

THE UNITED REPUBLIC OF TANZANIA MINISTRY OF EDUCATION, SCIENCE AND TECHNOLOGY NATIONAL EXAMINATIONS COUNCIL OF TANZANIA

CANDIDATES' ITEM RESPONSE ANALYSIS REPORT ON THE ADVANCED CERTIFICATE OF SECONDARY EDUCATION EXAMINATION (ACSEE) 2022

PHYSICS

THE UNITED REPUBLIC OF TANZANIA MINISTRY OF EDUCATION, SCIENCE AND TECHNOLOGY THE NATIONAL EXAMINATIONS COUNCIL OF TANZANIA

CANDIDATES' ITEM RESPONSE ANALYSIS REPORT ON THE ADVANCED CERTIFICATE OF SECONDARY EDUCATION EXAMINATION (ACSEE) 2022

131 PHYSICS

Dar es Salaam, Tanzania.
© The National Examinations Council of Tanzania, 2022
All rights reserved.

Published by:

P.O.Box 2624,

The National Examinations Council of Tanzania,

Table of Contents

FORE	EWORD	V
1.0	INTRODUCTION	1
2.0	ANALYSIS OF CANDIDATES' PERFORMANCE IN EACH QUE	
	IN 131/1 PHYSICS 1	3
2.1	131/1 Physics 1	3
2.1.1	Question 1: Measurement and Rotational Dynamics	
2.1.2	Question 2: Gravitation	9
2.1.3	Question 3: Simple Harmonic Motion (S.H.M)	14
2.1.4	Question 4: Newton's Laws of Motion and Projectile Motion	18
2.1.5	Question 5: Heat and Thermodynamics	23
2.1.6	Question 6: Heat and Thermodynamics	28
2.1.7	Question 7: Environmental Physics	32
2.1.8	Question 8: Current Electricity	35
2.1.9	Question 9: Electronics	41
2.1.10	Question 10: Electronics	47
3.0	ANALYSIS OF CANDIDATES' PERFORMANCE IN EACH QUE	ESTION
3.0	IN 131/2 PHYSICS 2	
3.1	Question 1: Fluid Dynamics	51
3.2	Question 2: Vibrations and Waves	59
3.3	Question 3: Properties of Matter	65
3.4	Question 4: Electrostatics	73
3.5	Question 5: Electromagnetism	81
3.6	Question 6: Atomic Physics	90
4.0	ANALYSIS OF CANDIDATES' PERFORMANCE IN EACH QUE	ESTION
	IN 131/3 PHYSICS 3	98
4.1	Question 1: Mechanics	98
4.1.1	Physics 3A, 3B and 3C	98
	1 Physics 3A	
	2 Physics 3B	
4.1.1.	3 Physics 3C	112

4.2	Question 2: Heat	118
4.2.1	Physics 3A, 3B & 3C	119
4.2.1.	1 Physics 3A	119
4.2.1.	2 Physics 3B	125
4.2.1.	3 Physics 3C	131
	Question 3: Current Electricity	
4.3.1	Physics 3A, 3B & 3C	137
	1 Physics 3A	
	2 Physics 3B	
	3 Physics 3C	
5.0	ANALYSIS OF CANDIDATES' PERFORMANCE IN EACH TOPIC	158
6.0	CONCLUSION AND RECOMMENDATIONS	158
6.1	Conclusion	158
6.2	Recommendations	160
APPE	ENDIX I	161
APPE	ENDIX 1I	162

FOREWORD

The Candidates' Item Response Analysis (CIRA) of the Advanced Certificate of Secondary Education Examination (ACSEE) 2022 in Physics subject is based on the performance of the candidates in their two years of Advanced Secondary School Education.

The analysis generally indicates that the performance was good since the majority of the candidates (97.5%) passed the examination. The analysis further indicates that the candidates had good performance in the topics of *Properties of Matter, Atomic Physics, Electromagnetism, Vibrations and Waves, Environmental Physics, Mechanics* and *Electronics*. However, four topics of *Electrostatics, Heat, Current Electricity* and *Fluid Dynamics* were averagely performed. There was no topic which was weakly performed.

In this report, the analysis of each question has been done to identify factors that affected the candidates' responses. The candidates with high performance provided the correct answers since they adhered to the requirement of each question and had enough knowledge of the subject matter. In contrast, the candidates who scored low marks faced various challenges in answering the questions. Such challenges include inadequate knowledge of the concepts tested, failure to describe the terminologies apply appropriate formulae and procedures in analysing different concepts, lack of skills in solving numerical problems and failure to abide by the given instructions to assemble the apparati when performing experiments and lack of drawing skills.

The National Examinations Council of Tanzania hopes that the feedback provided in this report will help various education stakeholders to take appropriate teaching and learning interventions so as to enable students master the required knowledge and skills in order to improve performance of the subject in future examinations.

Finally, the Council would like to express its sincere appreciation to all personnel who participated in the preparation of this report.

A.

Athumani S. Amasi

EXECUTIVE SECRETARY

1.0 INTRODUCTION

This report analyses the performance of the candidates who sat for the Advanced Certificate of Secondary Education Examination (ACSEE) 2022 in Physics. The examination had three papers, namely 131/1 Physics 1, 132/2 Physics 2 and 131/3 Physics 3. Physics 1 and Physics 2 were theory papers whereas Physics 3 was the actual practical paper. The examination covered the topics stipulated in the 2010 Physics Syllabus for Secondary Education. The examination aimed to test the competences acquired by the candidates after two years of their study.

The Physics examination paper 1 comprised Sections A and B with a total of ten (10) questions. Section A had seven (7) short-answer questions, each carrying 10 marks while Section B consisted of three (3) structured questions, each carrying 15 marks. The candidates were required to answer all questions in Section A and any two (2) questions from Section B.

The Physics examination paper 2 had six (6) structured questions. The candidates were required to answer any five (5) questions. Each question carried 20 marks.

The Physics examination practical paper 3 had three alternative papers, namely 131/3A Physics 3A, 131/3B Physics 3B and 131/3C Physics 3C. Each alternative paper consisted of three questions. Question 1 carried 20 marks while questions 2 and 3 carried 15 marks each. The candidates were required to answer all questions in any of the three alternative papers.

School candidates who passed the ACSEE 2022 were 97.5 per cent whereas in ACSEE 2021, the school candidates who passed were 93.6 per cent. This suggests an increase in the candidates' performance in ACSEE 2022 by 3.9 per cent compared to ACSEE 2021. This significant increase in performance was contributed by the improvement of candidates' performance in four topics, which are *Atomic Physics, Environmental Physics, Electromagnetism* and *Electrostatics* as illustrated in Table 1.

Table 1: Candidates' Performance in 4 Topics in ACSEE 2021 and 2022

	ACSEE 2021 ACSEE 2022			2022			
S/n	Topic	Number of Questions	Percentage of Candidates who Scored 35 % or Above	Remarks	Number of Questions	Percentage of Candidates who Scored 35 % or Above	Remarks
1.	Atomic Physics	1	28.70	Weak	1	79.90	Good
2.	Environmental Physics	1	25.20	Weak	1	74.40	Good
3.	Electromagnetism	1	21.30	Weak	1	74.20	Good
4.	Electrostatics	1	6.30	Weak	1	58.50	Average

Table 1 shows a comparison of candidates' performance in 4 topics between 2021 and 2022.

The following bar chart demonstrates the candidates' performance in grades for two consecutive years 2021 and 2022.

Figure 1: Candidates' Performance in Terms of Grades

Figure 1 shows that there was an increase in the number of candidates who scored grades A, B, C and D and a decrease in those who scored grades E, S and F compared to the previous year. This portrays a normal distribution curve across the grades.

This report provides a detailed analysis of the performance of the candidates in each question. The green, yellow and red colours are used to indicate good, average and weak performances when the percentage score of the candidates is 65-100, 30-64 and 0-29 respectively. The sample extracts of candidates' responses are inserted to justify the cases. Graphs and charts are used to summarize the candidates' performance on every question. The report also contains appendices I and II showing the candidates' performance in each question in the Physics theory paper and Physics practical paper respectively.

2.0 ANALYSIS OF CANDIDATES' PERFORMANCE IN EACH QUESTION IN 131/1 PHYSICS 1

This part describes the performance of the candidates in each question. The analysis covers the type of questions, topics from which the questions were constructed, demands of the questions as well as the performance of candidates in each question. The performance of the candidates has been graded as weak, average or good depending on the percentage of candidates who passed.

2.1 131/1 Physics 1

The Physics 1 examination paper consisted of ten (10) questions grouped into Sections A and B. Section A had seven (7) short-answer questions each carrying 10 marks. Section B had three (3) structured questions each carrying 15 marks. The candidates were required to answer all questions in Section A and any two (2) from Section B.

This paper examined six (6) topics. Four (4) topics were examined in Section A and two topics in Section B. The topics examined in Section A were *Rotational Dynamics*, *Mechanics*, *Heat* and *Environmental Physics* while two topics of *Current Electricity* and *Electronics* were examined in Section B. The analysis of each question is as follows:

2.1.1 Question 1: Measurement and Rotational Dynamics

The question comprised parts (a) and (b). In part (a), the candidates were required to (i) deduce the formula of the fractional error in 'g' from the relation of the period of oscillation of a simple pendulum, $T = 2\pi \sqrt{\frac{l}{g}}$ and

(ii) identify the quantity which should be measured most accurately and

give reasons for their choices. In part (b), they were required to calculate the speed of the body having the mass of 20 kg, radius of 0.2 m and moment of inertia of 0.4 kgm² at the foot of the slope as shown in Figure 1.

The question was attempted by 21,710 (100%) candidates whose scores were as follows: 39.4 per cent scored from 3.5 to 5.5 marks; 32.0 per cent scored from 6.0 to 10 marks and 28.6 per cent scored from 0 to 3.0 marks. Generally, candidates' performance in this question was good since 71.4 per cent of them scored from 5.5 to 10 marks. Figure 2 provides the graphical presentation of candidates' performance in question 1.

Figure 2: The candidates' performance in Question 1 of Paper 1

The candidates who performed well (71.4%) in this question deduced correctly the formula of the fractional error in 'g' from the given relation and identified the required quantity to be measured most accurately. They provided the reasons for their choices although few of them provided incorrect responses. In part (b), some of the candidates analysed correctly

the energy change between the top and bottom of the slope which is given by loss in potential energy = gain kinetic energy of linear motion + gain of K.E of rotation motion. Finally, they applied the correct formula $mgh = \frac{1}{2}mv^2 + \frac{1}{2}I\omega^2 \text{ to determine the speed of the body rolling down the slope. Extract 1.1 is a sample of the candidates' correct responses to this question.}$

1.	(a) from,
	T = 211 [
	19
	Ŷ [
	T = [7]
	α" - Ο
	78 = 1
	T ² = [4π ² 9
	9= 4112L
-	1
	109 - 10/4521
	$\ln g = \ln \left(\frac{4\pi^2 l}{\tau^2} \right)$
	$lng = ln4+lnT^2+lnl-lnT^2$
	Ing = ln4 + 2 ln TT + ln 1 - 2 ln T
	d(lng) - d(lny) + 2 d n(m) + d (ln) - 2d/h
	d(lng) = d(ln4) +2dln(11)+d(ln1)-2d(h) dq d4 d11 d1 d1
	<u> 95 97 91 96 91</u>

1	a) $\frac{\Delta g}{g} = \frac{\Delta l}{l} + \frac{2\Delta T}{T}$
	9 (
	Fractional Error in g : $\Delta g = \Delta l + 2\Delta T$
	9 - 1
	(11) Periodic time (T) is the quantity which should measured more
——	which should measured more
	in time period is double when calculating error in g
	calculating error in g
	(b) from, Gain K.E = Lowe in P.E
	K.Ei = mgh
	but kiej = Kier + Kiej
P	Kier + Kier = mgh
	But, $k \in V = 1 \text{ I} \omega^2$
	KIET = IMV2
	7
	LIW2 + 1 MV2 = mgh
	2
	but, w = V
	$\frac{1}{2} \frac{I(v)^2 + I M v^2 = mgh}{2}$
	$\frac{1}{3}\frac{\text{T} V^2}{\text{Y}^2} + \frac{1}{3}\text{m} V^2 = \text{mgh}$
	$TV^2 + mV^2 = 2mgh$
-	Y2
	())
	v2 = 2mgh
	I +m
	Y-2
	V= 2mgh Frz+m
	T/2+ m

	
	M = 20 kg
	r = 0.2 m
	I = 0.4 kgm²
	h = 3m
	V = 2x 20 x 9.8 x 3
	(0.4 + 20)
	((0,5))
	Velocity, V = 6.26 ms-1
-	. The speed of the body at the foot is 626ms-1

Extract 1.1: A sample of correct responses to Question 1 of Paper 1

Extract 1.1 shows that, the candidate had adequate knowledge and mathematical skills about errors in measurement and conservation of energy and thus he/she provided the correct response.

On the other hand, more than a quarter of the candidates (28.6%) had inadequate knowledge of applying mathematical skills to solve the given question. Some candidates failed to deduce the fractional error in 'g' from the given formula. For example, one of the candidates failed to know that an error is always maximized, hence he/she wrote the fractional error in 'g'

as
$$\frac{\Delta g}{g} = \frac{\Delta l}{l} - \frac{2\Delta T}{T}$$
 instead of $\frac{\Delta g}{g} = \frac{\Delta l}{l} + \frac{2\Delta T}{T}$. Others failed to recall that

the periodic time varies directly proportional to the length of inextensible string. As a result, they failed to know that the quantity of time had to be measured most accurately because any error in period T causes a double error in the final answer. Most of them failed to interpret the energy changes of the object rolling down the inclined plane, as a result they failed to calculate the speed of the body. Extract 1.2 is a sample of a candidates' incorrect response to this question.

∞1.	Soution
	@. (1) T- 271 / L
	5 aure both 81/245
	7-24111
	- Gr

0 9-2T VI
apply in both sidel
In g: In(211) + In(112) - In(7)
lng - ln(ztr) + ln(z) -ln(z)
Di with a
19 0+ 12 1 + AT
A9 = 1 AL + AT
ii) The quanty that should be measured
most accurately is the acceleration due to gravity
This is because a small change on the
great charge in the period.
Desta of var.
M-= lolcg N- o.lm
Monout-0, clam
h = 3 m
aut

Extract 1.2: A sample of incorrect responses to Question 1 of Paper 1

Extract 1.2 indicates that the candidate applied a wrong formula and procedure to deduce fractional error in 'g' and the speed at the foot of the slope.

2.1.2 Question 2: Gravitation

The question had two parts, (a) and (b). In part (a), the candidates were required to (i) explain why bodies on the earth's surface do not move towards each other basing on Newton's law of universal gravitation, (ii) derive Kepler's third law using the law explained in a (i). In part (b), they were required to show that the moon would depart forever if its speed was increased by approximately 41%.

A total of 21,708 candidates attempted this question. The analysis of data as shown in Figure 2 indicates that almost a half of the candidates (50.5%) scored from 0 to 3.0 marks; 21.9 per cent scored from 3.5 to 5.5 marks and 27.6 per cent scored from 6.0 to 10 marks. This analysis indicates that the general performance of candidates in this question was average as 49.5 per cent of them scored from 3.5 to 10 marks. Figure 3 is a graphical presentation of the data.

Figure 3: The candidates' performance in Question 2 of Paper 1

The candidates who performed averagely or above had adequate knowledge of gravitation. Some candidates used Newton's law of universal gravitation to explain why bodies on the earth's surface do not move toward each other. They knew that

"Due to very large mass of the earth, all the bodies lying on the surface are attracted towards the centre of the earth. However, the two bodies lying on the surface of the earth also attract each other. But owing to their small masses, they exert a force on each other, which is too small to cause any acceleration due to frictional force between the surface of the earth and the bodies".

Some candidates stated that centripetal force acting on the planet is provided by the sun's gravitational force on the planet. Then, they correctly used the Newton's law of universal gravitation to derive Keppler's third law. Those candidates used the relationship between centripetal force of the moon and the gravitation force of the moon to the earth to derive the formula of the escape velocity of the moon. A s a result, they correctly got the required percentage increase in velocity of moon as 41%. Extract 2.1 is a sample of the correct response to this question.

ລ	(a)(i) Bodies on the earth's surjace do not
	move towards each other because have small
	mass so do not exert attraction forces compare
	to the heavinly body such as planets and sun
	or earth and Sun it experience the gravitational
	force due to their large masses. This was
	explained by Newton's law of Universal grantation
	which state that "every body in the universe attract to each other with the force which is directly
	to each other with the force which is directly
	proportional to the product of their masses and inversely proportional to the dest square dutance
	inversely proportional to the dist squandutance
	between their Centres!
	Lz E x W'W's tx NLs L x W'W's (II) Luw
	F & MIM2
	t × 1/c2
	F X MIME
	r ²
	F= Kmimz where K= A
	<u> </u>
	F = GMIM2
	ر ،
	where my = mass of the enth
	me = mass of the moon.
-	F = GMIMZ
	L.J.
	$F = Mv^2$
	T .
	M2 V2 = @ m, m2
	F F2
	$\frac{M_2V^2 - Gm_1m_2}{V^2 - Gm_1}$
	r r ²

2 ($V^2 = \frac{6m_1}{r}$
	r
	but V=wr.
	but v= ur. (wr)2 = Gmi
	w2 -2 = G m/L
	w2r3= gm,.
	$w^2r^2 = Gm_1$ $w^2r^3 = Gm_1$
	but w= att
	,
	(4112) r3 = Am
	(T)
	$4\Pi^{2} r^{3} = Gm_{1}T^{2}$. $4\Pi^{2} r^{3} = Gm_{1}T^{2}$ $r^{3} = Gm_{1}T^{2}$ $+\Pi^{2}$
	4T12 r3= Gm, T2
	r3 = G m1 T2
	4112
	L3 = KL5 AL15 GW1 = K
	4712
	$r^3 = KT^2$
	T 2 4 r 3 ·
	Hence shown.
	Kepler's third law states that " The time
	period of the planet revolve around the sun
	Is directly proportional to the radius of the
	Hence shown. Keplers there I am state that "The time period of the planet revolve around the sun is directly proportional to the radius of the cubic ", T2xr3.
ર	F = G MEMM
	R ²
	$\frac{MmV^2 = 6m_{\text{f}}m_{\text{m}}}{R}$
	R R
	V2 = GME
	The state of the s
	V = GME
	but am= = gr2.
	ont dime = git.
· · · · · · · · · · · · · · · · · · ·	V = \ 902
	1 n
	V = 9R '

Extract 2.1: A sample of correct responses in Question 2 of Paper 1

In Extract 2.1, the candidate got higher marks due to his/her ability of applying Newton's law of universal gravitation. He/she derived correctly Keppler's third law and showed that the moon would depart forever if its speed was increased by 41%.

