 834 -		
	He + asy Ra.		
	at the tasks.		
	earlier in the peniodic table. 238 954 954 938 938 938 938		
	ast → atte + qs ta. ∝-particle		
	∝-particle		
	à esta docar.		
	it. Beta decay. This is the spontaneaux emission of an electron		
	it. Beta decay. This is the spontaneaus emission of an electron from an in unstable nuclide teat forming a		
	ii. Beta decay. This is the spontaneas emission of an electron from an in-unstable nuclide teat forming a nuclide one step later in the periodic table.		
	ii. Beta decay. This is the spontaneas emission of an electron from an in-unstable nuclide teat forming a nuclide one step later in the periodic table.		
	iv. Beta decay. This is the spontaneaus emission of an electron from an in unstable nuclide teat forming a muchide one step later in the periodic table.		
	ii. Beta decay. This is the spontaneas emission of an electron from an in-unstable nuclide teat forming a nuclide one step later in the periodic table.		
	iv. Beta decay. This is the spontaneaus emission of an electron from an in unstable nuclide teat forming a muchide one step later in the periodic table.		
	ii). Beta decay. This is the spontaneaux emission of an electron from an in unstable nuclide teat forming a nuclide one step later in the periodic table. 14 + 1e 8 - particle.		
	ii. Beta decay. This is the spontaneous emission of an electron from an in unstable nuclide teat forming a nuclide one step later in the periodic table. I'm the particle. iii. Garuna decay. This is the spontaneous emission of a photon of		
	ii. Beta decay. This is the spontaneous emission of an electron from an in unstable nuclide teat forming a nuclide one step later in the periodic table. I'm the particle. iii. Garuna decay. This is the spontaneous emission of a photon of		
	ii. Beta decay. This is the spontaneaus emission of an electron from an in unstable nuclide teat forming a nuclide one step later in the periodic table. I'm the particle. B-particle. iii. Gamma decay. This is the spontaneous emission of a photon of radiation by an unstable nuclide at that was		
	ii. Beta decay. This is the spontaneaus emission of an electron from an in unstable nuclide teat forming a nuclide one step later in the periodic table. I'm the particle. B-particle. iii. Gamma decay. This is the spontaneous emission of a photon of radiation by an unstable nuclide at that was		
	ii. Beta decay. This is the spontaneaus emission of an electron from an in unstable nuclide teat forming a nuclide one step later in the periodic table. I'm the particle. B-particle. iii. Gamma decay. This is the spontaneous emission of a photon of radiation by an unstable nuclide at that was		
	ii. Beta decay. This is the spontaneaus emission of an electron from an in unstable nuclide teat forming a nuclide one step later in the periodic table. I'm the particle. B-particle. iii. Gamma decay. This is the spontaneous emission of a photon of radiation by an unstable nuclide at that was		
	ii. Beta decay. This is the spontaneaus emission of an electron from an in unstable nuclide teat forming a nuclide one step later in the periodic table. I'm the particle. B-particle. iii. Gamma decay. This is the spontaneous emission of a photon of radiation by an unstable nuclide at that was		
	ii). Beta decay. This is the spontaneous emission of an electron from an in unstable nuclide teat forming a nuclide one step later in the periodic table. I'm I'm the spontaneous emission of a photon of radiation by an unctable nuclide of that was formed after either of a photon of the formed after either of the case of the case of the competitive of the spontaneous emission of a photon of radiation by an unctable nuclide of that was formed after either of the case of		
	ii). Beta decay. This is the spontaneous emission of an electron from an in unstable nuclide teat forming a nuclide one step later in the periodic table. I'm I'm the spontaneous emission of a photon of radiation by an unctable nuclide of that was formed after either of a photon of the formed after either of the second countries to its ground unexcited state. 238		
	ii). Beta decay. This is the spontaneaus emission of an electron from an in unstable nuclide teat forming a nuclide one step later in the peniodic table. I'm the particle. I'm the particle. iii/. Garuna decay. This is the spontaneous emission of a photon of radiation by an unstable nuclide that was formed after either of or P-decayed nuclide table to its ground unexcited state. 288		
	ii). Beta decay. This is the spontaneaus emission of an electron from an in unstable nuclide teat forming a nuclide one step later in the periodic table. I'm I'm the spontaneous emission of a photon of radiation by an unctable nuclide to that was formed after either of or P decayed nuclide fourth to its ground unexcited state. 238		
	ii). Beta decay. This is the spontaneaus emission of an electron from an in unstable nuclide teat forming a nuclide one step later in the periodic table. I'm I'm the spontaneous emission of a photon of radiation by an unctable nuclide to that was formed after either of or P decayed nuclide fourth to its ground unexcited state. 238		
	ii). Beta decay. This is the spontaneaus emission of an electron from an in unstable nuclide teat forming a nuclide one step later in the periodic table. I'm I'm the spontaneous emission of a photon of radiation by an unctable nuclide to that was formed after either of or & decayed nuclide fourth to its ground unexcited state. 238		
	ii). Beta decay. This is the spontaneaus emission of an electron from an in unstable nuclide teat forming a nuclide one step later in the periodic table. I'm I'm the spontaneous emission of a photon of radiation by an unctable nuclide of that was formed after either of the decayed nuclide to its ground unexcited state. 288		