On the other hand, the candidates who performed poorly failed to know that all the bodies lying on the earth's surface are attracted towards the centre of the earth due to its larger mass but they exert a small force on each other due to their small masses. Few candidates recalled that the centripetal force acting on the planet is equal to gravitational force on the planet but they failed to apply it to derive Keppler's third law. Most of the candidates derived the expression for velocity of the moon but failed to relate it to the escape velocity to obtain the percentage increase in velocity of the moon. For example, in equating the two forces, that is, centripetal force acting on the planet and gravitational force on the planet, one of the candidates substituted the acceleration in linear motion, $a = \frac{v}{t}$ instead of

acceleration in circular motion, $a=\frac{v^2}{r}$, and thus failed to obtain the required expression. Extract 2.2 shows one of the incorrect responses to this question.

02'	(i) because the contribets) Three befores with the force existing
	Torse befores with the Force existing
	between bodies.
	fc = fq,
	mer - amen
	Y 12
	COL From the 1 1 1 0 O A
	A de la Transportation to
	Mannie bodie a direct monther
	to the product of their manife
	Hat bushingung xpriains bus
	Som are of the distance between
	(11) from the law when et ate that I The force between two meanice bodies is already proportioned to the product of their magnifical and invarialy proportional to the square of the distance between their contra.
02	(a) (70)
	f ~ m2-
-	1-2
	T-GM.D.
	$f = G M_1 M_2$
	f = Gmem
	7
	where_
	F-11the Force Extureer two bodies,
	·
	Me-mas of the conti-
	12 - witha diduce of Eggeratur.
	1 - w me grature + resperation -
	M- w the mess of a boody.

Extract 2.2: A sample of incorrect responses to Question 2 of Paper 1

In extract 2.2, the candidate failed to apply Newton's law of gravitation and consequently got incorrect responses.

2.1.3 Question 3: Simple Harmonic Motion (S.H.M)

The question consisted of two parts, (a) and (b). In part (a), the candidates were required to (i) explain briefly the importance of energy interchange in simple harmonic motion and (ii) explain what would happen if the negative sign in the equation $a = -\omega^2 y$ is omitted as applied in simple harmonic

motion. In part (b), they were required to calculate the maximum velocity and maximum potential energy of the object executing simple harmonic motion if it has a mass of 2 kg, frequency of 2 Hz and amplitude of 2.5 cm.

A total of 21,708 candidates answered this question. Among them, 22.4 per cent scored from 0 to 3 marks; 25.5 per cent scored from 3.5 to 5.5 marks; and 52.0 per cent scored from 6 to 10 marks. The performance was generally good as 77.6 per cent scored above 3.0 marks. Figure 4 is the graphical presentation of the candidates' performance in this question.

Figure 4: The candidates' performance in Question 3 of Paper 1

Most of the candidates who answered this question correctly explained correctly that the energy interchange in Simple Harmonic Motion produces and maintains oscillations of different nature. Some of the candidates understood the effect of omitting the negative sign in the equation $a = -w^2y$ as applied in Simple Harmonic Motion. They explained that, "if the negative sign is omitted the acceleration will increase in the direction of y and the object will then never return to its original position". They also recognised the positions where the maximum velocity and maximum height were attained by the body executing Simple Harmonic Motion. Thus, they applied their mathematical skills to compute correctly the maximum velocity and maximum potential energy. A total of 2,457 (11.3%) candidates who scored all marks allotted to the question provided the correct responses to all parts of the question. Extract 3.1 shows a sample of correct response from one of the candidates.

3	a)(i) Energy Interchange enables Conservation of total
	energy which inturn keeps a body in oscillatory mo
	tion between two extremes through an equilibr
	rum position Hence a body can execute s. H.M
	due to this energy Interchange.
	The state of the s
	ii) Kihen negative Sign is omitted the equation
	will become. a = w2y. This means that the acce
	leration is directly to the displacement and both are
	in Same direction. This is against S. H.M. Hence a
	body will not execute S. H.M as acceleration is
	not directed towards equilibrium position.
	1: C 25 25 C 21 0 - 2 224 = 220
	b) Given; $M = 2kg$ $f = 2Hz$ $A = 2.5x16^2m$
	Vmax= WA but w= 2TTf
	= 2TT A
	$= 2\pi \times 2 \times 2 \cdot 5 \times 10^{-2}$
	Vmax = 0.314 m 51
	! Maximum Velocity, Vmax = 0.314 m51
	P.Emax = 1/2 KA2
	but k= mw2
	$= m(2\pi f)^2 = m +$
	but $k = mw^2$ = $m(2\pi f)^2 = m + me^2 f$ $K = 4\pi^2 m f^2 f$ $P'Emax = 1 \times 4\pi^2 \times 2 \times 2^2 \times (2 \cdot 5 \times 10^2)^2$
	P'Emax = 1 x 4TT2x 2x 22x (2.5x162)
	Maximum, P. Emax = 0.0987] .
L	

Extract 3.1: A sample of correct responses to Question 3 of Paper 1

Extract 3.1 demonstrates how the candidate was competent in the concepts of Simple Harmonic Motion. He/she applied the formula of kinetic energy in solving the problems systematically and correctly.

Low achievers (22.4%) lacked knowledge of the Simple Harmonic Motion especially in part (a). Some of them failed to explain the importance of energy exchange in Simple Harmonic Motion. Others used wrong formulae to calculate the maximum velocity and maximum potential energy. Some of the candidates used $v_{\text{max}} = \omega^2 y$ instead of $v_{\text{max}} = \omega^2 A$ and potential

energy = mgh instead of $P.E\!=\!\frac{1}{2}m\omega^2A^2$. Extract 3.2 shows a sample of incorrect responses.

03	(a)
	(i) It help to return the body
	to the mean position, and
	(i) It help to return the body to the mean position, and Keeping it oscillators.
	2 13 00 0101
	are the backson of the 1th
	(1) The deceptions would move
	in opposite to the direction
	(1) The tecceleration would move in apports to the direction of displacement.
	5 auen,
	mess = 2kg,
	Trop. 5 2 Hz
	Amplifiede = 2+5 cm = 2 5 x com
	/17 PICCURE = 2 5 CM 2 5 KG M
	Frey
	Lin
	Vmex = Wig.
	but
	$M = 54L = 54 \times 5 = 44.$
	21/2 20/11/2
-	Vmax = (DT) x 2.5x10m.
	Vmox = (20) / 2.3/(6 M.
	= 3.9 45 × 10 10 2 mb
	= 3,9478mb,
	· Mex; mun release = 3.929,8 m/s.
	1, 100 / 1 mg dily - 0, 12/ 10/1/10 1

0.7.	
	Mex. Potential energy.
	, CANS
	Potental oranso = mhs.
	= 2 Kg x 2.5 x10 x 9.5ml/2
	= 0.49 Joules.
	i. Maximum potental errors = 0.49 Joules

Extract 3.2: A sample of incorrect responses to Question 3 in Paper 1

Extract 3.2 shows that the candidate lacked knowledge of SHM especially the interpretation of negative sign in the equation $a = -w^2y$. He/she also used a wrong formula to determine the maximum velocity energy and potential energy.

2.1.4 Question 4: Newton's Laws of Motion and Projectile Motion

The question was comprised of two parts, (a) and (b). Part (a) required the candidates to (i) give reasons why the aircraft twists its wings as it prepares to land and (ii) give the effect on the horizontal range for a given projection of angle θ if its initial velocity is doubled. In part (b), they were required to show that $\frac{H}{R}\!=\!\frac{1}{4}\tan\!\beta$ whereas H, R and β are the maximum height, range and an angle above the horizontal respectively, for a projectile fired from the ground level.

This question was attempted by 100 per cent of the candidates. The results indicate that 11.7 per cent of the candidates scored from 0 to 3.0 marks; 39.4 per cent scored from 3.5 to 5.5 marks; and 48.9 per cent scored from 6.0 to 10 marks. The analysis shows that the general performance of the candidates in this question was good as 88.3 per cent performed well. Figure 5 summarizes the performance of the candidates in this question.

Figure 5: The candidates' performance in Question 4 of Paper 1

Candidates who performed well in this question were knowledgeable enough to give the correct responses. In part (a) (i), most of the candidates in this category correctly explained why the aircraft twists its wings as it prepares to land. In part (b) (ii), they provided the effect on the horizontal range for a given projection of angle θ if its initial velocity is doubled as "if the initial speed v_o is doubled, the horizontal range will be four times its initial value. Note that θ and g are constant". Moreover, in part (b), they applied mathematical skills to deduce correctly the expressions for maximum height and horizontal range and then divided the two expressions to get $\frac{H}{R} = \frac{1}{4} \tan \beta$. Extract 4.1 is a sample of the correct response.

4	(a) (i) Air Craft twish its wings to
`	reduce the trafface area hence reduce the
	upward force (pressure) and this
	allow it to land on the gound
	easily. This form is due to air
	resistance which is decreased necessary
	for the craft to land.
	,

<u> </u>	
	(ri) soln
	(ii) Soty Hunter Rayse > U2 Jui 20
	9.
	1f. Vis = 211.
	If, No = 2Uo If UD Sombled,
	$R = (2u_0)^2 \sin 2u$
:	9.
φ,	R= 940 5m 20
	<u> </u>
	Rf = 4 (No sure)
	5
	0 F 12 C 200 - D.
	But hot sure = Ro
	Nf > 4 Ro.
	Maria de la Malayeta de
	doubled the Range will be four
	- Mus, 1 f the Mikel White is doubted the Range will be four times the writich Range (humientel range)
	(b) solv. Tegund to show the = 1, land,
	112 / 4
	Swin, 14, - me am heart R - range B - angle, Itus,
	R- range
	15 - angle, Itus,
	*
	H \
	1 a b
	where Q=B
	- T

4. (b) fm,
R = U2 sin 200e
R = Ut sin 200 e
But
But H = U & (ii) 29.
29.
Oriday to two equetor (+(i))
Q, - 102 sin 20 29)
$Q = \frac{\sqrt{2 \sin^2 \alpha}}{4} \times \frac{\sqrt{2 \sin^2 \alpha}}{2}$
8
2 = 2 sin 2a
H Suira
14 Sur sui ra = 2 since cose
14 - 4 Inde Wed
14 Sin 20.
P/ = CP fin Wice H ring,
H ma.
17 = 4ma
hy = since ~ cplose
by = lan a 12 y. whe a = b.
whe Q = B.
10 = lan B
Hence shown,
Hence shown,

Extract 4.1: A sample of correct responses in Question 4 of Paper 1

In extract 4.1, the candidate met the requirements of the question by attempting all parts precisely and correctly.

Low achievers (11.7%) in this question were not knowledgeable of the effect of aircraft to twist the wings when preparing to land. They were not aware that when the aircraft prepares to land it twists its wings to reduce the pressure below its wings and hence, momentarily reduce the upthrust. Some of the candidates failed to interpret the expression for horizontal range for a projected body. As a result, they failed to explain that if the

initial speed v_o is doubled, the horizontal range would be four times its initial value. Furthermore, they were unable to relate the equation for range for the projected body to its maximum height to get the required expression in part (b). Extract 4.2 shows a sample of incorrect responses from a candidate.

Thomas Recent.
H =-1/29t2
P 49t
H/2 = gt 2 zux
But; Ux=closp
HR = gt 2 work
But t= My-Uy - De- Ulings
17 - grx - 45m B 72 - 29 246 - 138
17 Course
HTR= YTans.
: HTR = Pank Hones 8hows

Extract 4.2: A sample of incorrect responses to Question 4 of Paper 1

Extract 4.2 shows that the candidate lacked knowledge of the key concepts in projectile motion, specifically general formulae for range and maximum height.

2.1.5 Question 5: Heat and Thermodynamics

The question consisted of two parts namely (a) and (b). In part (a), the candidates were required to (i) with the aid of a relevant diagram give reasons, why lake water in very cold regions does not freeze completely into ice even if the temperature in it is far below the freezing point and (ii) give biological significance of the behaviour observed in part (a) (i). In part (b), they were required to calculate the time taken to raise the temperature of water to 100 °C if one litre of pure water at 25 °C was poured into an electric kettle of negligible heat capacity rated 2.5 kW when the electric kettle is switched on.

The analysis indicates that 21708 (100%) candidates attempted the question and their scores were as follows: 49.6 per cent scored from 0 to 3 marks; 22.5 per cent scored from 3.5 to 5.5 marks; and 27.9 per cent scored from 6 to 10 marks. The performance in this question was average as 50.4 per cent of the candidates were able to score above 3.5 marks or more. Figure 5 summarises the analysis of the candidates' performance in question 5.

Figure 6: The candidates' performance in Question 5 of Paper 1

The candidates who scored high marks provided correct reason for water in very cold regions not to freeze completely into ice even if the temperature in it is far below the freezing point. Furthermore, they correctly stated the biological significance of the anomalous behaviour of water. Some were skilful enough to use the principle of conservation of energy to relate the electrical energy supplied by the electric kettle and heat energy that raised the temperature. Therefore, they computed correctly the time taken to raise the temperature of water. Extract 5.1 is a sample of a candidate's correct response.

5.	a) ii) Anomalous expansion of water enhances the aequatic
	I the by Reeping Rish and other aquatic animals
	alive during the reasons of very but low temperature
	Whereby They all go at lowermost depth of the lake
-	Where there is water and they can summe
	nles (d
	33(1)
	from
	FI = MCZI
	Poner = H = MCAT
	7 7
	P=mcdT
	T
	t=med[c=4200]kg-1k-1
	10, Di=(100-21) = 76°C
	p = 2.5kw = 2500Watts
	$m = gV = \sqrt{m^2 \sqrt{cool}}$ $ccol$
	دده)′
	M= 149
	t=1145×42007Kg-K7×95K
-	25003/5
-	= 126 seconds
	Time = 126 seconds

Extract 5.1: A sample of correct responses to Question 5 of Paper 1

Extract 5.1 shows that the candidate had adequate knowledge of the anomalous expansion of water and the principle of conservation of energy that helped him/her to present the correct response to the question.

On the other hand, the candidates who performed weakly in this question lacked prior knowledge of thermal expansion of liquids. Some of the candidates in this category were not aware that lake water in cold regions does not freeze completely due to its anomalous behaviour. That means water does not expand between 0 °C and 4 °C, instead it contracts. It

expands above 4 °C where its density is maximum (water has maximum density at 4 °C). For example, one of the candidates wrote:

"the water will being at triple point where it can be obtained in all three states of matter solid, liquids and vapour. This because, the deeper water will be hot the middle will be ice like and the upper will be vaporizing".

These candidates failed to know that the triple point of water is the temperature and pressure at which a substance can exist in equilibrium in the liquid, solid, and gaseous states. They were supposed to explain that when temperature falls, the top layer of water in a lake contracts, becomes denser and sinks to the bottom. A circulation is thus set up until the entire water in the lake reaches its maximum density at 4 °C". Most of those candidates drew incorrect diagrams that resulted in giving incorrect reasons. In part (ii), they failed to know that anomalous expansion of water helps to preserve aquatic life during very cold weather. In part (b), some of the candidates used incorrect formulae due to failure to use the principle of conservation of energy to establish the relation between electrical energy supplied by the electric kettle and heat energy which raised the temperature. Extract 5.2 shows the response of a candidate who lacked knowledge of anomalous expansion of water.

5;	(a) (i) Lake nater at very high cold regions does not freeze competery
	in to ice even it temperature fall below freezing point because the
	sun rays its directed to the water surface therefore it lowers the
	whater temperature so due to sun rays the water do not precied.
	Sun rays
	Water bodies on earth surface.
	sodies on
	Surface.
	(1:) The sun rays # which is directed to the water surface
	it Lower the freezing temperature of the water so it helps to
	manteins constant body temperatures of some living organisms while
	Lives in the water.

Temperature 25°C P = 2.5KW =D 2500 V Required time taken to raise temperature to 100°C C = 1 from Mass of water = beneity × Yaluma 1000Kgm ⁻³ × 1×10 ⁻³ m ³ Mass of water = 1kg. from Power = m c DT time time time = power mcDT A365 5; b) time = power McDT A500 1 × 1 × (100 - 25)		(b) Solution.
Required time taken to mise temperature to 100°C C = 1 from Mass of water = Density × Yolum. 1000Kgm-> × 1×10-3m3 mass of water = 1kg. from power = m c DT time time +ime = power mc DT Tog365 5; b) time = power Me DT		Temperature 25°C
Required time taken to mise temperature to 100°C C = 1 from Mass of water = bensity × Yolume 1000Kgm² × 1×10°3m³ mass of water = 1kg. from power = m c DT time time = power mcDT A365 5; b) time = power McDT A500		0 = 2.5KW =0 2500 V
from Mass of water = Density × Yolume 1000 Kgm² × 1×10°3m² mass of water = 1 kg. from power = mc AT time time = power mc AT 79365 5:6) time = power Mc AT		
from Mass of water = Density X Yolume 1000 Kgm3 x 1x10-3m3 mass of water = 1 kg. from power = m c AT time time = power mc AT 79365 5: b) time = power Mc AT A500		
1000 Kgm3 × 1×10-3m3 macs of water = 1 kg. from power = m c DT time time = power mcDT A365 5; b) time = power McDT A500		for an exploration broady V Value
from power = m c DT time time = power mc DT Time = power mc DT Mo DT 2500		1000Km2 × 1×10-3m3
from power = mc DT time time = power mc DT 79365 5; b) time = power Mc DT 2500		market in the Alle
time = power mcot Total Tot		111933 04 WATER = Ing .
time = power mcot Togges 5; b) time = power Mcot Aspoo		C 2
time = power mcot Total Tot	-	Trom power = MC AI
5; b) time = power MO AT 2500		
5; b) time = power Me AT 2500		time = power
5; b) time = power Me AT 2500		mcot 17365
Me AT 2500		
2500	<u>5;</u>	b) Time = power
2500		MOAT
1 x 1 x (100 = 25)		d 50 o
		1 x 1 x (100 - 25)
1 1 x x (100 x)		1 / 1 × × (100 · ×)
= 33.33 Seconds,		= 33.33 Second (1

Extract 5.2: A sample of incorrect responses to Question 5 of Paper 1

In Extract 5.2, the candidate provided incorrect responses to all parts of the question. The candidate lacked knowledge of anomalous expansion of water. He/she applied a wrong formula to determine the time to raise the temperature of water.