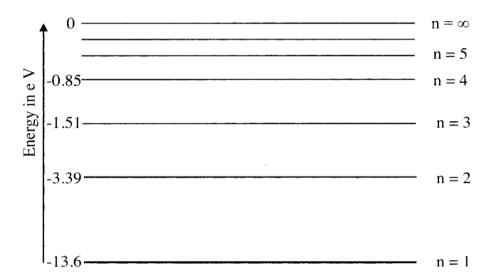
80	Ul. Fusion
	This is a nuclear reaction involving the formati
	of a larger stable nuclide by the Fusion of two
	smaller unstable nuclides accompanied with
	the emission of large amount of energy.
	211
	2 H + H -> 2 He + Q.
	4) V/ (N) - 1 N) - AGENTAL
	d) V/. dN = -1 M. = Activity.
	Ao = Mo.
	-l = In2
	TY2.
	1/2 = 6 hours = 54,000 g.
	$\frac{1}{1}$ $\frac{1}$
,	$\therefore A_0 = \frac{10^{12} \times \ln 2}{540004}$
	540004.
	Ao = 12,836,058.9 Bg
	W. N= Noe-th.
-	$1 = \ln 2$ $T = \frac{1}{2}$
	No: 1012 atoms. T/2 = 15 hours.
	t = 2hours. 1/2 - 15hours.
	$\therefore M = 10^{12} \times e^{-\left(\frac{\ln 2}{15} \times 2\right)}$
	M: 9.117224886 × 1011 atoms.
· · · · · · · · · · · · · · · · · · ·	

Extract 2.8.1, a sample of an answer of a candidate who provided the correct answers to most parts of the question including part (c), which challenged most of the candidates who opted for this question.

Furthermore, it was noted that most works of the candidates who scored low marks in this question were characterized by provision of incorrect concepts, formulae and some of them failed to answer certain parts of the question. This indicated that most of them had learnt the topic from which the question items were constructed, but failed to retrieve the concepts properly. Hence, they wrote responses which contained partial information about the concepts required. Extract 2.8.2 shows the responses of one of the candidates who provided incorrect answers to most of the items in this question.

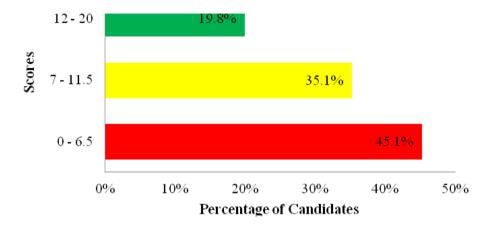
Extract 2.8.2

3. a/ j/ Photon Is the charged particle which occur in the atom of element and only the scarleight of light when excited to the bigher onergy love.
ation a element and onlite the escuelerath of light
when excited to the higher energy love).
in Proportion of photone.
→ H Carry a charge
- Can be amonthed to his has energy level.
-> It carry a charge -> Can be emmitted to higher energy level> Can durintergrate to hole a its life
in/ Louis of photoelectric emmussion
The form
The rate of the disintergration of radioactive replands
The rate of the disintergration of radioactive replanates
the origin
Re dwyj ∝h.
Sound Law.
"The amount of interests of the radioastrio material
enutted u directly proportion to the photosotric current in the same element particle to Internative or I
to the same element touride
This lar
The doment distributeation. Con anits the randerate of high with it reaches a maximum value talled perketending.
a lish world it reaches a maximum value
talled perktunden"
Fourth low.
The rate of the dean of the element portale
Touth low. "The rate of the dear of the element portate understands proportional to the convent of the remained extends after dismonstational to the original.
expurit offer any felligibed soll to me original.
5/Ae
1/ no Rachie think that the material countries may
the contract the die to that school
the materials particle pass through the radioaction radioatrin Con committee the recursive of light from the gound state to higher energy level with
halabia a qualit the aqualante a light from
realization (a) amounts no become again that with
The going state to the right energy level (111)
the summay of the copyed tight they have
show that the meterale particle can emuntic the
rawlength of Light forexample. Alpha particle which
Camo posificio chose, Beta particle Bluch Con registro
Charle " and Gamera Rys which is neotral. Wave
nature a motter not not not be our dainly obserbation
this to due to
11/12 72 -1.7


ii From data.
De-Doglie Lawelength (1).
Here the energy (E). Kine lie energy (E).
Mose of electron (m)
De-Doglie remotes (E). Nose of electron (M) Change of electron (e)
Plank constant (h).
Accolerating planto difference
Plank constant (n). Accolorating plantial difference
From the planks equation.
From the planks equation. AE = hc X.
λ.
$\chi E = hc \Rightarrow \chi = hc$
ŧ.
When
(Energy Change) DE. = KE. (Kithetic energy).
$\frac{\lambda^2 \omega n_0}{\lambda} + \omega_0^2 n_0.$ $\frac{\lambda}{\mu v u_0} \cdot \frac{\lambda}{\lambda} \omega_0^2 = \delta n.$ $\frac{\lambda^2 \omega_0}{\mu v u_0} \cdot \frac{\lambda^2 \omega_0}{\lambda} = \delta n.$ $\frac{\lambda^2 \omega_0}{\lambda} \cdot \frac{\lambda^2 \omega_0}{\lambda} = \delta n.$
hove. Bus = Er.
x = hc V = amu
1/2 mg/o.
Share W Is the most of electron Me.
$\lambda = hc$
12 mev2.
e = Constant spood of Light.
& that
$\lambda = \mu$
HENO SHOWN.
(Allo Salar)
njy Data giveh
Time Data given Laweknoth (1) = 488 nm.
Stoping potential (V)= 0.38V
Markfunction (15.) =?
Trom
Lio = he
720 - 1 Shake no = all 4
^
720 = 14.8
= 488 × 0.38 + 2×11
4.23
= 0.0458.
How the Berkhoughen 17 0013810

i/ Alrha docon to the deviabreation of the position
V Alpho decay to the dunbergation of the porticle element such the encourse of higher reachants to the
pastis tominal charge
position terminal always.
IV Boto decay. Is the distribuyation of the particle
a element with the conscion a reachereth a light to
the majorine terminal charge.
ic + B ce + thoray
in tamma decay to the disintegration of the particle
of the dement 2th emission of assumpting of light
to with no any change camer
Bets decay Is the distribution of the particle q element with the enuscine of reactereth q light to the negative terminal charge. C + B - + C + Frongy in transma decay is the distribution of the particle of the dement with emission of removability of light to with no any charge armor of C + by - p of C + Frency.
In Facing to the success africh would the minima
d be coded south of codenative actual to
make constitute with
the + the p the
by Fiesion is the process that muche the joining of the smallest particle of radioactive meteral to make large particles mudei v tusion is the parases sharp involve the broken down of large packet motionals into smaller po mueloi particle the particle particle the particle p
down a long pucket moterate inthe smaller po
melei traticle
atte - + 1the .
Deta given Half life (the) = 15 hours. Radioactive isotops = 10 arton / histel artory (XiI = ?
Half life (16)= 15hours.
Radioactive Isotopa = 10 atom
/miffel affects (Xi) = /
71/2
- 10/3
15×60×3600·
= 3.03@ X 10g.
Hence the actuary is 3.086 × 100. mm.
HOUR WE CELLALLY TO BY 100, 100, 100, 100,
ii vemba a radioantivo
$d\nu \in \lambda$
dt 1/12.
9m = 1013
$\frac{\partial \mu}{\partial m} = \frac{3 \times 60 \times 3 \times 600}{10_{13}}$ $\frac{\partial \mu}{\partial t} = \frac{10_{13}}{110}$
= 53.178.
Hence the number of radioactive atom /1: 36.148 etam

Extract 2.8.2, a sample of an answer of a candidate who provided incorrect answers to most of the given responses although the work is well arranged. For example he/she defined alpha decay as "disintegration of the particle element with emission of light to the positive terminal". This indicates that, he/she failed to recall properly the concept.


2.2.9 Question 9: Atomic Physics (Structure of the Atom and Nuclear Physics)

This question had parts (a), (b), (c) and (d). In part (a), the candidates were required to: (i) mention any four important features in the design of a nuclear reactor, (ii) differentiate binding energy from mass defect, and (iii) calculate the binding energy per nucleon in MeV and the packing fraction of the alpha particle given that: masses of proton, neutron and alpha particle are 1.0080 1.0087 and 4.0026 u, respectively. Part (b) required them to: (i) state any three limitations of Bohr's model of hydrogen atom, (ii) develop an expression for the radius r of the orbit of an electron of mass m and charge e revolving around the nucleus in terms of m, e, π , quantum number n, Planck constant n and permittivity of free space n0 and use the derived expression to calculate the Bohr's radius. In part (c), they were required to: (i) distinguish between ionization energy and excitation energy, and (ii) explain why hydrogen spectrum contains a large number of spectral lines although its atom has only one electron. In part (d), the candidates were given the following diagram:

Then they were required to: (i) calculate the frequency and wavelength of the radiation emitted as a result of an electron transition from n = 4 to when an electron is at ground state, and (ii) determine the energy at the energy level where n = 5.