2.1.6 Question 6: Heat and Thermodynamics

The question consisted of two parts, (a) and (b). In part (a), the candidates were required to calculate the external work done by the gas given that an ideal gas of volume $0.05~\text{m}^3$ initially at 27°C and pressure $1.0 \times 10^5 \,\text{Pa}$ was heated at constant pressure until its volume increased to $0.06~\text{m}^3$. In part (b) the candidates were tasked to find the actual length of a steel rod having 5 cm longer than a copper rod if their difference in length was maintained constantly at any temperature.

A total of 21,707 candidates attempted this question and their scores were as follows: 31.4 per cent scored below 3 marks, including 21 per cent who

scored 0; 30 per cent scored from 3.5 to 5.5 marks and 35.1 per cent scored from 6 to 10 marks. These scores suggest that the candidates' performance in this question was good as 65.1 per cent of them scored from 3.5 to 10 marks. Figure 7 presents a summary of the candidates performance.

Figure 7: The candidates' performance in Question 6 of Paper 1

Most of the candidates who scored from 6 to 10 marks applied the concept of the first law of thermodynamics to organise the data and compute the external work done by the gas in part (a). In part (b), they were able to interpret the given task by formulating and equating two equations related to linear expansion of steel and copper when heated. Further, they applied the given values of coefficient of linear expansion of steel and copper to evaluate the actual lengths of two rods. However, some of the candidates who scored average marks failed to describe correctly the concepts tested. Extract 6.1 is a sample of the correct responses.

6(9)	N L Amei
6(4)	- Initial volume (V,)= 0.05m3
	- Initial temperature (T,) = 27°C
	= (273+ 27)K
	= 300 K.
	- Pressure of a gas (P) = 1×105 Pa
	- Pressure of a gas (P) = 1×105 Pa - Final volume (V,) = 0.06 m ³
	required; the external workdone by the gas.
	from, workdone = P x dV
	w= P dv
	W= P (VL-VI)
	M= 1X102 NW-5 X (0.00 W3 - 0.07 W3
	L= 1000J.
	. The amount of external work done
-	
-	by the gas is $1000 J$.

6(4)	let, x be length of copper rad y be length of iteel rad.
	given that, y= 5cm + x
	required: to find the values of x and y.
e(P)	also given, « capper = 1.1×10-5 K-1
	recall,
	since AL, = constant
	X = V0 = x = X6. X = (xx+5cm) = X6 x6. 1.1X(0-5 (x6+5cm)= 1.7 × 10-5 x6.
	1.1x10-5x0 + 5.5 x10-5cm = 1.7x10-5x0.
	5.5 x 10 cm. = 0.6 x 10 -1 x0
	then $y_0 = 5 \text{cm} + 7 \cdot 167 \text{cm} \cdot (\text{copper})$. $y_0 = 19 \cdot 167 \text{cm} \cdot (\text{steel})$.
	.'. The original (actual) length of steel rod = 14.169 cm and that of
	copper rod is 9.167cm.

Extract 6.1: A sample of correct responses to Question 6 of Paper 1

In Extract 6.1, the candidate applied the concepts of thermodynamic process and thermal expansion to obtain the correct responses to parts (a) and (b).

On the other hand, 4568 (21%) candidates who scored 0 lacked mathematical skills for analysing the examined concepts. Most of them faced challenges in describing the applications of thermal conduction in domestic and industrial activities as they failed to analyse the given tasks correctly. In addition, some of the candidates applied the concepts of the first law of thermodynamics and thermal expansion of solids interchangeably, and thus ended with incorrect responses. Extract 6.2 shows incorrect responses given by one of the candidates.

an Gwen
$V_1 = 0.05 \mathrm{m}^3$
Va= 0.06 m3
P = 1 x10 5 Pa
T = 270c = 300 H
$ \eta $
trom ideal gas muchon
$\Gamma Q Q = V Q$
$n = 9V_1$
$U = 1 \times 10^2 \times 0.05 \text{ m}^3$
$U = 1 \times 10^{2} \times 0.05 \text{m}^{3}$
8.314 X300K
n = 2-0046 moles
(Donklone
$\frac{\omega_{\text{condomo}}}{\omega} = n\Omega + \ln\left(\frac{v_2}{v_1}\right)$
, ,,,
= 2.0046 x 8.3 14 x 300 x ln (0.06)
w= 911.56J
Co V C
(b) Gwell
Latera = (5 + Leu)cm
SOM OF A AT
Q S AT
66 du = ALM , detel = Alstel
day of Lsteel of
DLac = DLateal -5
Qu. Lu = (a stal · Lsta) - 5
(xsteel·lsteel) - (dav.Lu) = 5
1.7x10-5 (latb) - 1.1x10-5 Lea = 5
1.7 ×10-5 Lu + 8.5 ×10-5 - 1.1 ×10-5 Lu = 5
0.6×1052 w +8.5×105=5
0.6 ×10-5 La = 4.99
Low = 833.319 m 8333.19m
Latero = lue + B
= 833.319m + 0.05m 8333.1940.05
Lsteel= 853.369m 833304m

Extract 6.2: A sample of incorrect responses to Question 6 of Paper 1

In Extract 6.2, the candidate applied the ideal gas equation PV = nRT and the formula $W = nRT \ln \left(\frac{V_2}{V_1} \right)$ instead of the correct formula

Work done = $P(V_2 - V_1)$ to find the external work done. In part (b), he/she failed to equate correctly the two formulae in describing the coefficient of linear expansion of solid as a result they ended with incorrect lengths.

2.1.7 Question 7: Environmental Physics

The question consisted of two parts (a) and (b). In part (a), the candidates were required to (i) identify two principles on which the wind turbine operates to generate electrical energy and (ii) give reasons for renewable energy sources being regarded as environmental friendly by using two examples. Part (b) required the candidates to (i) state the influence of oxygen and carbondioxide gases to plant growth and (ii) explain the effect of rainfall on the renewal of soil air.

The question was attempted by 21,707 candidates whose scores were as follows: 25.8 per cent scored from 0 to 3 marks, 32.1 per cent scored from 3.5 to 5.5 marks and 42.1 per cent scored from 6 to 10 marks. These scores imply that the general performance in this question was good as 74.2 per cent scored from 3.5 to 10 marks. Figure 8 is a graphic representation of these scores.

Figure 8: Distribution of candidates' performance in Question 7 of Paper 1

The analysis of candidates' responses reveals that those who scored high marks had good understanding of the principle on which wind turbine operates to generate electric energy. In addition, they provided enough reasons for renewable energy to be regarded as environmentally friendly. For example, one candidate wrote that 'Renewable energy sources (e.g. Biogas and Sunlight) are environmentally friendly because it releases few chemicals that can harm the environment i.e they have minimal adverse effect to environment'. Such a response suggest that the candidate had sufficient knowledge about sources and types of pollutants in the environment. Furthermore, most of them were able to provide the role

played by oxygen and carbondioxide in plant growth as well as the effect of rainfall on the renewal of soil air, as illustrated in Extract 7.1.

+ (a) Principles
a) Principle & Conservation of energy
That is energy Can betansformed from kinetic
that is energy Can betansformed from kinetic energy of wind to electrical energy
(a) Principle of electromagnetic inelection, 18tation of motor by turbines generated decisio
stateun of motor by turbines renerated dechic
Current
9 (11) Renerable Sources of energy are
enfronmental friendly because
O. They do not politic environment
or do not bying nonetime affects an auxignment.
Solar energy and wind Wind energy -X 80 conounble source of energy foes not got
Solar energy and wind Wind energy
-X 80 renewable source of energy does not not
axoursted over a time.
(b) of Positive Pattona of Oxygen to Plat
enable plants to Obtain energy for growth.
and retails activities.
And Worth 115 Main 1157
Negative motiona
Vegettive voftina - Bxygen Cause photores piration which
Perreas Plost yeld and effect about growth. - Oxygon cause decline in proper of
- Oxygon cause decline in prooss of
Photosy at hes a by intiboting enzymes.
,
· Postive in fluence of Consordioxide
- H is a Rw material for photosynthems
hera it Procease plant yield and growth.
And the second s
(D(ii) Reconster till the pores in the soil
and replace air previously Estained in a sol soi)
here removed our is replaced by another their results noto renewal of soil air.
resultation renewal of Soil air.

Extract 7.1: A sample of correct responses to Question 7 of Paper 1

In Extract 7.1, the candidate identified the principles guiding how wind turbine operates to generate electrical energy. Consequently, to some extent, he/she explained correctly renewable energy sources, the role of oxygen and carbondioxide to plant growth and the effect of rainfall on the renewal of soil air.

However, those candidates who performed weakly lacked mastery of proper concepts in the topic of *Environmental Physics*. This made some of them fail to identify the principles on which the wind turbine operates. Consequently, they failed to recognise that renewable energy sources (e.g. Biogas and Sunlight) are regarded as environmentally friendly because they have minimal adverse effect to environment. Some of them failed to recall that oxygen is required for the respiration of plant roots, microbes and soil fauna (wildlife) while carbondioxide is essential for photosynthesis. They were also unable to argue that the entry of rain water into the soil causes movement of water in it, which results in the displacement of soil air from the pores. The water is subsequently displaced by fresh air resulting in the renewal of soil air. Extract 7.2 is the sample of a candidate's incorrect responses to the question.

7(a)	he newable energy sources can be regarded at
	enteronmental trivially since can be roughled
	and stored for future uses.
_	henewable energy
	8
→(b)	
-	Oxygen 12 important since it acts no a
	requirement for manufacturing of tood
	Carbondioxide is important since it is wed
	as an energy source for performing of
	various metabolic activities
((i)	
	Raimall creates a porous environment such
	that extrons essential for fertility are absorb
	ed back by conce exchange.
	Rarnfalls also improves the soil py by ball
	arcing the PH when its too low or high.

Extract 7.2: A sample of the incorrect responses to Question 7 of Paper 1

In Extract 7.2, the candidate provided the incorrect responses to all parts of the question, showing that he/she lacked knowledge of environmental physics.

2.1.8 Question 8: Current Electricity

This question had three parts: (a), (b) and (c). Part (a) required the candidates to (i) explain how a fuse is used to protect electrical installations and (ii) why bulbs in a house became dim when high power heater is connected to the main supply. In part (b), they were required to (i) calculate the number of electrons passed through the filament bulb when a current of 0.5 A passes through a light bulb rated 40 W if the charge on electron is 1.6×10^{-19} C and (ii) use Kirchhoff's voltage law to determine the voltage between point 'a' and 'b' as shown in Figure 2.

Part (c) required the candidates to study the circuit diagram in Figure 3 and then determine (i) the value of E such that a current of 0.5 A existed in 8 Ω resistor with a sense from 'a' and 'b' and (ii) the potential difference V_a - V_b .

The question was answered by 4,418 candidates, which correspond to 20.3 per cent. The analysis reveals that 46.1 per cent of the candidates scored 0 to 5 marks; 33.4 per cent scored 5.5 to 8.5 marks and 20.5 per cent scored 9 to 15 marks. These data are summarised in Figure 9.

Figure 9: Distribution of candidates' scores in Question 8 of Paper 1

Figure 9 shows that the candidate's performance in this question was average since 53.9 per cent of the candidates scored 5.5 to 15 marks.

The candidates who scored high marks stated correctly the working mechanism of a fuse in protecting an electrical installation. They also provided the reason why bulbs in a house become dim when a high power heater is connected to the main supply. In addition, about 1.0 per cent corresponding to 44 candidates scored 14.5 to 15 marks. These candidates showed their mathematical skills in using Kirchhoff's laws of electrical networks to determine the values of electromotive force, E, voltage and potential difference V_a - V_b . Extract 8.1 illustrates a sample of the correct responses.

8. (a) (i). A fuse protect electrical installations by
switching off current flow in the electrical
installation once excessive whent passes
through it eausing it to blow out A
fuse is designed to allow the passage
of the maximum value clabelled value)
and that below this but not above.
In this way it profects electrical installa
tion by limiting preventing the passage of
excess current by blooming out and cultimi
the current flow.

(ii) The bulb in a house become dim
when high power heater is connected
to the main supply since it has high
Westage on & therefore draws large curent
show the supply and therebye redución
the sure of the speech the bull become
the arrest grounds the purp broads
e the where peace's integer the
(ii) The bulb in a house become dim when high power heater is connected to the main supply since it has high wattage and therefore draws large current from the supply and therefore reducing the current through the bulb Because e the current reduces through the bulb it lights with dim lightlistensity.
(b) (i) _Grien
current (I) = 0.5A
power (P) = 40W electron charge (e) = 1.6 x 10-19 c Humber of electron N = required.
electron charge (e) = 1.6 × 10-14 C
Number of electron N = required.
from I = Quantity of change (Q) x 1
6met)
$I = Ne$ t $8 (b) \cdot (i) \cdot N = I$
t
$8 \text{ (b)} \cdot (i)$ $N = I$
$8 (b) \cdot (1) \cdot N = I$
+ 0
t e
te
$\frac{N}{t} = 0.5 A$ $\frac{1.6 \times 10^{-19} e}{t}$
$\frac{N}{t} = \frac{0.5 \text{ A}}{1.6 \text{ K} (\omega^{-19} \text{ e})}$
te
$\frac{N}{2} = 0.5 \text{ A}$ $\frac{1.6 \times 10^{-19} \text{ e}}{1.6 \times 10^{-19} \text{ e}}$ $\frac{N}{2} = 3.125 \times 10^{18} \text{ electrons second }$
$\frac{N}{t} = 0.5 \text{ A}$
$\frac{N}{2} = 0.5 \text{ A}$ $\frac{1.6 \times 10^{-19} \text{ e}}{1.6 \times 10^{-19} \text{ e}}$ $\frac{N}{2} = 3.125 \times 10^{18} \text{ electrons second }$
$\frac{N}{t} = 0.5 \text{ A}$ $\frac{N}{t} = 0.5 \text{ A}$ $\frac{1.6 \times 10^{-19} \text{ e}}{1.6 \times 10^{-19} \text{ e}}$ $\frac{N}{t} = 3.125 \times 10^{18} \text{ elections pass through the bulb}$ $\frac{1.3.125 \times 10^{18} \text{ elections pass through the bulb}}{10.0000000000000000000000000000000000$
N = 0.5 A t 1.6x10-19 e N = 3.125 x10 18 elections second t 3.125 x10 18 elections pass through the bulb in one second (ii) Consider the diagram below
N = 0.5 A t 1.6x10-19 e N = 3.125 x10 ¹⁸ elections feewed t. 3.125 x10 ¹⁸ elections pass through the bulb in one second (ii). Consider the diagram below I 2KN I, 1KN
N = 0.5 A t 1.6x(0-19 e) N = 3.125 x10 ¹⁸ elections second t 3125 x10 ¹⁸ elections pass through the bulb in one second (ii) Consider the diagram below I 2 x I I X I I M I X I I M I X
N = 0.5 A t 1.6x(0-19 e) N = 3.125 x 10 18 electrons feeward 1. 3.125 x 10 18 electrons pass through the bulb in one second (ii). Consider the diagram below I 2 x N I 1 x N T 2 x N I 3 x N
N = 0.5 A t 1.6x10-19 e N = 3.125 x10 ¹⁸ elections second t. 3.125 x10 ¹⁸ elections pass through the bulb in one second (ii). Consider the diagram below I 2 XN I, 1KN
N = 0.5 A 1 1.6x(s-19 e) N = 3.125 x10 18 electrons second 1. 3.125 x1018 electrons pass through the bulb in one second (ii). Consider the diagram below I 2KN I, 1KN The second is a second in the bulb in the bulb in the second in the bulb in the bulb in the bulb in the second in the bulb in the second in the bulb in the bulb in the second in the bulb in the second in the bulb in the bulb in the second in the bulb in the second in the second in the bulb in the second in the bulb in the second in the secon
N = 0.5 A 1 - 3.125 × 10 ¹⁸ elections second 1 - 3.125 × 10 ¹⁸ elections pass through the bulb in one second (ii). Consider the diagram below I 2KN I, 1KN The second is a second in the bulb in the bulb in the second in the bulb in the second in the bulb in the second in the bulb in the bulb in the second in the bulb in the bul

Kir chhoff's current law KCL. $T = I_1 + I_2$
Applying Kirchhoff's Voltage law Kul to loop [24V = 2000 I - Va + Vb = 0
$24 - 2000\overline{1}_{1} - 2000\overline{1}_{2} - V_{0} + V_{0} = 0$ (1)
Applying KUL to Loop II Va- 1000 I, - 3000 I, - Vb =0
$4a - 4b = 4000 I_1$. —(i)
8 (b) (ii). Total resistance $R = 2000.1 + 1000.1 + 3000.1$ R = 6000.01.
I = 24 A
6000 T = 4x(0 ⁻³ A.
Taking (i) -> (i)
24 - 2000 I, -2000 I2 = 400 0 I,
solving (a) and (b) simultaneously we have
$\frac{T_1 = 4 \times 10^{-3} \text{ A}}{12 = 0 \text{ A}}$
Va - Vb = 4080 x 4x16-3 √

Va-Vb= 16 V

The potential difference between b is 16 V

pornits a and

Extract 8.1: A sample of correct responses to Question 8 of Paper 1

In Extract 8.1, the candidate correctly and systematically described the mechanism of fuse and applied Kirchhoff's laws to obtain the correct responses in parts (b) and (c) of the question.

Nevertheless, 46.1 per cent of the candidates scored below 5.5 marks. The analysis on the responses of those who scored 0 (3.7%) shows that they had inadequate knowledge of current electricity. Specifically they failed to describe the mechanism of electric conduction in metals. They faced difficulties in explaining how a fuse plays an important role in protecting

electrical installations. Moreover, those who scored low marks provided the reason why bulbs in a house become dim when a high power heater is connected to the main supply. However, some of them lacked mathematical skills for using Kirchhoff's laws to analyse electrical networks. Extract 8.2 illustrates an example of incorrect responses.

Since it # is a semiconductor devices so If have high input impedence and home low Voltage can enter the circuit and home protect it from deformation, fure mostly imade up common emitter amplifier which have high input impedence and low out get impedence.
since it # is a semiconductor devices so
It have high input impedence and home low
Voltage can enter the circuit and hence protect it
from clesos motion, Fuse mostly macle up common emitter
amplifier which have high input impedence
and low out put impedence.
, , , , , , , , , , , , , , , , , , ,
IN the butby in howse belone dim when high
Power neater 13 tonnected to the main Supply,
Init is because heater is made up of
He town of the property of the state of the
The bulbs in howe become clim when high power heater is lonnected to the main supply. This is because heater is made up of Secondary and primary coils. So as to start the secondary coil for greater amount of the voltage is required so that is why the fight bulbs in house clim first and after then continues with the flow.
13 Register 30 may 11 why the hatter shap cockings
which the Univ.
WITH THE TIME.
bi Jolution
Data given
J
Current(1) = 0.5A
Powr(p) = 40W
$Powr(p) = 40W$ Charge $(9) = 16 \times 10^{-19} \text{C}$
Number of elections (N) = ? from the formula
from the formula
M 7+
Q = It
also 0-7V
1 - 1 v

8 b	P = IV
	I = 9/t
	$T = \frac{Ne}{t}$
	P = Q/V /t $V = P/I = 40 - 80V$
-	$t = \frac{1.6 \times 10^{19} \times 80}{40}$ $t = 3.2 \times 10^{19}$
	Then $N = 1 + \frac{1}{2}$ $N = \frac{1}{2} + \frac{1}{2}$ $N = \frac{3 \cdot 2}{2} \times 0.5$
	N= 1. Plection.
8 b	The number of election = 1 electron Solution KR F 1 3KR F 1 3KR F 1 3KR F 1 1 2KR
	Conside the loop $AEFDA$ $24 + 8I, = V = 0$

Extract 8.2: A sample of incorrect responses to Question 8 of Paper 1

In Extract 8.2, the candidate provided incorrect responses to all parts of the question. He/she failed to recall and apply Kirchhoff's laws, and consequently obtained incorrect values of potential difference between terminals.

2.1.9 Question 9: Electronics

This question was divided into parts (a), (b) and (c). Part (a) required the candidates to (i) state the meaning of semiconductor based on energy band

theory of solids and (ii) provide three distinctions between intrinsic and extrinsic semiconductor. In part (b), they were required to (i) identify the property of a semiconductor diode which permits it to be used as a rectifier and (ii) calculate the collector current in a common base connection if the emitter current $I_E = 1 \text{mA}$ and collector current $I_C = 0.95 \text{ mA}$ when the transistor is connected in common emitter with base current of 0.005 mA. In part (c), they were required to (i) distinguish between breakdown voltage and knee voltage as applied to PN-junction and (ii) give reasons why the conductivity of intrinsic semiconductor increases with the increase in temperature while that of metals decreases.

The analysis of data reveals that 20,060 (92.4%) candidates who attempted this question, had the following scores: 24.6 per cent scored from 0 to 5 marks; 29.9 per cent scored from 5.5 to 8.5 marks and 45.5 per cent scored from 9 to 15 marks. These scores suggest that the candidates' performance in this question was good because three quarters of them scored the pass mark or above. These data are summarised in Figure 10.

Figure 10: Distribution of candidates' performance in Question 9 of Paper 1

According to the analysed responses from the scripts, the candidates who scored high marks (45.5%) stated correctly the meaning of semiconductor based on energy band theory of solids and the distinctions between intrinsic and extrinsic semiconductors. Most of these candidates showed their ability to analyse the effect of temperature on conduction of electricity in solids and to interpret transistor characteristics to determine the collector current. Extract 9.1 is one of the correct responses to the question.

9.	(a) (i) semiconductor refers to the solid naterial whose
<u>'</u>	conduction band and valance band are
	separated by a namew forbidden gap
	as compared to ensulator national, for
	xample solicon and Germanium
	rample and and department
	(A)(ù)
	Intrinsic semiconductor Extrensic semiconductor
	(i) They are pure semicondat They are inpure some
	ors. onductors obtained by
	doping of intimere
	seniconquetor
	(ii) They have Lower cond They have greater
	vetinity of electricity conductivity due to free
	charge carriers
	in The Number of Hoter The Number of Hoter
	is equal to the wunder is not equal to the no
	of electron. When of electron and
	depends on doping
	(b) is semiconductor diade allows the flow of current
	through it in only one direction honce used
	as rectifier
	(b) (ii) timen
	IE = Ind:
	Ic = 0.95mA.
	Ic = 0.95mA. Ig = 0.05mA. required Ie in common emitter
	required Te in common emitter

' 	
	from
	$\alpha = I_{c}$
	ΞĘ
	= 6,95ml
)	= 6,95ml 1ml.
	Ibon
	$\beta = I_{\varphi}$
	B= Ic/ TB.
	Ig 12c
	1 = IB , Ic/
	× I. I.
	4 - 1 - 1
	$\alpha = \beta^{\dagger}$
	1-1=1
	× 7 3
	1 _ 1-~
	BX
	3 = ~
	1-0
	2 - 0.95
	B =
	1-0.41
	$\beta = 19$.
	B = Ie/
	$\beta = Ie/$ IR
	F 0.5
	Ic = BX IB
	= 19 x 0.05m Å = 0.95m Å.
	= 0.95mA.

<u></u>
9. (O) Breakdown voltage refers to the voltage
required to break the coordinate bonds on
the DN Junction under moverse bias leading
to a sharp increase of vevere current as
a vesit of strong field.
white.
. know voltage regen to the voltage at
which the PN junction exhibits a sharp
increase in forward current , fue to eli
unation of depletion layer
(O(w) · For interiore comiconductor, in croace in
Euperature exter the electron from the
valence band erossing the forbidden gap
to the conduction band honce increasing
conductivity
· For netals, in crease in temperature inc
reason the random nation of electrons
which in tour result to an increase in the
collision frequency or electrons as the collision
increases also the resistance to the flow of
coment increaser leading to lower conducti
nty (conductivity decreaces)

Extract 9.1: A sample of correct responses to Question 9 of Paper 1

In Extract 9.1, the candidate presented the correct responses by describing the concepts, and he/she applied the correct formula and procedure to determine the collector current.

In contrast, 24.6 per cent of the candidates scored 0 to 5 marks. These candidates had inadequate knowledge of semiconductors and transistors. They failed to identify the significance of femi level and energy gap in solids. In addition, most of them faced difficulties to identify the differences properties between intrinsic and extrinsic semiconductors and assess the effect of temperature on transistor circuits.

Moreover, those who scored 0 used wrong concepts to answer the question. Similarly, in parts (b) and (c), they faced more challenges to deduce transistor characteristics. For example, some of them wrote the formula for

the transfer ratio/current gain of common base transistor $\alpha=\frac{I_C}{I_E}$ and that of common emitter transistor amplifier $\beta=\frac{I_C}{I_B}$ interchangeably. Those candidates failed to establish the relationship between α and β due to lack of mathematical skills, and they finally obtained incorrect values of collector current. Extract 9.2 is a sample of incorrect responses.

9.	(a)(i) Semi conductor is the derice which is used to conduct electric current (electricity).
	Intrinsic semicondutor Extrinsic semiconductor (i) Truolves the - Involves no addition of adding of impurities the cause is inside the semicondutor conductor butside the conductor (ii) thate Have hollow _ have no hollows?
9	(ii) contain PPN - Contain PNP Junction (Pinchos) (b) (li) Solution Given emitter current Is = 1mx Collector current Ic = 0.95mx.
	Regulied Ic = ?
	$\frac{f_{\text{rvm}}}{\text{Tc} = \text{Tg} + \text{Te}}$ $\frac{d_{\text{c}} = 0.01 \cdot f = 1.05 \text{MA}}{\text{C}}$
	$I_{\varepsilon} = I_0 + I_{\varepsilon}$ $I_{\varepsilon} - I_{\varepsilon} = I_{\varepsilon}$ $I_{\varepsilon} + I_{\varepsilon} = I_{\varepsilon}$

9	(c) (i) Volage breakdown These are breakdown
	of voltage in which pr junction is obtained and get to concentrate at Pr junction. whereas
	and get to concentrate at Prv Junction, whereas
	knee prinction Is the Espe of junction in
	While positive is concentred they regulie
	production in DN production
	(ii) Beaux when adding impurites to
	Intinue semiconductor the conductivity increases
	in temperature while thet of metal fecreeses
	because netel obtain conductivity only at
	ligh temperature but Iftemperature
	decreases and the metal her last conductions

Extract 9.2: A sample of incorrect responses to Question 9 of Paper 1

In Extract 9.2, the candidate wrongly provided the distinction between intrinsic and extrinsic semiconductor. He/she also applied incorrect formula and concepts to present incorrect responses.

2.1.10 Question 10: Electronics

Parts (a) of this question required the candidates to (i) explain why the NAND (or NOR) gates are known as digital building blocks and (ii) draw the logic symbol and give the name of the gate obtained from the combination of the gates shown in Figure 4.

In part (b), they were required to (i) explain why the current gain in common base transistor amplifier is always less than one and (ii) identify three main properties of operational amplifier. Part (c) required the candidates to (i) give two advantages of digital circuits over analogue circuits and (ii) with the help of illustrative diagram state the condition necessary for the transistor to behave as an open switch.

A total of 18,932 candidates equivalent to 87.2 per cent attempted this question. Their scores were as follows: 42.8 per cent scored below 5.5 marks including 3.3 per cent who scored 0; 42 per cent scored from 5.5 to 8.5 marks and 15.2 per cent scored from 9 to 15 marks. Figure 11 illustrates the candidates performance in this question.

Figure 11: Distribution of candidates' scores in Question 10 of Paper 1

The analysis of data reveals that the overall performance in this question was average as 57.2 per cent of the candidates scored the pass mark or above. The candidates who scored high marks had a good understanding of basic types of logic gates as they were able to draw the logic symbol and name the gate obtained from the combination of gates. Most of those candidates competently applied Boolean Algebra to analyse logic gates, design and construct basic transistor switching circuits. However, some of those who scored 5.5 to 8.5 marks failed to describe the properties and mode of action of operational amplifiers and to state the condition for a transistor to act as an open switch. Extract 10.1 shows the correct responses to the question.

10	(20 (1) Because NAND or NOR gave con
	form me mree basic gates which are
	AND, NOT and DR gate.
	(h)
	(ii) Solu.
	TRUNT TABLE.
	ABCC
	0 1 0 1
	1 0 0 1
	Name of gate obtained OR COME
	James of date optimized 5.1. 5.1.5
	Logiz Symbol
	A • — — — — — — — — — — — — — — — — — —
)
	Bo
10	(b) (1) Because The emitter word is
	The sum of base current and collector current
	The jum of safe current
	Strice gain obtained by rand & lolcom current
	(I) and enuter current (Ix) hour gain
	will be less hum Dne.
	· ·
	Current gain (d) = IyEs = IctEs
10	(b) (i)
	d = [c = [c
	Is Lites -
	12
	·
	Honer gain will be less than one.
	612 0
	(1) Properties of operational ampurer.
	- It has high open loop gain to about
	1xws
-	
	- Et has Low output impedence.
	- It has high Enput gan Impedence
	J
-	
	(c) (D) Advantages 9 digital circuit.
	CO C 1 (Constant)
	- It eastly to store information
	- It less affected by notice home
	produce high quity output.
	- It has a minimum power loss.

Extract 10.1: A sample of correct responses to Question 10 of Paper 1

In Extract 10.1, the candidate correctly applied the concepts of electronics to answer all parts of the question. He/she was able to identify the basic logic gates and describe the working principle of transistors.

Among the 42.8 per cent of the candidates who scored 0 to 5 marks; 633 candidates, corresponding to 3.3 per cent, scored 0. These candidates had inadequate knowledge of digital circuits, operational amplifier and transistor circuits. They failed to interpret the circuit of the combined logic gates, consequently thereafter they obtained the incorrect truth table and wrong logic gates. As a result, they provided insufficient conditions necessary for a transistor to act as an open switch. Extract 10.2 presents a sample of the incorrect responses to the question.

10.	@ 1				
	A	B	C	C	
	0	Ò	1	0	
	0	1	(. 0	
	1	6	1	0	
	1	1	0	1	
-					
	AND	gale			
		2			
		~			
				NOT	gate.
		•			

10	CODigital, circuits has high out put
, i	than In port.
	1 It is simple and easily to lie.
	The current gain in Common loase transister amplifier is always less,
	transvister amplifier is always less,
	that one so as to allow electrons
	to passing.

Extract 10.2 A sample of incorrect responses to question 10 of Paper 1

In Extract 10.2, the candidate failed to clarify basic types of logic gates, interpret transistor characteristics and describe properties and mode of action of operational amplifier.

3.0 ANALYSIS OF CANDIDATES' PERFORMANCE IN EACH QUESTION IN 131/2 PHYSICS 2

The 131/2 Physics 2 paper contained six (6) questions, which were set from six topics. The topics included *Fluid Dynamics, Vibrations and Waves, Properties of Matter, Electrostatics, Electromagnetism* and *Atomic Physics*. Each question carried 20 marks. The pass mark for each question was 5.5 or above. The analysis of each question is as follows:

3.1 Question 1: Fluid Dynamics

This question had parts (a), (b) and (c). Part (a) required the candidates to (i) give the importance of coefficient of viscosities of liquids in daily life activities and (ii) identify the assumptions made in deriving Poiseuille's equation for the flow of a liquid through a narrow tube. In part (b), they were required to (i) determine how much would the pressure difference between the ends of the constricted pipe increase to maintain the constant flow rate if the radius of a pipe carrying liquid gets decreased by 8% and (ii) describe the mode of action of Pitot-static tube and apply Bernoulli's equation to obtain the formulae used to measure the velocity of a flowing liquid. Part (c) required the candidates to (i) state the circumstances at which Torricelli's theorem applies and (ii) calculate the diameter of circular hole needed at the base of the tank to discharge water at the rate of 26.4 m³/minute if water is maintained at a height of 10 m.

The question was attempted by 19,315 candidates, equivalent to 89 per cent. The distribution of their scores is shown in Figure 12.

Figure 12: The candidates' performance in Question 1 of Paper 2

Figure 12 shows that 52.5 per cent of the candidates scored from 0 to 6.5 marks; 41.6 per cent scored from 7 to 11.5 marks while only 5.9 per cent scored marks ranging from 12 to 20 marks.

The data analysis reveals that the general performance in this question was average because more than a half (52.5%) of the candidates scored below the pass mark (< 7 mark). However, 47.5 per cent scored from 7 to 20 marks. The candidates who scored high marks correctly stipulated the importance of coefficient of viscosities of liquids in daily life activities. Subsequently, they made assumptions in deriving the Poiseuille's equation for the liquid flow through a narrow tube. Most of them successfully

applied Poiseuille's equation,
$$V = \frac{\pi Pr^4}{8\eta l}$$
 to determine the pressure

difference between the ends of the constricted pipe that increases in order to maintain constant flow rate. They also stated the circumstances under which Torricelli's theorem apply. Some of them applied the theorem in calculating the diameter of a circular hole at the base of the tank to discharge water at the given rate. However, some candidates failed to describe the mode of action of a Pitot static tube. Those candidates faced difficulties to apply Bernoulli's equation to obtain the formulae used to

measure the velocity of a flowing liquid and therefore scored average marks. Extract 11.1 is a sample of candidates' correct response.

Qn. 1	(0) i) Importance of coefficient of
	Viscosities of liquid
	- Help In applying brakes
	- Help Tit appiding States
	- Help in selecting good liquid to be used as lubricant in machine parts.
	as lubricant in machine parts.
	· · · · · · · · · · · · · · · · · · ·
	- Used in measuring the rate of flow of
	blood.
-	
	(a) 11) Assumptions in deriving Poise ville's
	CONCOLARS TO SECURE
	- The liquid is considered as incompressible
	- 145 lidard is coundbred at 10 combiestiple
	- The volocity of liquid flow is constant
	that means a flow consider to be steady
	,
	. '
	Solution Given
	Give n .
-	let Original radius be T
	new radius = r - (3r) = r -0:08r = 0:92r
	1-0 7
	Original pressure dyserence be "P" New pressure be P'
	new pressure be P'
	·
	from Poiseuilles theorem 892
	Co = MPr4
	896
	P - 2010
	P = 8119
	P & 1/54
L	1 4 75

Qn. 1 (b) i) P' = r4	\top
$ \frac{Q_{0.3}(b)}{p} = \frac{r^4}{(0.92r)^4} $	\dagger
01- (5.40	+
$\rho' = \left(\frac{r}{c \cdot q_2 r}\right)^{q}, \rho$	\top
$P' = \left(\frac{1}{0.92}\right)^{4}, P$	‡
P'= 1.396.P	+
P' = 1.396 P	+
	\pm
: This means that the pressure differen	œ
will increase by 1.396 times.	+
	+
	+
Mode of action of	+
Pitotic -static tube.	+
Pitotra - statra tube report to the horizo	\perp
ntal tube consisting two tubes whose by	4
one is stationary interms of position and	\perp
pressure of water and other is dynamic.	_
Consider	_
	_
Prtot	_
	_
2	
The prilat-static tube is closed as one	
end where there is stationary tube	
	T
- When water flowing tending to cause sto	
c pressure at the pitat tube (stationary) w	ŋ.'
le in the dynamic tube there is changin	q
in flexure due to changing in velocity.	

Qn.1 (b) ii) - At the pitot tube	. the velocity or water
is 2010, so cau	ing state pressure.
According to Ber	noulli's theorem
According to Ber P, + 19v2 Pagh = con	stant
But in Pitoh - statec	tube h=0
P + 2812 = Cons	
୍ରେ	• 1
The total pressure in	Pitot - static tube in
mainlained Constant	
P7 = P + 18V2	
P7 = P + 18V2	. •
who ro	3
P is static p	8710 LG
1 gv2 is Dynam	c promure
a a second secon	and the state of t
Pi is total pri	13000.
_ `	
30	. '
18v2 = Pj.	. ρ
V2 = 2 C	P7-P)
	φ.
V = 1 2	[P7-P)
V	φ.
	, , , , , , , , ,
like velocity of flowing	liquid is V= 12(PP)
3 11 3	γ.

Extract 11.1: A sample of correct responses to Question 1 of Paper 2

In Extract 11.1, the candidate was able to describe and evaluate the concepts of Bernoulli's equation and pitot static tube, as a result he/she managed to provide the correct responses.