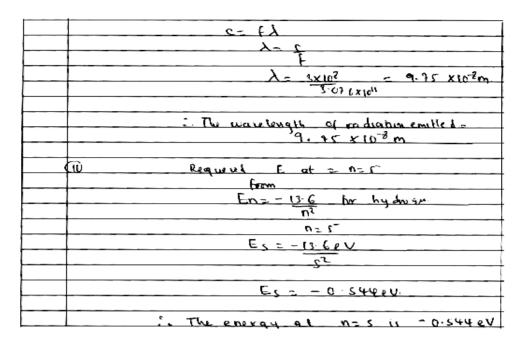
82.1 percent of the candidates attempted this question whereby 45.1 percent of them scored marks within the failure range of performance (0 to 6.5 marks), 35.1 percent scored within the average range (7 to 11.5 marks) and 19.8 percent scored marks within the good range of performance (12 to 20 marks). These data are depicted in Figure 16.

Figure 16: *Performance of candidates in question 9.*

The data given in Figure 16 indicate that a total of 54.9 percent of the candidates scored marks within the passing range, hence, an average performance. However, the number of those who failed is relatively large (45.1%), with 747 candidates (4.7%) scoring 0 marks. This indicates limited understanding of some concepts such as binding energy, mass defects, limitations of Bohr's energy and ionization energy which are basic concepts in the topic of Atomic Physics.

Among those who scored higher marks (12 to 20 marks), only seven (7) candidates managed to respond correctly to each examined item, hence scoring all the marks allotted in the question. Those candidates were noted to have adequate knowledge and competences, therefore, they did well even in the question items which involved high cognitive levels such as items: (b)(ii) (synthesis), (c) (ii) (evaluation) and (d) (analysis). Nevertheless, these items were observed to challenge most of the candidates hence, led some of them to score marks less than 20. Extract 2.9.1 shows one of good responses in this question.

Extract 2.9.1


9.0				
	a) There should be control to di -			
	to control the number of Germ	barding particles (new Avm		
		3		
	11) Presence of moderature			
	+ To slow down to mohim of s	om Larding particles		
		, , , , , , , , , , , , , , , , , , , ,		
	(110) presence of contants			
	- to remove the excess heat	produced during to fire		
		processing to the		
(to presence of fuels			
	are make now by production of energy (heat energy) e-g			
	Mass.	rungg (war energy) 2-4		
	BINDING ENERGY MAS. - Refer to minimum energy Refer required to separate the true en	DEFECT.		
	- Refers to an energy Refer	s to difference he		
	required to so parate the true en	the sum of masses		
	nucleus into ets corresponos ou al	icons to that of an		
	nung nueleons (pro hors on entact	nue leut		
	d new trons			
	the given as & E = 4m c2 - 11 11 gi	MANA OR AMERICA		
		mass of nucleus		
(II)	is bata given.			
	Me= 1.0084			
	Data given. Me = 1.0084 Mn = 1.00874.			
	MG- 4.0020	u		
	ox -parhale =	X-particle = 9He		
_	~ .			
	n e = 2			
	Daruboni 2 4-2-2	Maruhan = 4-2 = 2.		
	Total mass of nucleums			
	Mp + mn = 2x10080 + 2x10387			
_	mass total = 4.0334u			
	M & = 4-00264			
	Mass defect (Am) = 40204-40026-0-00004			
		40104-60056-0-030A		
	guen lu = 931			
	9wan lu = 931	Muy.		
	guen lu=931	Muy.		
	0.0303cz 0 16 1u = x531	Muy.		
	0.0303cz 0 16 1u = x531	Muy.		
	0.0303cz 0 16 1u = x531	Muy.		
	0.0303cz 0 16 1u = x331	MUV. MLV. D. E.		
	30.030302 16 10 - 7231 0.030302 E = 931V	MUV. MLV. D. E.		
	9000 lu = 931 18 lu = 7331 0.020302 E = 9310	MUV. MEV. D. E. NOVY 0.0308 W - 87.6348 NM MEN.		
	9000 B[N = BE	MUV. MEV 1. E New x 0.0308 W - 87.6348 New Mev - 38.6348 Mev Ly		
	9000 B[N = BE	Mev. Mev. Mev. Mev. Mev. Mev. Mev. Mev. Mev.		
	9000 B[N = BE	MUV. MEV 1. E 1. M MEV - 28 6748 MeV - 1. 1627 Med nuclim		