Although the candidates' performance in this question was average, 52.5 per cent scored low marks (0 - 6.5). These candidates had inadequate knowledge on the topic of *Fluid Dynamics*. Most of them failed to explain how the coefficient of viscosities of liquids play an important role in daily life activities. They also failed to identify the assumptions made in deriving the Poiseuille's equation. A further loss of marks was observed among those who were not able to deduce Bernoulli's principle as one of the basic concepts used in this topic. They failed to express correctly the application of Bernoulli's principle in describing the mode of action of a Pitot static tube. However, some of the candidates applied Torricelli's theorem to determine the diameter of the circular hole at the base of the tank even though they failed to identify the circumstance under which Torricelli's theorem applies. Extract 11.2 is a sample of incorrect responses.

1	@ O Proportance of Coefficient of Viscosities of Liquid rea darly Life such as-
	of Liqued rea darly life such as:
	Ventile
	D Et Used to heasure the horght of the
	Lequeds en a substances
	,
	Of the Volume of the drugs required so
	Angs and Volume of the drugs required so
	13 Very Proportions,
-	(11) Coeffizient y Voscessties of life to deter time
	(11) Cheffizient of Viscosities of lifect to deter turne the Presure of the Liquid on the objects.

1	derving the Porseurllers equation for the flow of the Liquid through Darrow tube such as:-
	deaving the Porsevillers equation for the flow of
	The Liquid Through Darrow tube such as:-
	(i) The Pressure of the 19mid are negligible to the Container.
	to the Container.
	Considered in daving the for semillers equation.
	Considered in daving the for senillers equation.
	, , , , , , , , , , , , , , , , , , ,
	b. Grven
	Decreasing of Radius = 8%
	Volequired the Pressure difference between the
	Decreasing of Radius = 8%. Required the Pressure difference between the Eng of the Constituted Proper.
	from
	Radrus Decressing = 8/100 = 0.08.
	= 0.08
	The Pressure = F/A.
	But A= TTr2, Force = Mg. Pressure = Mg TTr2,
	Fore = Mg.
	Pressure = Mg
	πι2,
	Pressure = 9.8
-	3.110 × (0.08), 3.110 × (0.08), 11.15.
	= 487.7 V/m2.
	= 487.7 N/m². Pressure d'effernée between the end = 4-27.7 N/m².
	a h Limited A. M. and

1 1 (50)
1 b(1) Proquied the Modery Action up 1 Pitot-static
Pitoti-statiz tube Are the Tube Whizh are Used to Measure the Velocity of the
flowers 1 par st
The POTOTIC - STOTIC Are Very
Emportance are require the high Vapour
flowing Irquids. Flowing Irquids. I'm por lance are require the high "Vapour- Pressure of the Liquid Containe or tube also hust have the Volume of the Iquid Maxe mum also the Costs (alleged) areas:
Maximum also the Cross-Lectional greas,
hohea The Heavier is conseed of Itst
The Container and the Velocity B otherdy been the Point,
The Applying Bernoullis equation to obtain the formulae used to the asure the Velocity of flowing Liquids.
to obtaro the formulae used to the grun the
Velaits of flowing Liquids.
Pt hpg = B+hfig, then for Mulae become.
the?
Pi+ hifg + Pa+ hzfag.~
C O. Tornsell's theorem apply when:
1
(i) There are Presence of the atmispheriz
(10) Applied When there are Presence of the
Pressure. (10) Applied When There are Presence of the height or Pladrus of an object.
(Ti) Grven,
Harte har West - 11 cm
Height of the Tank = 10m.
Required the disancton of the Consular holo.
But Redius = d/4.
But Redicus e d/4.

Extract 11.2: A sample of incorrect responses to Question 1 of Paper 2

In extract 11.2, the candidate used inappropriate concepts and applied incorrect formula to describe the Bernoulli's equation. For instance, in part (c) (ii), he/she wrote an incorrect relation between diameter and radius as $r = \frac{d}{d}$ instead of $r = \frac{d}{2}$.

3.2 Question 2: Vibrations and Waves

Part (a) of this question required the candidates to (i) give a concrete reason behind a straight line propagation of light irrespective of its wave nature and (ii) calculate the distance of separation between the fringes in a Young's double slit experiment if the green light of mercury of wavelength 0.54 µm was used with a pair of parallel slits of separation 0.6 mm when the fringes were observed at a distance of 40 cm from the slit. In part (b), they were required to (i) identify two cases in which there is no Doppler effect in sound and (ii) calculate the change in pitch of the note as heard by observer Q when a car sounding a horn which produces a note of frequency 500 Hz approaches and then passes a stationary observer Q at steady speed of 20 m/s. Part (c) required the candidates to (i) identify two properties of a medium responsible for propagation of a wave through it and (ii) determine the distance between successive crests of the wave motion if a horizontal stretched elastic string of length and mass of 3.0 m and 12 kg respectively is subjected to a tension of 1.6 N, given that a transverse wave of frequency 40 Hz was propagated down the string.

A total of 17,390 candidates, equivalent to 80.1 per cent attempted this question and their scores were as follows: 25.7 per cent scored below 7 marks, including 3.8 per cent who scored 0; 39.3 per cent scored from 7 to

11.5 marks and 35 per cent scored from 12 to 20 marks. These scores suggest that the candidates' performance in this question was good as 74.3 per cent of them scored from 7 to 20 marks. Figure 13 is illustrative.

Figure 13: The candidates' performance in Question 2 of Paper 2

The analysis of candidates' responses indicates that those who scored from 12 to 20 marks had sufficient knowledge of vibrations and waves specifically on the respect of *interference*, *wave motion* and *Doppler effect*. They were able to explain the necessary conditions for diffraction of light to occur. Most of them responded correctly by providing a concrete reason behind the straight line propagation of light irrespective of its wave nature. About 0.4 per cent of them who scored (18 to 20) marks proved their competence by applying the concept of Young's double slit experiment to determine fringe separation $y = \frac{\lambda D}{a}$. Further, they were neat and precise in deducing expressions of apparent frequency for approaching $f' = \left(\frac{c}{c + v_s}\right) f$ and apparent frequency for receding $f'' = \left(\frac{c}{c + v_s}\right) f$ to

determine the change in pitch, $\Delta f = f' - f''$ of the note as heard by a stationary observer Q. However, the candidates who scored average marks (7 - 11.5) faced difficulties in part (c) to identify the properties of a medium that are responsible for propagation of wave. Moreover, they failed to apply

the formulas $c = \sqrt{\frac{Tl}{m}}$ and $\lambda = \frac{c}{f}$ to determine the distance between two

successive crests of a wave (wavelength) where T, m, l, λ , c and f are tension, mass, length of a string, wavelength, speed of a wave and frequency respectively. Extract 12.1 is a sample of a candidate's correct responses.

2.	C) (ii) solution.
	L=3m:
	m=13Kq.
	T= 16N.
	F = 40HZ
	M=12Kg. T=16N. F= 40Hz. A=?
	from .
	$V = T_{\ell}$
	\'\u
	\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
	N=m/ = 1249
	/L 3m.
	$ \begin{array}{c} \text{LL} = 12 \text{ kg} \\ \text{LL} = 3 \text{ kg} \end{array} $ $ \begin{array}{c} \text{LL} = 4 \text{ kg} \\ \text{LL} = 4 \text{ kg} \\ \text{LL} = 4 \text{ kg} \end{array} $
	V = 1.6N
	V = 1.6N $4 kg/m$
	V= 0.632m/s.
	trom .
	<i>b</i> om <i>v</i> = <i>d</i> F
	d = y
	F:
	1=0.632m/s.
	40HZ
	$d = 1.581 \times 10^{-3} \text{m}$
	: Distance between succesive creats = 1.581 ×10-3m
	A = 0.632 m/s. $A = 0.632 m/s$.

Extract 12.1: A sample of correct responses to Question 2 of Paper 2

Extract 12.1 shows that the candidate correctly applied the concepts of vibrations and waves to answer the question. He/she stated the correct reason of a straight line propagation of light and demonstrated enough competence on Young's double slit experiment, the concepts of Doppler effect in sound waves and vibration of strings.

In contrast, 25.7 per cent of the candidates scored below 7 marks including 3.8 per cent who scored 0. These candidates demonstrated poor knowledge of *Vibrations and Waves*, particularly on the concepts of *sound*, *diffraction of waves*, *interference* and *Doppler Effect*. They failed to describe the application of mechanical vibrations and waves. Consequently, they failed to deduce the formula for calculating apparent frequency for a moving source and a stationary observer. For example, one candidate explained that 'a moving source was approaching a stationary observer by apparent

frequency given by
$$f' = \left(\frac{u+v}{v}\right)f$$
 instead of $f' = \left(\frac{c}{c-v_s}\right)f$. The

candidate failed to associate the speed of sound relative to a stationary observer, Q with a steady speed to determine the apparent frequency. Further loss of marks was also observed in part (a) where they failed to find out how diffraction effect depends upon the size of the aperture relative to the wavelength of the wave. Accordingly, they were not able to give a

concrete reason behind a straight line propagation of light. In addition, most of them lacked mathematical skills for using the concept of Young's double slit method to deduce the fringe separation. Extract 12.2 is a sample of incorrect responses from a candidate.

02 (a) (b) The straight line propagation of light lies within wave-particle matter duality, as it transform (propagates) with both wave and particle properties such as amplitude, velocity, frequency and wavelength.
a) Solution
Data alion.
wardength $R = 0.54 \mu m$? Separation distance $D = 0.66 mm$. Distance from slits, $d = 40 cm$.
Separation distance D = 0.56mm.
Distance from slits, d = 40 cm.
THEIL
from & Young's double slit experiment
$xd = n\lambda$
D
all symbols carry their usual meanings
$men \qquad b = \infty d$
ηλ
Distance of separation of fringes
= tringe whatth
$=\lambda D$
d_
= 6-54×16- × 0-66×16-3
40×10-3
= 3.564 ×10
⊕™
= 8.9 MO
$= 0.54 \times 10^{-5} \times 40 \times 10^{-2}$
= 3.343×10 ⁻³ = 3.343×10 ⁻⁴ m = 0.327 mm
= 3,443×10, W = 0,344WW)
Distance of separation between fringes is
O•3≈7 MM ·

0 \$.	(b) à - Doppler effect is not possible in vicainel
	medium —In place with no medium of tound travelling
	ton pilon
***	O specifically
	© Solution.
	© Solution Consider illustration below
	Object u
	Car. obsorbr.
	From about
	apparent frequency of sound heard by an observer \mathfrak{D} $\mathfrak{F}' = (u+v)\mathfrak{F}$
	by an observer a
	f' = / u+v / f
	(J)
	f= 20+
	Given $y=velocity$ of $car=20mz^{-1}$ $y=velocity$ of $zound=340mz^{-1}$
	U= velocity of sound = 340 ms-1
	f = frequency of horn sound = 500Hz
	then
	f' = (30+340 \x500H2
	340
	= 500X18 Hg
	()
	f = 529.412 Hz.
	change in pitch of note hourd by Θ $\Delta f = f' - f$
	$\Delta f = f' - f$
	=(529.412-500)42
	St = 29-413 HE.
	There fore
	Pitch hoged by Q is 529.412112 and change
	in pitch of note heard is 29.412 HZ.

02. (c) (i) - Medium should be nontrain at least particles
of pro for easy propagation of wave
-Modium should be with prossure and
The for easy propagation of wave — Medium should be with pressure and temperature variations (not necessarily).
Ten a agree segreen
ED Solution.
Data given,
mass of string m = 12kg length of t L = 3.0m Tension, T = 1.6h
length of t 1 = 3.0m
Tension T = 1-6N
Frequency, F = 40H2.
frequency $f = 40412$. from $V = 1$ T
all M
buts $u = m$
T .
= 1 1007
THE .
= 1 /12×1.6'
वा उ
$= \frac{1}{3\pi} \frac{12\pi i \cdot \epsilon'}{3}$
from $f = n$
રા
$\frac{2l}{2l} = \frac{2l}{2}$
λ
∀ ₹.2 λ = ∨
2 - AOHEX 5
$\lambda = 40 \text{He} \times 5$ $\lambda = 0.403 \text{ ms}^{-1}$
40.8
$\lambda = 18.045 \times 18^{-11}$
$\lambda = 16.075 \mathrm{mm}$
= Distance Lotucen successive onest is
Δ0.075ηη.

Extract 12.2: A sample of incorrect responses to Question 2 of Paper 2

In Extract 12.2, the candidate failed to describe correctly the concepts of vibrations and waves specifically interference and Doppler effect. He/she wrongly substituted the data and the applied incorrect formula $v = \frac{1}{2\pi} \sqrt{\frac{T}{\mu}}$ instead of $v = \sqrt{\frac{T}{\mu}}$ to obtain the velocity of a vibrating string.

3.3 Question 3: Properties of Matter

This question had parts (a), (b) and (c). Part (a) required the candidates to (i) state the meaning of the angle of contact between the liquid and solid as

used in properties of matter and (ii) outline four factors on which the value of angle of contact depends. In part (b), they were required to (i) give a qualitative distinction between surface tension and surface energy of a liquid and (ii) determine the pressure inside the air bubble when a small air bubble of radius 0.1 mm was situated just below the water surface, if the atmospheric pressure is 1.013×10^5 N/m. Part (c) required the candidates to (i) stipulate four practical applications of capillarity in daily life activities and (ii) compute the height at which water will rise in another capillary tube whose radius is $\frac{1}{3}$ of the first tube in which water raised to a height of 2.0 cm.

A total of 21,134 candidates equivalent to 97.4 per cent, attempted this question and their scores were as follows: 17.9 per cent scored from 0 to 6.5 marks, 34.3 per cent scored from 7 to 11.5 marks and 47.8 per cent scored from 12 to 20 marks. These scores indicate that the candidates' performance in this question was good as 82.1 per cent of them scored from 7 to 20 marks. Figure 14 presents a summary of the candidates performance.

Figure 14: The candidates' performance in Question 3 of Paper 2

The analysis reveals that the candidates who scored from 12 to 20 marks described correctly various phenomena regarding surface tension. They stated correctly the angle of contact and factors on which its value depends. In part (b), most of them were able to deduce qualitative distinction

between surface tension and surface energy of a liquid. They further demonstrated their competence by applying the correct formula and procedure to determine the pressure inside the air bubble. However, some of the candidates (34.3%) who scored averagely faced difficulties to identify practical applications of capillarity in daily life and to determine the height at which water raised in a capillary tube. Extract 13.1 presents an example of a good response to the question.

8(1) [1) Surface topion is the tondoncy at which
S(t) i) Surface topion is the tordonay at which the liquid at trest by virture stree behave the
lube 1
3 (1) (1) Surface tourion is the tendency at which
the liquid at test by virture behave
uke stratched ekin or membrane on
it referer
Mheic as
Surface anergy is the workdone against
the increase of surface of area of
Surface energy is the workdone against the increase of surface of area of liquid at stothermal.
3(b) (ii) Solution. Atmospheric pressure, Pa = 1:013 x 105 N/m2.
Atmosphane pressure, Pa = 1:013 x 10 = N/m2.
·
Radius of air tubble; r= 0.1mm
= 1 × 10-4m.
The exact pressure in air bubble, DP227
<u> </u>
$\Delta P = \Omega T$,
r
$\Delta P = P - P_q$
P- Pressure inside the air tubble.
P-fa = 2T
L.
P = 2T + Pa
Jurface tonsion of water, 0.072 Nm7.

9(b) (u)
P= 2 × 0.072/m+ 1.013 × 105 Pd.
1 × 10-4m
P = 102740 Pa.
. The pressure inside the air buttle is 102740 Par
3(c) (i) Application of Capillanty.
rave berozeno on the wink.
Lane poundle ou me mule.
The City and the bounds was A to 1
e-plt is used in tower, since fine thread
of tower acts as the narrow tube to rows water and hence enable dry the body.
rate water and rente critical and the second
2. It is something the days to the the
3. It is used in plants to raise water through sylem from the soil in the root, stem to upper part of plant. This called capillary eights.
to upper part of dout: This miled
capilan action;
4. It is used rate ink chinup pars, when
dipped in the ink the pole through it
enable the ink to rake
3 (c) (ii) Solution.
height of first tube, hy = 2 cm.
let the radius of first tube, to Ry.
the radius of second tube to P2.

3B(u)	But P2 = P1.1
	. 3
	from h = 2TCO 0
	RG 0.
	hr= 27ca0
	90
	hr = constant.
	hr = k hiri = h2R2,
	hiri = hzrz.
	$h_2 = h_1 R_1 , R_2 = R_1$ $R_2 \qquad 3$
	R ₂ 3
	h2 = h1R1 + R1.
	h2 = h1P1 ×3
	112 = 1114 × 3
	E-
	ho = 2h1P1
	h2 = 3h1R1
	$h_2 = 3h_1$
	h2 = 3 × 2cm
	h2 = 6cm.
	. '. hought of another capillary tube 'u com-
	V

Extract 13.1: A sample of correct response to Question 3 of Paper 2

In Extract 13.1 the candidate provided correct responses to the parts which required explanations as well as precise calculations for the parts which required computations.

On the other hand, 17.9 per cent of the candidates who scored 0 to 6.5 failed to describe correctly surface tension in terms of molecular theory. They faced difficulties to analyse surface tension in terms of surface energy. The analysis of their responses reveals that, some of them provided incorrect explanations about the angle of contact and failed to identify the factors which affect its value and to determine the pressure inside the air bubble. In addition, they lacked knowledge of the concepts of capillary rise and fall and mathematical skills to relate height and radius from the relation

 $h = \frac{2Tcos\theta}{rpg}$ to compute the height at which water raised in a capillary tube. Extract 13.2 portrays a sample of incorrect response to this question.