୍ୟ ସହ	Indicair lequied particing fraction
	from
	factury backers mendefect
	Ruchiem num hu
-	
	z 0 · 0 30 3
	T W
	= 7.9 X(0 ⁻³ x/muchen
	: pucking fraction = 1.7 × 10-34 (nucleon.
<u> </u>	Limitations of Bohr modelof hydrogen gim
	-1) No justification was given to his through of quantization of angular momentum of an election mode and around the muclous move of an election mode and around the muclous move of an election mode and area.
•	-11) He failed to explain the about spectrum of multi-electron elements.
-	-11) He failed to explain the sputhing of a termin spector field (struct effect) and magnetically and magnetically a common effect) and magnetically a common effect).
9 60	Data guen
(an lleinn
	Mais = M
	vadiusev
	Chamer e.
	In a hydroin alam model
-	consider le diagram belou.
	e.

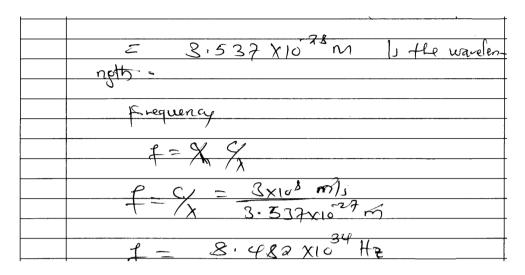
	, zolu-						
	from Bahir teory						
	Mur = nh - eqn(1)						
	2JI						
	But Ecochistate have prouder necessary						
	Centrated force My KZe2 T2.						
	MULE KZEL						
	, ζ						
	s quanna eq(1)						
	W2 NS LS = U2 PS						
	bivi & by equi						
	2.2						
	W. A. L. = U. V.						
	$\frac{1}{2} \frac{1}{2} \frac{1}$						
	<i>y</i>						
916							
	<u> </u>						
	4p2Kze2m.						
	hat k= 1 471 Ev.						
	4 11 %.						
	E- 05 FJ NRNANC						
	T= n2 h2 x xxx Eo ** X x x x x x x x x x x Eo ** X x x x x x x Eo ** X x x x x x x x x x x x x x x x x x x						
	ALX HE ELEVI						
	r= BARRO						
	L= U3 P5 80						
	r= η h εο 2 e π .						
	but for hydrogen 2=1						
	L= Us Ps Ev						
	<u>ε² η ω</u>						
	E JIW.						
	$L = \frac{\partial}{\partial x} h^2 \omega$						
	e ² sim.						
	wlax						
	r= radius of what						
	h - plantieu constant						
	Eo - The permitty of free space						
	e = chay.						
l	M- mass of election.						

2 nd pour le had bohri rada						
4						
n=1						
h= 6.63 X1074](
{0= 285 ×10+2.7n+						
e = 1-6 x 10 19.						
m = 9-1x (0-)1/cq						
si = 3.14						
+= 12 x (6-63 x10-x1) x 8.25x10-17.						
(1.Cx164) 2 X3.14 X9.1x10-11						
r= 5. 318 x 10 m.						
: Bohr's radius = 5. 318 X10-11m.						
906 LONISATION ENERGY EXCITATION ENERGY						
to pour to energy required reform to energy require						
to remove an electron we have promote Chamitt						
from nuclear affractive an election to higher ener						
for ce la fluence, gy levels.						
To five the election from The election is shill under						
nuclear attractive for accear attractive force.						
1) In the discharge tube, there are greater number of Try diagen a toms, that gain energy diffe						
of hydrogen about that gain energy diffe						
rently, thus are proposed to different energy level,						
thus they also emit energy differently which would						
into a large number of spectral unes						

980	from he deagram
	Enry
	-0.85eV
	-0.8ser = 6
	- 12 (a) hal.
	-13. ied
	1st case frequency
	hun flancier heary
	$\Delta \varepsilon = \mu f$.
	Ey- &= -0.85ev13.64v.
	8.5 10.05 11
	1 E = 12-75 eV.
	In saly = 12.75 X1 & X10-19 = 2.04 x10-1
	(11 SALL) 2 (2.43 X 6 X 0 = 2.00 X 10]
	E= W.C
	F= E - 2:04x10-81 - 200 moly
	$f = \frac{\varepsilon}{h} = \frac{2 \cdot \text{OUXIO}^2}{6 \cdot 63 \times 10^{34}} = \frac{3 \cdot \text{OPERMOLERATED}}{3 \cdot \text{OPERMOLERATED}}$
	f = 8.0769 x1015 Hz.
	The he queucy of radiation emitted = 3.0769x10
	H2
	and part warten gth
	gilen
	C= 3x103
	F = 3.0384x10, Hs
	from c= f \(\lambda \).
	L= +1.

Extract 2.9.1, a sample of an answer of a candidate who managed to provide a brief, precise explanations and systematic calculations to most of the question items.

In the case of those who scored low marks (0 to 6.5 marks), most of them gave correct responses to some items of the questions especially items (b)(i) and (c)(i). This might be due to the fact that concepts examined in these items are very familiar to learners as they are discussed in both Physics and Chemistry at both ordinary and advanced secondary school levels. However, most of them failed to provide correct answers for items (a) (i), (b) (ii), (c) (ii) and part (d) due lack of higher cognitive competences. Extract 2.9.2 shows the work of one of the candidates who had poor scores in this question.


Extract 2.9.2

9.	(A) (i) Important feature of a Nuclear reactor
	(9)
	(b)
	(C)
	(d)
	(11) Mass defect; Is the total mass of proton
	(ii) Mass defect; Is the total mass of proton and neutron that presence in a nuclear reactor
	la loi le
	Binding Inergy is the Principly required to
	Bending Energy of site energy required to the mass of defect in the nuclear per nucleon.
	(iii) San
	Given that
	Mass of proton = 1.00804
	Mass of patrile = 4.00264.
	Mass of papele = 4.0026u.
	total mass of nucleurs = (mass of proton of Newfron)
	= (1.0080+1-0087)4
	E 2.01674
	Mais defect = Mass of particle - totolman of
	neuchabi
	= (4,0026-2,0167)4
	Mass defed= 1.98594

9. (Til) Bloding burgy re nucleon.					
(Til) Binding bruggy per nucleon.					
E = mail defect					
931 Mev.					
fam 14 - 9931Mec					
14 - 9931Meu 1.78594 - x					
1.18594					
x = 931 x 1.9859					
= 1848.8729 Mev 1sa binding					
energy per nucleon.					
Packing frachin of an Alpha particle.					
1 1 7 .2					
SHe = 4.00064					
Parking fraction = Mass defect					
P. f = 1-9859 4-80264					
4.00264					
P.f = 0.4962					
(B) (i) It show that the mais if electron = 9.1 xio to					
(i) The an election, and charge revolved arrund					
the nucleus in a circular about of radius.					
energy quantum number is E=hf.					

9	(B) (ii) (d)
-	(B) (ii) sdg
	E= hf
	E = hf Eul $E = mg$
	1
	2 - 1/e.
	eq = m
	eq = m/
	hfm = mg
	= Mgq = hfmo
	T = VendA
	Who venda = hend
-	buf
	gvends = nf but the = of frgreads = of fre
	h = 4
	$\frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} \right) = \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} \right)$
	# ygveont for
	fguenda = CF
	W= 25TF. (= Ehn 45T Me
	(= Ehn
	452 Me
	but
	C= 8.85 /20 fm
	Co = 8.85 x10 fm d 4 2 G.63 x10 3 fg M = 9.1 x10 to
	224
	$M \geq 9.0 \times 10^{33} \text{ kg}$
	e = 1-6 per 19 e.
	1 = 8.85x10 X6.63 x 10 34 x 1
	4x 1 x 9.1 x 1.6 x 10-19
	r = Q. 164 × 10 m
9	(c) 6, Tonization Energy of 11 the renegy that required required to the maximum potential energy of hydrogen atom to the or energy levels of the hydrogen specturum line.
	required required to the maximum potential
	energy of hydraen about to the or energy levels
	of the hydrogen specturum line.
	l .
	Excitation Energy - 15the maximum - energy that required table large number of Sectral Vines (Excitated State).
	energy that required to the large number of
	Sectral Vine (Excitated state).
	Service Servic

9. (C) (ii). This is simply because the hydrigen
Spechum has a high lomzation theregy and has a high electronegation affinity and hence the contain a larger number of spectral lines.
las a hist electrones de affinite and brace
the Company of the state of the
9 (d)(i) Sdn,
$n_{\alpha} = S$
$\frac{n_1 = \varphi}{\sqrt{n_1 - n_1}}$
/ (n, n)
from.
£ = 4 £
f= \(\chi_{\chi} \).
E=Rhc
X
E = R4 C (/n3 - /n3)
E= 1.0974 × 107 × 6.63 × 10-84 × 3× 108 / -/
= 2.18 1933 × 10 (46 -/25)
(16 /25)
-20
= 2 4.909349 25 X10 J
$9 \oplus 0 \oplus 0 \oplus 0$
D. 7.3
$h = 6.63 \times 10^{-34} \text{ Js}$ $R = 1.0974 \times 10^{7} \text{ m}^{-1}$ $f = 2$
R = 1.097exist m
Y = 7.
Recall (1)
/ = Ph (/n² -/n²)
7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
= 1.0974x107x6-63x1034 (1) - 1

Extract 2.9.2, a sample of an answer of a candidate who gave incorrect responses to each part of the question. For example, in (d) (i), he/she used incorrect procedures and formulae to determine the frequency and wave length of the emitted radiation.