2. (a) (P) Are the angle op	contenct:
P 11 the degree to	which I furate of liquid
la perpendicular to the s	solet body.
(E) Angle of contact of	depend on.
Dennity of the land	iquit.
+ Suifalo tornion.	11 1 10 0 0
- Soharion and ad	thousion forces between liquidand
Solid bafy. Nixounity (Nature	no the linux
THEOLATTY (Nature	of the tiguice),
(b) (3) Differences Re	fiveen Surface energy and
Surato Toneion:	were surau biorgy was
Surface energy	Suipao tenvión;
(2) It is the Surpare tonsion	- It is about of liquid to
times area distance	behaves like a sheched
	mombrano Ckirc
4 Jin 28 411 (1)	It is st unit is Nowton/m
Newton (N)	eherghae (N/m)
(36) 14.	
(iii) It is given by	-It is given by.
Eurtag tourion).	Surface fendion (8) = Surface engage (Q) Arthunos
2 al tag 101/41011).	a yan kakana

2. (b)(li) premure inside the air bubble is 9
$= 9.986 \times 10^3$
(C)(E) Application of equilarly in our fails
activies:
-D Modo of action (lighting) of Spirit lamp.
-> In lingation by using chrigation pipe). -> When water are raised or power by the
-D House water System It use the capillasty -D Modo of action (lighting) of Spirit lamp. -D In Ingation by using configation pipe). -D When water are raised or poured by the Nortical to pipe in the tank.
(%) Coln
Holom (h) = 2cm. , r= [radius 12 [2 =] [
From
hA2d = P
, , ,
$F_1 = F_2$ $h_1 A_1 \mathcal{G}_3 = h_2 A_2 \mathcal{G}_3$
$h_1A_1 = h_2A_2$
But:
$\frac{A = 9 r^2}{h_1 (r_1^2 - h_2 (r_2^2))}$ $h_1 r_1^2 = h_2 r_2^2$
$h_2 = h_1 r_1^2 = h_1 \left(\frac{r_1}{2} \right)$
1 !
3. (0(1) h2 - h1 (1)2.
= '2cm (K) 2.
(%)
$= 2 cm (3)^2$
~ ~ ~ ~ (3)
= 18 cm. - 18 cm. 18 cm. 18 cm.
1 8cm;

(3. (b) (8) Sola.
Data Bush'
Padiu (8) = 0.1×10-30
Supply travial of mater (X) = 0.072010
Diothrib at wat oping, B 1 of 5 x 10 pm/wg
Datagivon: Radius (R) = 0.1 mm = 0.1 x10 fm. Surpace tension of water (B) = 0.072N/m Pressure at masphese: P, 1.018 x 105 N/m2
from;
P= 28
R.
$P = 2 \times 0.072$
0.1×10-3
6 11 3 1
B= 1440 N/m2 = 1.44×103/1/m2
(hen!
Premue inside = AP $AP(inide) = P_1 - P_2$.
AP(inide) = PI-12.
= 1.013×10°_ 1.44×103
- 9.986x104N/m2
3. (c)(1) ha = h1 (1)2.
12
= '2cm (K)
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
= 2cm (3)2
= 2cm (3)
- 2 m
= 18 cm. Po Hoight at which water will rice iz
18cm;

Extract 13.2: A sample of incorrect response to Question 3 of Paper 2

In Extract 13.2 the candidate provided incorrect explanations in most parts of the question. In part (c), he/she applied a wrong formula $h_2 = h_1 \left(\frac{r_1}{r_2}\right)^2 \text{ instead of } h = \frac{3hr}{r} = 3 \times h \text{ to find the height at which water raised in a capillary tube.}$

3.4 Question 4: Electrostatics

This question was comprised of parts (a), (b) and (c). In part (a), the candidates were required to (i) state the Coulomb's law and (ii) calculate the time of fall of proton of mass 1.673×10^{-27} kg if it falls through a

distance of 1.5 cm in uniform electric field of magnitude 2.0×10^4 NC⁻¹, given that air resistance and acceleration due to gravity is neglected. Part (b) required the candidates to determine the force of an electron in a field, which was connected to 100 V battery terminals through two large and parallel plates which are 2 cm apart when the field in the region between the plates is nearly uniform. In part (c), the candidates were required to use part 4 (b) given that an electron is released from rest from the upper plate inside in the field to determine (i) the velocity with which an electron will hit the lower plate and (ii) kinetic energy and the time it will take for the whole journey.

This question was attempted by 15,889 candidates, which corresponds to 73.2 per cent. The analysis of data reveals that 41.5 per cent of the candidates scored from 0 to 6.5 marks; 20.6 per cent scored from 7 to 11.5; while 37.9 per cent scored from 12 to 20 marks. Figure 15 shows the graphic presentation of the candidates' performance in question 4.

Figure 15: Distribution of candidates' performance in Question 4 of Paper 2

Most of the candidates who scored low marks failed to state the Coulomb's law. For example, one candidate incorrectly stated the law as "the electrostatic force of attraction between two charged particles is directly proportional to the magnitude of their charge and inversely proportional to square distance apart". The candidate was supposed to know that the force of attraction or repulsion of two charges is proportional to the product of the magnitude of the two charges. In addition, some of the candidates failed to find the time of fall of proton in an electric field by using the concept of net force on a point charge due to electric field. These forces are due to

weight of a proton (mg), electric force (F_e) and upthrust forces (F_u). The candidates were not aware that when these forces are added up, they must balance with the net force (ma) which in turn can be used to determine the time of proton to fall. In part (b), some of them confused the force due to electric field with that of magnetic field. One of the candidates used the F = BqV instead of electrostatic force, $F_e = Ee$ to determine the force on the electron in the electric field. Consequently, in part (c), they failed to determine the velocity with which the electron will hit the lower plate, the kinetic energy and the time an electron takes for the whole journey. Extract 14.1 shows the incorrect response from one of the candidates.

04. (a) (?) Celumb's law shot that "It clock shire fore of altatus between two changed particle i's directly propitions magnitude of their change and investily proportional to be squee distance aport ??
The fleety their force of altertion between
TWO Changes particle is directly propinous
Magnitude of Their chargo and invivilly
proportional to the squipe distance aports
(ñ) Datagnen
mail of proton 1.673 xw-27kg
mail of proton 1.673 x10-27 kg distante 9 pm 1. 55 cm = 1.5 x152m β = 2.0 x104 NeT
β = 2.0 x104 NeT
Tm.
J
Mv2 = 284 9x107
-
MV2 = 98
1 1 V-
MV = Bq.c.
M 10-2
V2 2.0 XIOTNOIX 1.5X 1.16X1059
1673 XWZZ
V2 228.4016x10cm/1,
V= 2.869097 X1010m/4

04	(n) speek = dutance
	time
	A 1
	distance 2 speckxtime
	distance 2 speed xt-me speed speed
	,,
	time 2 15X162
	2.36909743×10
	time = 5,228/25 × 10-13 fee
	o o The hue 9 all were be 5,228/25×1013 see
	(b) Dataguen
	Patchal defference between his parallel
***************************************	plate áport 100v
	Patehal defference between his parallel plate a part 100v Sepantin distance = 2cm.
	If la elitufield of the regin vegin luty
	If la chhufuld of the regins vegus lution to detere force elections
-	
	2cm. / 200V'
	4007
	12 Bav.
	'
	12 K92
	-2
	/ Δ
	but
	[2 B9V
-	7- '

Extract 14.1: A sample of incorrect responses to Question 4 of Paper 2

Extract 14.1 shows that the candidate was not competent in the topic of electrostatic, particularly the Coulomb's law and the concepts of motion of charged particles in electric field. He/she also used incorrect formulas in his/her calculations.

However, in part (a), majority (58.5 per cent) of the candidates stated correctly the Coulomb's law and used the appropriate formula to calculate the time an electron takes to fall. In part (b), the candidates used appropriate formula to determine the force on the electron in the electric field. In part (c), they related correctly the net force (ma), electrostatic

force, (F_e) and Newton's 3^{rd} equation of motion to determine the velocity and kinetic energy of the electron. Extract 14.2 is a sample of a correct response.

() (a) S. (b) 1
4 (a) is coulomb's law states that
"Electrostatic porce is directly proportional
to the magnitude of product between two charges
"Electrostatiz porce is directly proportional to the magnitude of product between two charges and inversely proportional to their squared
Separation datases
Pe × P, P2.
pe a !
go,
50, Fe = KQ1Q2:
C2 ·
iv pata given
Mass on proton = $1.673 \times 10^{-27} \text{kg}$
Distance (d) = 1.5xvo cm = 1.5xvo cm
Electric prold (F) = 2.0x104 N/c.
Required: Time a Fall or a proton.
ij pata given Mass of proton = 1.673×10-27 kg. Distance (d) = 1.5×10 cm = 1.5×10-2 cm Electric field (E) = 2.0×104 N/c. Required: Time of proton. Solution E = F,
E = F.
/a
F = Eq.
F= Eq but also, F=ma.
$q = eq : 2 2xw fr/c x 1.60xw^{-19}c.$ $m \qquad 1.673 xw^{-27}kg.$
m 1-673 Kw-27kg.
But from Nowton's law and of motion equation. Given by: $S = Ut + yat^2$.
But from Nowton law and of posterin equation
owen by.
$S = ut + 11at^2$
2

4 (9) iv Required! Time(t)
4 (a) ij Required! Time (t) $d = 12at^2 + ut$
2
but 101=0mls.
2×0= 120+2
$d = at^2 + ut$ $2 \text{at } a = 0 \text{ m/s}$ $2 \times d = at^2 $ $2 \text{at } a = 0 \text{ m/s}$
[2 d] [+2.
$\sqrt{\frac{2}{q}}$ $\sqrt{\frac{t^2}{q}}$
50,
$t = \begin{cases} 2 \times 1.5 \times 10^{-2} \text{ (m)} \\ 1.9153 \times 10^{12} \text{ m/s}^2. \end{cases}$
7 1.4153X10 - 11/132.
-7
t= 1.2515 x10-7 seconds.
: A proton will take 1.252xw-7seconds to
: A proton will take 1.252 x 10-7 seconds to pall. while moving in an abelia pold.
ch pata given. potential difference (pid) = (oov potential difference (pid) = (oov
potential dirienence (pid) 2 1000
potroca (1) = 2 cm = 2xw-2m.
Described, pours to an opening significant
Solution
Erow .
Floric Endlet Dolernal difference and
Electric fred (E) Potential difference On Optane (m)
= 150 V
2 X10-5 m.
E = 5000 Vm-1.
Then required! porce.
E = Force (F)_
Electronic charge (e)
Creditive Grade (e)

4 (b) F = F,
ζδ
F= eE.
But e=1.6x10-19 C.
F= 1.6 x10-19 C X 5000 N/C
F = 8.01x10-16N.
F= 8.01x10-16N. : Force on an electron in this predd is 8x10-16N.
(C) 15 an electron is from rest. (Virgal = om/s).
Then
1) Required! Find velocity it will hit lower plate(Vx)
soution.
Vi = om/s
F = 8.0xw-16N Me = 9.11x10-31kg.
E = 5000Vm4
e = 1.6 xw-19 c
Required: Final velocity (Vg).
Prim
F = Ma
ma =F
a = F = 8 01x10-16 N.
m 9.11xw-31/cg.
Then.
$a = 8.792 \times 10^{14} \text{ m/s}^2$
from

4	(C) i $V^2 = U^2 + 2as$
,	Gruen, S (distance) = 2 xw2m.
	$U = D m \cdot C^2$
	a = 8.78 x w + 14 m/s2.
	Pren'
	$V^2 = 0 + 2as$
	Then: $V^{2} = 0 + 2as$ $V^{2} = 2as$ $V = \sqrt{2as}$
	V = \2as.
	V = \ 2 as. V = \ 2 x8.78xw\fm\s^2 x 2x10^{-2}m
	- 5.93×10°m/s.
	Velocity in election will be 5.93×106m/s
	= 5.93×106mls. Velocity of electron will be 5.93×106mls from upper plate to hit the lower plate.
	plant
	ij Required! Kinetiz energy and time.
	from .
	From KEZ 1, MV2.
	/2
	= 12 X 9.11X10-3/kg x (5.93 x106)2.
	2
	LE. = 1.60×10-17 Jowle: Linetic energy is 1.60×10-17 J.
	-1 limite energy is 1.60xw-17T.
	39
	Time taken
	Drms
	V = U' + at since u=om/
	V = at
	t= V = 5.92xp6m/s.
	$V = u' + at since u = om/r$ $V = at$ $t = V = 5.92 \times 10^{6} \text{m/s}$ $a = 8.78 \times 10^{7} \text{m/s}^{2}$
	timelt 6.75 X10 9 seemdi
	There pare,
	Time for whole Towney is 6.75×109 seconds.
1	The for which lowing to c. 15 x 10 15 certify

Extract 14.2: A sample of correct responses to Question 4 of Paper 2

In Extract 14.2, the candidate correctly stated the Coulomb's law. He/she applied appropriate computing skills and formulas to provide the correct solutions.

3.5 Question 5: Electromagnetism

This question had three parts: (a), (b) and (c). Part (a) required the candidates to (i) explain why magnetic lines of force always form closed loop and (ii) calculate the angle between the wire and the field lines if a

force of 0.025 N experienced by a test wire of length 0.05 m is placed in magnetic field of strength 0.2 T carrying a current of 2.5 A. In part (b), the candidates were required to (i) identify two classes of magnetic materials which are weakly affected by magnetic field and (ii) determine their magnetizing force and magnetic flux density when a toroid in a wire with an air core, carries a current of 0.15 A as a min circumference of 50 cm and 500 turns. Part (c) required them to (i) briefly explain the cause of earth's magnetic field and (ii) determine the potential difference induced between one wing tip and the other if an aircraft is flying horizontally at 860 km/hr in a region where vertical component of the earth's magnetic field is 6.0×10^{-5} and its wing span is of 50 m.

The analysis reveals that 14,644 (67.5%) candidates attempted this question. Among them, 25.6 per cent scored from 0 to 6.5 marks; 34.2 per cent scored from 7 to 11.5 marks; and 40.2 per cent scored from 12 to 20 marks. Generally, these scores imply that the candidates' performance in this question was good as 79.9 per cent of the candidates scored from 7 to 20 marks. Figure 16 summarizes the analysis of the candidates' performance in this question.

Figure 16: Distribution of candidates' performance in Question 5 of Paper 2

Further analysis shows that the candidates who scored high marks explained correctly why magnetic lines of force form a closed loop. Moreover, some of the candidates demonstrated their skills in calculating the angle between the wire and the field lines. In part (b), some of them identified the classes of magnetic field lines which are weakly affected by magnetic field as *diamagnetic* and *paramagnetic* materials. Additionally, they used correct the formulae $H = \frac{NI}{I}$ and R = II H to calculate the

they used correct the formulae $H = \frac{NI}{L}$ and $B = \mu_0 H$ to calculate the magnetizing force and magnetic flux density respectively. In part (c), they explained the cause of the earth's magnetic field. Furthermore, they

determined the potential difference induced between one wing tip and the other. They also applied the correct formula and procedure to determine the angle between the wire and field, magnetizing force, magnetic flux density and induced potential difference. Extract 15.1 is the sample of a candidate's correct responses.

5. (a).(v)-One of the properties of magnetic Lines of force
1s that, they tend to move from the Northpole to
event the south pole of a magnet.
- while tracing their path from North to south
pole they tend to contract in Length and Expa
nd Latellaly hence forming closed Loops.
5, (A) (b) - Un
F= 0.025N
L=0.05M
β = 3.2T
I = 2.5A
Son.
From
F= BILSIND
·
4id = F/
BIL
$\frac{600 = F}{\beta L}$ $= 0.025$
0.2×7.5×6.05

	sina = 1.
,	2 = Sin-11
	Q=90°
	, , , ,
	. Arak between Wire and Field lines & = 90°
	Q = 90°
5.	(b)(i) · Dianagnétic naterials : France exygen
	0 + + 1
	· Paranagnetic naterials. Example Auminium
5.	(b) (ii) 40/n
	I= 0.15A
	L= 50cm
	N= 500 Duns
	ase I, Magnetizing Jorge
	Fran
	H=nI, $n=V$
	L
	H= VI/
	H= VI
	H- 500 x 0.15
	$H = \frac{500 \times 0.15}{50 \times 10^{-2}}$
	20X (0, -
	H = 150 AM7
	, Magnetising force = 150 AMT
	, 3-11-13

	case II, Magnific Jew chenfity
	frem
	B= UonI.
	B= NoH.
	\$ = X0 11.
	B= (11×10) × 150
	B=(4x2.14) x107 x 150
	B=1.284×1047
	:- Magnétic Jeux densts = 1.884×1547
	· The Magnetising Force = 150 And and · The Magnetic Flux density = 1.884×1047
	1 100 Magratic flox deriving - 1:00 1/10 11
·	
5. 6	¿) (¿) causes of Earths mountie feeld.
	· Ratation of the earth.
	· Motion of vack layour and Molten material
	s in the earth's crust
	· Motion of charged and conteed particles in the earth Atmosphere resulting to
	creation of early magnetic field.
-	The state of the s
5.6	V= 860 μyhr β _v = 6,0×10 ⁻⁵ 7. L = 54μ
	V= 860 Kyhr
	$\beta_{\nu} = 6.0 \times 10^{-5} \text{ T}$
	L = 54M

5. (c) (ii) required, E.M. included,
From
E.M.J = BLV
= B _v x L x V
Geren
V= 860 km/hn = 238,89 m/s
Then
E = 6.0×10-5×54× 238.89
E = 0.774V
. De potential difference induced between
one wing top and the other is
E= 0,7/4\
·

Extract 15.1: A sample of correct responses to Question 5 of Paper 2

In Extract 15.1, the candidate provided the correct responses because he/she applied a correct formula and appropriate procedure in performing calculations.

On the other hand, the candidates who scored low marks had inadequate knowledge of the examined concept. In part (a) most of the candidates failed to explain why magnetic lines of force always form a closed loop. The reason behind was that magnetic poles always exist in pairs. Therefore, magnetic lines of force run from N-pole to S-pole outside the magnet and from S-pole to N-pole inside the magnet. As a result, magnetic lines of force form a closed loop. Some of the candidates failed to relate magnetic force with magnetic flux density, current and length of a conductor, as a result, they failed to calculate the angle between the wire and the field lines. In part (b), some candidates failed to demonstrate their competences to classify magnetic materials. They also failed to determine the magnetizing force and magnetic flux density because they lacked knowledge of electromagnetic induction. In part (c), some of them failed to explain the cause of the earth's magnetic field. They were not aware that

when the earth rotates about its axis the charged fluid in the core also rotates. This gives rise to circular electric current inside the core of the earth. This electric current is responsible for earth's magnetic field. Moreover, some of them used incorrect formula and procedure to determine the induced potential difference between one wing tip and the other. Extract 15.2 is a sample of incorrect responses from one of the candidates.

٤٠	at @ Magnetic lines of time always form a closed
	loops this is due to magnetic the of force
	always they have stooms attractive force that
	our they have storing attractive force that
	'
	@ F=0.02EN
	L=0.05m
	B = 0.2T
	$\widehat{\mathbf{L}} = 2\mathbf{d} \mathbf{A},$ $\Theta = 2$
	57 O-Ferrancyneta material.
	- Diagnagnetic material.
	Disjina Tieno ila cerca
	(i) I = O(VA)
	r= 5000 x 50 x 102
	N = 200
	fm = ?
	but A= Tipe
	$A = \pi \times (Joxio^2)^2$
	A = 0, 785 m2
	Magnote flux density (B) = NIA.
	B=NIA.
	B= 200 x04x x0138x
	7P 182=8
	: Magnetic the denset 13 58:97.
ļ	

. ح	C7 (1) F. BIL COS O.
	C010 = £
	BIL
	COID = 0.025
	· 6,2 × 2.5 × 0,0×
	(07 0 = 0.05T
	U.Ou
	(0) 0 = 1
	0 = (051(1)
	0=0°
	in The ongle between the wire and the word line
	15 0.
****	5) O-Ferrancyneta material.
	- Diagnagnetic material.
	212 Magretio Massacr
	@ I = oiua.
	1= 20 (m ≠ 30 × 102
	N = 200
	fm = ?
	but Az tir
	A = TX (soxio2)2
	A = 0, 785 m2
	Magnote flux density (B) = NIA.
	B=NIA.
	B= 200 x D. VB x 0. 182
	B=5897
	: Magnetic the densets 13 58.97.

5, 9 (1) P.d = Bd Vd/
N P
= 860 x10 x 60 x60 x 54m 6 c 0 x10 d
16.0 x 10
r d = 8 V
= 860 X103 × 60× 60 × 60× 105
1
Prd = 3, 44 x102 v
The earliest Discourage is her let us
one wing tip end the other is 3:44xi3"
5. by @ Denggnohang force: (fm) = BANI fm = BANI
TI.O X OOLX 28F.O X P.82 = m
Fm = 3467.7N.
2. Demograting force is 3467.74.
y @ Causo of Magnetic freed.
Norture of the material.
- Due to nature of motorals some of
material am in marries chain trais bie
Duo to natura this can couse highly after
Due to nature this can couse highly attra
THE CIVIL SIG COST INSTITUTE
fixed.
10.00
Rotation of the bodies.
Due to some bodies of Valversel have
the with other bodies which couse attraction
of the bours in earthis magnetic field. This
4 the couse of earth's magnetic held.

Extract 15.2: A sample of incorrect responses to Question 5 of Paper 2

In Extract 15.2, the candidate lacked the basic concepts of electromagnetism. For example, he/she applied an incorrect formula $F = BILcos\theta$ instead of $F = BILsin\theta$ to determine the angle between the wire and field lines.

3.6 Question 6: Atomic Physics

This question had three parts (a), (b) and (c). Part (a) required the candidates to (i) give the meaning of energy level and (ii) explain how ionization energy differs from excitation energy. In part (b), they were required to (i) explain why the Thomson's model fail (ii) identify the applications of cathode ray oscilloscope and (iii) calculate the wave length of the most energetic x-rays produced by a tube operating at 1.5×10^5 . Part (c) required them to study the following figure of energy level for hydrogen atom.

By using the given figure the candidates were required to (i) calculate the frequency and the wavelength of the radiation emitted as a result of electron transmission from n=3 to n=2 and (ii) determine the energy at the level where n=5.

A total of 20084 (92.6%) candidates attempted this question and their scores were distributed as follows: 20.1 per cent scored from 0 to 6.5 marks; 49.6 per cent scored from 7 to 11.5 marks; and 30.3 per cent scored from 12 to 20 marks. This indicates that the general performance in this question was good since 79.9 per cent of the candidates scored from 7.0 to 20 marks. Figure 17 describes the performance in this question.

Figure 17: Distribution of the candidates' scores in Question 6 of Paper 2

The candidates' good performance in this question was attributed to their ability to understand the requirements of the question. In part (a), the candidates provided the correct meaning of the term energy level. Moreover, most of them were able to differentiate ionization energy from excitation energy. In part (b), some of the candidates explained the failure of Thompson's model as the model failed to explain the scattering of a particle through large angle in Rutherford's a scattering experiment. It also failed to explain the existence of the nucleons. Additionally, most of them mentioned correctly the applications of cathode ray oscilloscope (C.R.O). In part (c), some of the candidates studied the diagram for hydrogen atom and answered the given question by using the required formula and procedures to compute the frequency, wavelength of the radiation emitted and the energy level. Extract 16.1 is a sample of the correct responses.

Ģβ	(i) Engrey loval 11 analy powared by alautons in
	(ii) Ionication analy U The anarry required to remove alactimo Completory from 1th ground State).
	White
	physic analogy range. Towar availy range is another angely long Innor and and range is more than the formation of the stands of
	pizzyat auch 2 d janag.

(b) (i) Thompson's modal failed she to following
(i) It did not agreed with Rutharbord
Scattening Expaniment (ii) Failad to explain stability of an
(ii) Failed to explain stability of an
atom.
most number of bout U II (i) (ii)
(ii) It I was to measure phase difference. (iii) It I was to measure phase difference.
(ii) It relact to measure time
(iv) It is rused to measure Vollage.
(i) (ii) Enargy, E = eV E = 1.6x10-19x 1.5x105 E = 2.4x10-197.
E= 1.6x10-19x 1.5x105
E= 2.4×10-147.
from, $E = h f$,
, ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '
E = hc
$\frac{1}{\lambda}$
A=N
E = hp
P C 2-14/2-14
$f = E = \frac{2.4 \times 10^{-19}}{h}$
n GeGIXIO 37
2
f= 3.62 ×1019 HZ
P = C
+ = \(\stacksquare \)
$\lambda = C$
<u></u>
$\lambda = 3 \times 10^8$
3. G2X1019
$\lambda = 8.287 \times 10^{-12} \text{m}$
$\frac{\lambda = 8 \cdot \times 8 / \lambda 10^{-110}}{100}$
Wavalangth of most anargatic x-ray 18.287x10-12m
· · · · · · · · · · · · · · · · · · ·

QU Û
$GO(i)$ $\Delta E = E_3 - E_3$ $\Delta E = -1.513.39$
SE- 1.880V
VE = 1.88 X 1.0 X 10-12 J
DE= 3.008 X10-19J
from, DE=hf.
DE=hf.
f = AF
1).
f= 3.008 x10-19
C. 03X10-34
f = 4.537 x10 19 Hzy : frequency 1, 4.537 x10 19 Hzy
: Proguency 15 4.537×10 14+74
from,
f = C
' >
$\lambda = c$
+
$\lambda = 3 \times 10^{8} = 6.61 \times 10^{-7} \text{m}$
$\frac{\lambda = 3 \times 10^8}{4.537 \times 10^4} = 6.61 \times 10^7 \text{m}$
4.03/101
Wavalangth 1s G.GIXIO-7m.
Translation of the Miles

6: 0 (f) from,
E = - 13.00 eV
N ²
= -13.GeV
52
E = -0.544eV
inc anargy at the Lavol n=5-15-0.549eV

Extract 16.1: A sample of the correct responses to Question 6 of Paper 2

In Extract 16.1, the candidate applied the knowledge of atomic physics and arithmetic skills of Bohr's parameters to determine the frequency, wavelength and energy of the electrons.

On the other hand, the candidate who failed to answer correctly this question lacked knowledge of basic concepts of atomic physics. Most of them were incompetent on the parameters of Bohr's atomic model such as frequency, wavelength and energy of the electrons in different levels. In part (a), some of the candidates failed to give the correct the meaning of energy. They also failed to differentiate ionization energy from excitation energy. For example, one candidate differentiated ionization energy from excitation energy as ionization in alpha particle and gamma is higher while in excitation energy is not. Another candidate wrote that ionization energy is the energy acquired by alpha, beta and gamma particles while excitation energy is the energy that does not acquired by nuclear particles. These candidates were supposed to state that ionization energy is the minimum amount of energy required to ionize an atom which is in its ground state or is the energy required to remove an electron completely from the lowest level to infinity while excitation energy is the amount of energy required to promote electrons to higher energy levels. In part (b), most of the candidates failed to explain the failure of the Thompsons's model. They were also unable to identify the application of cathode ray oscilloscope. Moreover, they used incorrect formulas to calculate the wavelength of the most energetic x-rays. In part (c), most of them were unable to interpret the given figure, as a result, they failed to calculate the frequency, wavelength of the emitted radiation and the energy of an electron transition from one level to another. Extract 16.2 is a sample of incorrect responses to the question.

00.	a @ Energy level refer to the lovels of Energy in
	broads no begins gous and does nothing a gooded
	the radiant of engister.
060	1. The Montgation energy differ from exceptation
	energy because on electron
	**
.06	@ I nonegetion energy means the minimum energy
	required to except an eugeno. The longation energy differ
	from the excitation energy due to the distance from the
	nuclear 1 the larger the drutance the lower H from the
•	nuclear the lower the lonization thugy, and also the
	near the distance from the nuclear the higher the
	lunization later energy have,
06	6. The reason to the tarlure of the top Thomson's mode,
	is The model fail to explain about existence of the
	hydrogen spectrum
	11/ The model fail to explain about the motion of
	an electron around the nuclear of an atom
	111/ The model tail to explain the stability of
	the fluctions and proton in an atom
	11° / Application of the Cathode may oscilloscope
	1) Wed in securities
	ii) Used in X-rays activities
	" Wed in treatment of cancer like skin cancer
	in Used to manufacturing of nuclear bombs.

066 (11) Data gium',
X = ? (10 quired)
1 = 1'5 x 105 v
1 - 3 /1-
Fron;
J = C
$\lambda = \alpha$
<i>f</i> .
bu c = 3x10° m/s.
λ = 2×10°3′
1.5 x 10 S
X = 2.0 x 103 m
:. The waw lingth on the most inergetic X-lays
produud 13 - about 20 x 10 2 m
·
66, C. Dagwed
tudoun = ;
wavelength =?
n ₁ = 2
$n_{\alpha}=3$
$\frac{1}{2} = RH \left(\frac{1}{2} - \frac{1}{2} \right)$
y (n,2 n,2)

06·C.	$\frac{y}{\lambda} = RH \left(\frac{1}{a^2} - \frac{y}{3^2} \right)$
	λ. 2* 3"
	bu AH - 1.1 x107 m-1
	1 = 1.1x107 x (5)
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
	ν - 1·527 × 10 ⁶ .
	λ = 1 1.523 ×10 ⁶
	$\lambda = 6.545 \times 10^{-7} \text{ m}$
	Thur's from's of = 5
	f = 3:0 x 108
	6.545 ×10 ⁻⁷
	f = 4.583 x1014 +12
	i. i) The frequency of radiation for Hed
	11 4.583 X10 HZ
	in The wavelegth of the radication constrol
	is 6.545 x10-7 m

	From', E = -12-6eV
	n²
	E = -13.6eV
	B = -13.0ev
	10
	E = -13.6 x 1.6 x 10-19
	52
	= 8.71 × 10-20 Joule
- '	The Enry was - 3.7 × 10-20 Joule

Extract 16.2: A sample of incorrect responses to Question 6 of Paper 2

In Extract 16.2, the candidate provided irrelevant responses which do not meet the requirements of the question. For instance, in part (c), he/she wrongly interpreted the figure of energy levels and ended up with incorrect values of frequency, wavelength and energy.

4.0 ANALYSIS OF CANDIDATES' PERFORMANCE IN EACH QUESTION IN 131/3 PHYSICS 3

Physics Paper 3 had three alternatives of Actual Practical Papers which are 131/3A Physics 3A, 131/3B Physics 3B and 131/3C Physics 3C. Each alternative paper comprised three questions. Question 1 carried 20 marks while questions 2 and 3 carried 15 marks each. Question 1 was set from the topic of Mechanics, question 2 was set from Heat while question 3 was set from Current Electricity.

4.1 Question 1: Mechanics

This part consisted of three questions derived from the topic of Mechanics. It is a collection of questions from each alternative papers. The analysis of each question is as follows:

4.1.1 Physics 3A, 3B and 3C

A total of 21,697 candidates attempted this question. Among them, 62.6 per cent scored from 0 to 6.5 marks; 30.4 per cent scored from 7 to 11.5; and 7.0 per cent scored from 12 to 20 marks. Only three (3) candidates scored

all 20 marks. The analysis reveals that the general performance in this question was weak. Figure 18 summarizes the performance.

Figure 18: Distribution of candidates' performance in Question 1

4.1.1.1 Physics 3A

The candidates were provided with a wire W (Constantan wire SWG 26), meter rule, two cork pads, test tube, micrometre screw gauge, slotted mass of 20 g, retort stand with its accessories, masking tape and optical pin.

The candidates were required to:

- (a) measure and record the length l and diameter d of the wire W.
- (b) wind the whole length of the wire W tightly on the test tube such that the turns are as close as possible but not overlapping.
- (c) measure the length x of the coil made as shown in Figure 1 and count the number of turns.

Figure 1

(d) remove the coil from the test tube; straighten the first and the last coil. Clamp one end on the retort stand while bending the other end to make a hook. Count the number of complete turns (*n*) remaining and measure the distance h₁ between the ends of the coil as shown in Figure 2.

Figure 2

(e) load a 20 g mass on the other end of the coil and arrange as shown in Figure 3. Measure and record the distance h₂ between the ends of the turns.

Figure 3

- (f) remove the mass, reduce the number of turns by straightening three turns of the coil from the upper end and adjust the point of suspension of the coil. Record the number of turns (*n*) remaining and measure the distance h₁. Load 20 g mass of the coil and then measure and record distance h₂.
- (g) repeat the procedures in 1 (f) so as to obtain the other three readings to make a total of five readings for n, h_1 and h_2 .

Questions

(i) Record the values of n, h_1 and h_2 and find extension e as shown in the following table:

Number of turns n remaining			
Distance h ₁ (cm)			
Distance h ₂ (cm)			
Extension, $e = (h_2 - h_1)(cm)$			

- (ii) Plot the graph of extension, *e* against the number of turns, n.
- (iii) Determine the slope S of the graph.
- (iv) Compute the value of constant G from the equation; $\frac{1}{n} = \frac{Gx}{de}$.

Most of the candidates who scored high marks had enough skills to wind the whole length of the wire W tightly on the test tube to make a coil with reasonable minimum separation and number of turns. Some of the candidates obtained the correct value of x, which helped them to collect the correct data, as a result they plotted the correct graph. They correctly interpreted the plotted graph to get the slope which in turn helped them to obtain the value of the constant G. Extract 17.1 is a sample of the correct responses.

1	REPUR								
	Length of wire = 95cm								
	Diameter of wire = 95cm								
	TAPLEOF PRIMES,								
	Ci)								
	Number of browns (n) remaining					-			
	(n) remaining	15	12.	9.	6	.3			
					-				
	Distagre hickens	ιo	9	7	5	2			
	Distance, no (cm)	15.1	13	10	7	3			
	Dinace, no com	(3.1	1_3	. (0		-			
	Extension	5.1	. 4	3	2	1			
	2 (h2-h1) (cm)	3				1	1		
	noof torns = 19. Leight x of the wil = 1cm.								
	Leigh x of the	= cuit=	- Acr	<u>~ .</u>					
	(iii) from to	e gr	aph.						
	(iii) from the graph.								
	0	_ ^_	•						
-	Noprez De								
	-		η <i>·</i>						
	Jone:	z 3	1-25-1.	5			,		
	Nopez 3:25-1:5 10-4:5 Nopoz 0:2164 cm								
									

Extract 17.1: A sample of correct responses to Question 1 of Paper 3A

In Extract 17.1, the candidate correctly collected the data and manipulated the data to obtain the required values.

However, the candidates who scored low marks in this question did not have enough skills and knowledge of practical aspect of Physics. The analysis shows that most of the candidates faced the challenges in winding the wire W tightly on the test tube to get the minimum separation. Some of them obtained large value of x and smaller number of turns which would not give the expected value. Failure to get the required value of x led them to collect wrong data and plot incorrect graphs. Most of graphs drawn lacked basic features such as title of the graph, labels of the axes, proper scales and best lines. Some of the candidates lacked knowledge of how to determine the slope of the graph and thus failed to provide the correct answers to the other parts of the question. For example, some candidates did not draw the graph which was a necessary step to compute the slope, instead, they just used the data which they collected from the experiment to determine the slope, contrary to the requirement of the question. Extract 17.2 is a sample of incorrect responses.

OL.	i) TABLE OF VALUE						
			414, 400,0 (000000000000000000000000000000				
	Number of turns remaining.	18	15	12	19	6	1
	Distance ha (am)	29	24.2	19-3	14.5	9.67	
	Distance ha (cm)	61	7.3	82	91	97	
	Extension e (ha - hi) om.	32	48.8	62.7	36.5	&7·3.	
-	3). langth of wire (1) =	101 on	· .				
	Dismeter of wire (d)	= 0.2	φmm,		~~~		
						7.00	
	OTLe longth X = . 6 cm.						
	Number of turns u	vere æ	# 20	tums	•		

	(d) The height he = 24 cm.						
					,		
	2) To height he = 61 4	n.					
	ill) For the claps of the	o gial	9 h				
	- 40						
i	$ \begin{array}{c} \leq = \Delta Q \\ $	_					
	1.69-18 n		141				
	= -3.6.						
	924 January A			***			
	:. slope = -3,6 an	0 ~ 1					
	'					-	
	iv From to equator					***************************************	
	n de.						
	n te.	410-W-L					_

01	$\frac{1}{1} \frac{1}{1} \frac{1}$
	d
	-3.6 = GX
	-3.6 = GX
	-3.6 = 67 X 6 cm
	0.024cm.
	<u> </u>
	G = 0.024 x - 3.6
	6 cm.
	G cm. G = -1.44 × 10 ⁻⁴ cm.
	: The value of constant G=-1.44x10-4cm.
	, and the second
Ø1,	iv 1 = bx n de
	n de
	nax=de
	e = n g x d.
	$Q = G_{1} \times n$
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
	y /w x
	m = U ope

Extract 17.2: A sample of incorrect responses to Question 1 of Paper 3A

Extract 17.2 shows the work of a candidate who did not measure the diameter of the wire correctly. He/she got 0.24 mm instead of 0.46 mm. He/she also failed to wind the given wire appropriately, as a result he/she obtained the incorrect length of the coil.

4.1.1.2 Physics 3B

In this question, it was assumed that the weighing balance at the school is not working properly. The candidates were required to determine the mass of the empty glass beaker as follows: (a) Using the masking tape to firmly wrap the thread on the beaker and suspend it to the lower end of the spring as shown in Figure 1 where an optical pin is bent into 'S' shape.