3.0 ANALYSIS OF THE CANDIDATES' PERFORMANCE PER TOPIC

In Physics 1 and 2 examination papers, a total of twelve (12) topics were tested. These topics were: Measurements, Fluid Dynamics, Vibrations and Waves, Atomic Physics, Heat, Properties of Matter, Electronics, Electromagnetism, Mechanics, Electrostatics, Environmental Physics and Current Electricity.

The analysis of the candidates' responses in each topic shows that the performance on the topics of Measurements was 86.6 percent, Fluid Dynamics 81.5 percent and Vibrations and Waves 64.3 percent which reflect a good performance. Average performance was observed in the topics of Atomic Physics (57.8%), Heat (55%), Properties of Matter (53.5%) and Electronics (53.2%). Other topics in this category were Electromagnetism (43.5%), Mechanics (42%) and Electrostatics (37%). However, the topics of Environmental Physics and Current Electricity had 24.2 and 20.9 percent, respectively, indicating weak performance.

Some of the main reasons for an average performance include failure of the candidates to comprehend the concepts in some parts of the question items and lack of mathematical skills in performing calculations. On the other hand, weak performance was contributed by insufficient mastery of the

content, lack of knowledge and mathematical ability in calculations. Other factors were misconception of ideas and failure to apply principles and laws of physics in the prescribed fields of study. Generally, most of them failed to provide a logical flow of ideas and were incompetent in conveying the acquired knowledge and skills to solve questions related to their daily life situations. The summary of the candidates' performance in all topics is shown in Appendix C.

4.0 CONCLUSION AND RECOMMENDATIONS

4.1 Conclusion

The candidates' performance in ACSEE in Physics Examination for 2018 was average. Most of the candidates who sat for the examination scored the passing marks allotted for each question especially those which involved the use of formulae, principles and laws of Physics in performing calculations. The performance on the questions which required detailed explanations were observed to be weak.

The analysis further addressed the challenges faced by the candidates who scored low marks. Incompetency in the English language use, failure to apply formulae and lack of carefulness when substituting the data in the given or formulated equations were among the factors which caused weak performance in the stated topics.

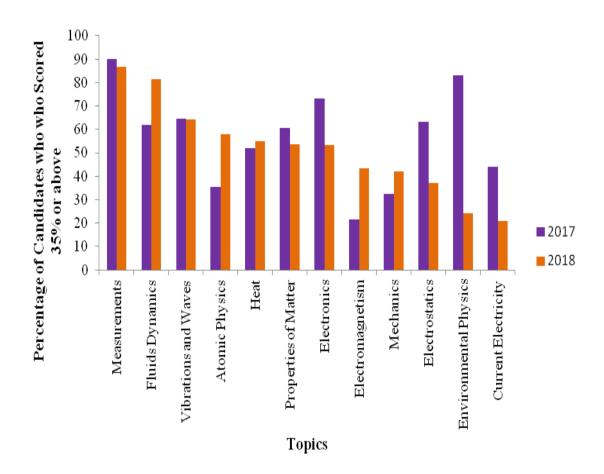
Generally, the analysis reveal that the candidates' performance in Physics subject has increased by only 0.7 percent as compared to the year 2017. This reflects a poor coverage of the content during the teaching and learning process as it was noted in Appendix A. It shows that only 3 out of the 12 topics that were examined had good performance contrary to the previous year (2017) that registered good performance in seven (7) out of twelve (12) topics. However, improvements of performance were observed on some topics, particularly, Mechanics and Electromagnetism as shown in Appendix B.

It is expected that the recommendations given through this analysis will be helpful to students, teachers and all educational stakeholders during the teaching and learning process for improving the performance of candidates in the future Examinations.

4.2 Recommendations

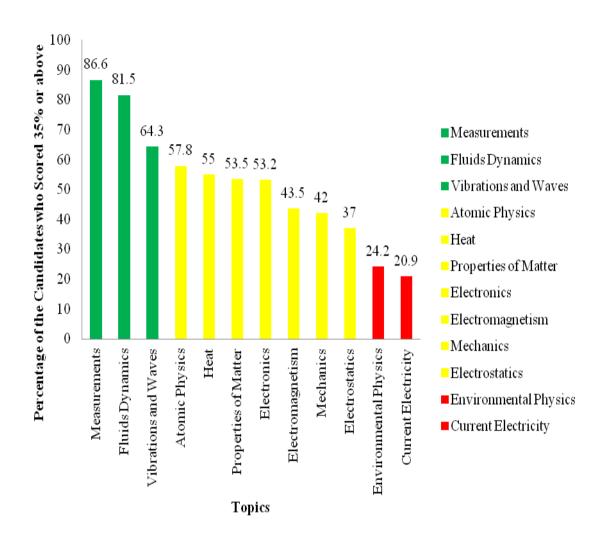
In order to improve the performance of prospective candidates in Physics Examination, it is recommended that:

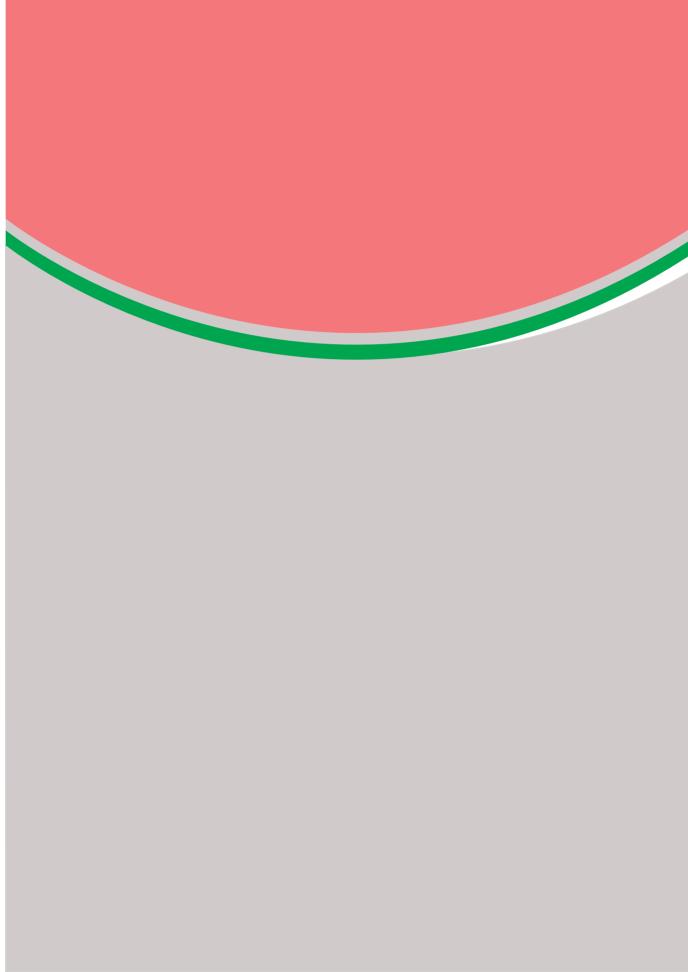
- (a) Students should be guided to work hard on mastering mathematical skills to improve their ability in solving questions which involve calculations for such questions are common in Physics Subject.
- (b) Teachers should encourage students to read more subject related books along other English books and practice English Language in their day to day communications so as to improve their language proficiency.
- (c) Students should read and understand theories, principles and laws of physics to enable them to relate the acquired knowledge and skills into their day to day activities.
- (d) Teachers should apply student centred techniques by teaching through demonstrations and experimentations. Also they should assess all the topics as stipulated in the syllabus to enhance the learners' level of understanding on the subject matter.
- (e) Teachers are advised to guide the students on how to identify the specific tasks of the questions and how to organise the concepts so as to respond correctly to the examination questions.
- (f) The government, school administrators and other educational stakeholders should encourage in-service training to physics teachers so that they can exchange their experiences and share the teaching, learning and assessment materials.


Appendix A

COMPARISON OF THE CANDIDATES' PERFORMANCE IN EACH TOPIC BETWEEN 2017 AND 2018

		2017 EXAMINATION PAPER			2018 EXAMINATION PAPER		
S/n.	Topic	Number of questions	Percentage of Candidates Who Scored an Average of 35 Percentage or Above	Remarks	Number of questions	Percentage of Candidates Who Scored an Average of 35 Percentage or Above	Remarks
1	Measurements	2	90.1	Good	1	86.6	Good
2	Fluids Dynamics	1	62.0	Good	1	81.5	Good
3	Vibrations and Waves	2	64.7	Good	2	64.3	Good
4	Atomic Physics	2	35.3	Average	2	57.8	Average
5	Heat	2	52.1	Average	2	55	Average
6	Properties of Matter	2	60.7	Good	2	53.5	Average
7	Electronics	3	73.3	Good	3	53.2	Average
8	Electromagnetis m	1	21.5	Weak	1	43.5	Average
9	Mechanics	4	32.4	Weak	5	42	Average
10	Electrostatics	1	63.3	Good	1	37	Average
11	Environmental Physics	1	83.0	Good	1	24.2	Weak
12	Current Electricity	2	44.0	Average	2	20.9	Weak


Appendix B


A BAR CHART OF COMPARISON OF THE CANDIDATES' PERFORMANCE IN EACH TOPIC BETWEEN 2017 AND 2018

Appendix C

CANDIDATES' PERFORMANCE IN EACH TOPIC IN THE YEAR 2018