Figure 1

- (b) Measure the volume $V=25~\text{cm}^3$ of water and pour it into the suspended beaker. Gently pull the beaker a small distance downward and release it so that it performs vertical oscillations. Measure and record time t (s) for 30 oscillations and determine periodic time, T.
- (c) Repeat the procedure in 1 (b) for $V = 60 \text{ cm}^3$, 100 cm^3 , 150 cm^3 and 200 cm^3 .

Questions

- (i) Tabulate your results including the values of T^2 (s^2).
- (ii) Plot a graph of V (cm³) against T² (s²).
- (iii) Establish the equation governing this experiment.
- (iv) Use the graph and the equation obtained in 1 (iii) to determine the mass of an empty glass beaker.
- (v) What will happen to the floating object if it is put in oscillating beaker at the bottom position of its oscillation? Briefly explain.

The candidates who scored high marks in this question had sufficient knowledge to perform the experiment correctly. Most of them tabulated the correct results and followed the required procedure to plot the graph. Some of the candidates were competent enough to interpret the graph and they applied the formula $T = 2\pi \sqrt{\frac{m+M}{k}}$ to establish the equation

 $V = \frac{k}{4\pi^2 \rho} T^2 - \frac{M}{\rho}$ which obeys the experimental results. Some of those

candidates used the information from the graph and the equation obtained to determine correctly the mass of an empty glass beaker. However, few candidates faced difficulties to explain what happens to a floating object if it is in oscillating beaker at the bottom position of its oscillation. They did not realise that the object will not oscillate relative to water surface because water and beaker were oscillating together. Extract 18.1 is a sample of the correct responses.

01.	LAKT K	F OF REJU	LT3 •		
	Volume	Time	Penodio		
	V (m2)	t (sec)	time TW)	T 2. (3)	
	25	19.12	0.6363	0.4049	
				State of the Control	
	60	२१ - ७७	0.7709	0.5198	
	100	24.21	0.8070	016513	
	150	Q4 110	019081	0.8155	,
,			,	è	
	800	29,70	019898	0.9798	

čù)	Required to plot a graph of V (cm²) agains 172 u?).
	From The graph
	The Value of Y-intercept 12 - 98124 cm3
	clope = change in Volume
	change in T2.
	$= (176 - 80) \text{cm}^3$
	0.9 - 0.58 42.
	1, 110pe = 304.39 cm /12.
(äi)	Regulted the equation governing the experiment
	County
	T= 27 min + Mb
	K
	T? = 477 (Mw + Mb)
	Bud Man of water = freedox x Volumes
	Tak = 478(60 + 1710)
	TRK = PV +Mb.
	471 2
	4113 - MP
	4 V = T P K - Mb
	45199 9
	k' There for p
	N = ISK - MP
	471 7
	where $\sqrt{z} = m \times - c$
	Mb = Mais of empty beaker
	P = Dorpider of water
	K = Spring constant
	-'. The colotton governing thu experiment
	1.1
	ALSK - WP
	7"

111	From the graph drawn above the value of Y-interapt
	= -98.24
	Le compler the relation of the experiment.
	4126 B
	47129 9
	INTERPRETATION IN THE
	Bo + Mb = + 98124
,	4
	Man of booker = 98.24 × denither of reader
	= 98,24 × Aolem2
	Man of the pooper = 98,240
,	* 4
1(1)	When a pleating object is put in an oscillating boolcar
	the to not the bottom position of its oscillation it will
	Experience No visious popress than who's boling
	at the top of its escalation who at the bottom
	There is no reaction for a acting on a floating
	body.
COTTO IS	

Extract 18.1: A sample of correct responses to Question 1 of Paper 3B

Extract 18.1 shows how the candidate collected the data correctly, and drew the required graph. The candidate had enough skills to deduce the

necessary equations although he/she was not aware that the object will oscillate together with water and beaker.

On the other hand, the candidates who scored low marks faced challenges to record the time t (s) for 30 oscillations, as a result they incorrectly determined the periodic time, T and failed to represent the data graphically. Some of them were not aware of the important features to be include when drawing graphs. They drew the graphs without indicating the title, axis, scales used and the slope indication. In addition, most of the candidates failed to analyse the information from the graph, hence they failed to deduce the intended equation. Furthermore, they computed incorrectly the mass of an empty beaker. Finally, most of the candidates failed to explain correctly the last part of the question. For example, one of the candidates explained that the period of oscillation will decrease due to addition of floating object. The candidate failed to recall that adding the object to an oscillating system would decrease its frequency, leading to the increase in period though this was not the requirement of the question. Extract 18.2 is one of the incorrect responses.

1	û Table	of recounts			
	Volume	time "t"	Period T	Period 272	
	(cm3)	(2)	(5)	(s°)	
	2.5	21.34		1.96	
	60	24-44	1.23	1.51	
	100	27.03	3 - 11	1.23	
	150	30.13	0.99	0.98	
	200	32.78		0.85	
		A	9	6.	
	(ii) (traph.				
	(iii) The e	quaken q	overning the	experment	t
	consid	er diagram	,	•	
				maps M	with address of L. Gorz
	_m				5
	JTM		2		3
	34		3		3
			F = 3	1	7
			¥ - 19		± _2 ↑FR
			J		1 3
	*****		mg	Î	× 3
					¥ 3
	- On addu	ran of ma	ais M 60	a spand	the spring incres
	length	bu e			,
		From 1	naoki Law	FXE	
	***************************************			F=Ke	Put Here f = Mg
			Hence Ma	= Ke -	1
	· When the	Sustem	in set to c	sculate	the it will mave
	with SHA	1 due B	rectoring F	ore FR	
		7	net = FR - Ma	ì	
				1	

1	(ii) Fer =
	Ma - FR - Mg FR = Kx X'=(x+e)
	Ma = Mq = Ke' $Mq = K(X+C) - Ke'$
	Ma = K(x+e) - Ke
	Ma = Kx + ke-ke
	Mq=ke
	a = Ke
	*\
	But for SHM a = WZA
	where to = timplifuely
	$w^2 \Lambda = Kc$ $w = \varrho \pi$
	$\left(\frac{2\pi}{T}\right)^2 A = \frac{Kc}{M}$
	\ T) M
	ATT A = Ke for maximum A = c
	T ² M
	Fquation: T2 = 4T2M
	K Also M = Pxv
	72 = 4112 RV
	K wheri
	U= Volume of water
	P = Density of water
	K = Spring contant
	T = Périod T(s)
1	(10) from the graph
	Slope M= AV
	DIZ
	M = 100 - 70
	1.23 - 1.65
	32 - 03
	M = 2 = 24 = 24
	M = 30 -71.42.
	- G· HZ
	from
	$T^2 = 4\pi^2 m$
	Κ
	T= 271 M : M = Mbaco. + M wash
	JK
	Also Mg = Ke
	,
	<u>m = e</u>
	кд
	(U) When floating object to put in oscillating beaker at
	the bottom of oh osculation the time period for the
	Oscillation or the time for regaining original portion
	will increase
	: CHAR CACICALA

Extract 18.2: A sample of incorrect responses to Question 1 of Paper 3B

Extract 18.2 shows how the candidate failed to collect the correct data and ended up drawing a graph with negative slope instead of positive slope. He/she also failed to derive the required equation.

4.1.1.3 Physics 3C

In this question the candidates were provided with a wire **W**, a meter rule, cork pads, a test tube, a micrometre screw gauge, five masses each having 10 g a retort stand with its accessories, an optical pin (pointer), a string of 20 cm, masking tape and a light plastic scale pan.

Then, they were required to:

- (a) Measure and record the length, L (m) and diameter d (m) of the wire, W provided.
- (b) Wind tightly the whole length of the wire on the test tube provided, making sure that turns are as close as possible but do not overlap.

- (c) Remove the coil from the test tube, straighten the first and last turns of the coil made, then bend one end of the coil to make a hook.
- (d) Arrange the apparatus as shown in Figure 1.

- Figure 1
- (e) With the help of a masking tape, insert a pointer at X_0 when there is no mass placed on a plastic scale pan.
- (f) Place 10 g mass on a plastic scale pan, measure the new length, X when the spring is extended and calculate the extension.
- (g) Without removing the first mass, add another mass weighing 10 g on the scale pan to make a total of 20 g and measure the new length and calculate its extension.
- (h) Repeat the procedure in 1 (g) by adding 10 g mass until you get a total mass of 50 g while measuring new length and extension in each case.

Questions

- (i) Tabulate your results including the values of load as F (N) and extension, e (m), where; 100 g = 1 N.
- (ii) Plot a graph of extension (m) against load (N).
- (iii) Give comment on the relationship between the load and extension in 1 (ii).
- (iv) Determine the slope, K of the graph.
- (v) Use the value obtained in 1 (iv) to calculate the value of ρ from the equation, $K = \frac{4L}{\pi d^2 \rho}$.
- (vi) What is the physical meaning of the value obtained in 1 (v)?

The candidates who scored high marks in this question demonstrated the required skills in performing the experiment. Most of them were competent in analysing, evaluating and applying mathematical skills to obtain the solution to the problem. They used the collected data and followed the required procedure to plot the graph of extension (M) against the load (N). Moreover, they interpreted the graph and found that from the first three points of the graph, extension is directly proportional to the load (the graph obeys Hooks law). Furthermore, they used correctly the ratio of change of extension to the change of load to determine the slope, K of the graph. Finally, they used the slope obtained and the equation given to compute the value of ρ as a longitudinal stress *or* tensile stress. Extract 19.1 is a correct response given by a candidate who scored high marks.

1	iv) slope = De (m)
	ΔF (N)
	K = (e2-e,),m
	(F ₂ - F ₁), N
	K = (0.09-0.05) m.
	(0.15 ~ 0.2) N.
	K 2 0.04 M.
	0.15 N .
	: Slope, K = 0.267 M/N.
	in From the graph, loading is directly proportional to
	extension (m).
	CA CHILDON VANIA
	V) £,,
	V) from, K= 4L
	To P
	Where, K= 0.267 M/N
	Then
	Ther, $f = 4L$
	ug, K.
	= 4 x 1m.
·	TIX (0.45X10-2m)2x 0.267 MN.
	2 4 M.
	1.6985×10-7 M/N. \$ = 2.355×107 M/M2.
	The value of S is 2.355 × 107 N/m2
-	We have of a 1 1 2 2 2 1 1 1 1 1 1 1 1 1
	virthe physical meaning of f is Young's modulur.
	right prysical manning of 3 13 Louise Manning.

Extract 19.1 A sample of correct responses in Question 1 of Paper 3C.

Extract 19.1 shows the responses of a candidate who performed the question correctly but failed to identify the physical meaning of the value calculated. He/she stated it as Young's modules instead of longitudinal stress *or* tensile stress.

Some of the candidates who scored low marks (0 to 6.5 marks) did not collected the data correctly because they failed to wind the wire on the test tube to obtain a spring with a reasonable minimum separation. In data collection, some them failed to convert gram into Newton although they were given that 100 g = 1 N. They just multiplied by 9.8 N/kg and used the extension in centimetre (cm) instead of meter (m). Most of the candidates were not aware of the features of a good graph. They drew the graphs without indicating the title, axes, scales, best line and slope. Some of

candidates transferred the data incorrectly and failed to choose the points for slope calculation. So, they failed to comment on the relationship between load and extension and to determine the slope K of the graph. Additionally, they lacked skills to calculate the value of ρ from the equation, $K{=}\frac{4L}{\pi d^2\rho}$, and thus failed to state its physical meaning. Extract

19.2 is the sample of incorrect responses.

1	in TABLE OF	fesher's		
	Mass gi	Longth (m)	Extension (m)	Load (M)
	10	60	€ 8.16×13	B 0.098
	۷0	CS	1.67×10-15	U· 62
	30	20	2.5 × 10-15	כט י ט
	40	25	3-3 × 10-15.	0.04
	So	80	4-18 ×10-12	ی ۰ ی
	(ii) A haph u	(m) ruizastx3 +	against Low	16/ hes
	been plat	ted on the	12th Paper	given
	1		, , ,	
	(in) Luga and			
	is as the	Luad increa	so the ext	ension
	also incre	< 5€ '		
	au from			
	1/0 pe =	<u>4</u> 3 ·		
		Δ X		
	Stupe =	D Extension	(m1 = 8.16×10)	3-4-16 X10-15
		U Luad (U, U, J, K	- 0.03
	, , , , , , , , , , , , , , , , , , , ,	51	up = = 1.2 x1013 -	~~~
			-	
	(v) From the			
	K = 41			
	7 =	4L		
	Mrere F	= 98cm = 0.	481	
	2	= 98cm = 0. 1 = 0.46 mm = K =	0.46 x10-3 M	
<u> </u>		\ =		

Extract 19.2: A sample of weak responses to Question 1 of Paper 3C

Extract 19.2 shows the solution of a candidate who lacked knowledge of the concept of mechanics, particularly the strength of materials. The candidate was not able to set up the experiment correctly, as a result he/she failed to record the correct data. In addition, he/she lacked skills of using proper scales to transfer the data into the graph and show the slope indication.

4.2 Question 2: Heat

This part comprised three questions derived from the topic of Heat. It is a collection of questions from physics 3A, 3B and 3C papers. The analysis of each question is as follows:

4.2.1 Physics 3A, 3B & 3C

The question was attempted by 21,697 candidates, out of which 45.7 per cent scored from 0 to 5 marks; 33.2 per cent scored from 5.5 to 8.5 marks and 21.1 per cent scored from 9 to 15 marks. This shows that the candidates' performance in this question was average since 54.3 per cent of them scored the pass mark (5.5 marks) or above. Figure 19 presents a summary of candidates' performance.

Figure 19: Percentage of candidates' performance in Question 2

4.2.1.1 Physics 3A

In this question it was given that, Form Five Physics students were debating on whether hot objects made with the same materials but having different masses have the same rate of cooling or not. The candidates were required to conclude their debate by performing the experiment using the following procedures:

- (a) Measure the mass of empty calorimeter provided.
- (b) Fill the calorimeter with hot water of 90 °C to three quarters and then cover the calorimeter with a lid.
- (c) While fanning hard board, record the time (t) in seconds for every 5°C drop of temperature of water starting from the temperature of 80 °C to 55°C.
- (d) Record the mass of the calorimeter with water.
- (e) Repeat procedure (c) to (d) when the calorimeter is half filled with hot water.

Questions

- (i) Tabulate the results obtained in (c) and (e).
- (ii) Determine the mass of water m_1 and m_2 as obtained from procedures in (a) and (e) respectively.
- (iii) Plot the graph of time obtained in (c) against that in (e).
- (iv) Determine the slope of the graph plotted in (iii).
- (v) Determine the ratio of the masses m_1 and m_2 .
- (vi) Use the slopes and the ratio of masses obtained from the experiment to conclude the debate of the students.

The candidates who scored average marks (5.5 - 8.5) had clear understanding of the concept of heat transfer. They applied the basic skills in setting and carrying out an experiment to determine the mass of water m_1 and m_2 . Moreover, they followed the procedure of collecting the data and tabulating the results hence they plotted the cooling graph for both experiments. However, some of them faced challenges in locating the tabulated values when plotting the graph.

The data analysis reveals that 21.1 per cent of the candidates who scored high marks (9 - 15) had enough knowledge of performing an experiment regarding the rate of heat flow. Most of them demonstrated the skills of collecting the data at a reasonable range and correctly used a table of values to plot the graphs. In the graphs, they indicated the following important aspects: The title of the graph including their units; the scale (vertical and horizontal scales), the axes (vertical and horizontal axes) with their respective SI units; transfer of points; best line and slope indication. In addition, they used points at the slope indication to determine the slope by

using the formula: Slope =
$$\frac{\Delta t_{\frac{3}{4}}}{\Delta t_{\frac{1}{2}}}$$
. They also used the relation $\frac{m_1}{m_2}$ to

determine the ratio of masses m_1 and m_2 , and then compared its value with the slope. Finally, most of them clearly concluded that mass is proportional to the time taken by the body to cool, provided that other factors such as nature of the material, room temperature and temperature of the surrounding are kept constant. This implies that, the objects with small mass will cool faster than the one with large mass. Extract 20.1 is a sample of a candidates' correct response.

	REPORT.				-
2.		of an empt	y calorimete	, M =	37·7g.
	Ms	1 calorimete	- 11 - 	A.A>	112. 70
	, maj 9	t calonmete	with Nator	1011) -	112 19,
	Mass a	calorimeter :	with water	M 22 =	28.79.
	n	100		· · · · · · · · · · · · · · · · · · ·	
	Room tem	perator = 16°	· C ·		
2 ①	TABLE	of Resul	tu for a	CALORIMET	ER LITH
	WA	TER THREE	QUARTERS-	FULL	
		Temporature.	Time ti		
		₽°C	(seconds)		
		80	0		
		75	8 5		
		70	197.		
		6 <i>5</i>	3 20		1 . 5 2
		60	464.		-
		55	630.		
		OF REGI		CALORIN	ETER AITH:
	•	NATER HA Temperature O°C		-al.	
				anas.	
		80 75	61		
		70	120	····	
		65	195		
		60	280		
		5 5	400		
			 		

0.0	.1 00
2 @	Mass of Nator M.
	$M_1 = M_{ii} - M$.
	= 112.7g - 37.7g.
	M1 = 75g.
	Man of Nate Ma.
	M2 2 M22 - M.
	= 88.75 - 37.75
	M2 = 512g.
	1
	Man of sate Mi and Me are 75g and
	51g respectively
(W	Slope of the graph.
	Mopo = Ati (sec)
	Dta (ce).
	= (500 - 240) kc
	(215 - 150) cm.
	(30) 120
	Slope = 1.575.
	510pc = 1.3.13
	' et
	. Slope of the graph = 1.575.
-	
Ŋ	Ratio q the masses.
- 7	
	$M' = M_1$
	M ₂ ,
	= 75 g
	ડા ક.

Extract 20.1: A sample of good responses to Question 2 of Paper 3A

In Extract 20.1 the candidate was competent in collecting the data, plotting the graph and determining the slope and ratio of masses correctly.

However, 45.7 per cent of the candidates who scored low marks (0 - 5) lacked enough knowledge and skills for carrying out heat experiments. Most of these candidates recorded incorrect data while other candidates

recorded time in minutes instead of seconds. They also faced difficulties in using beam balance and thermometers because the obtained results of mass and temperature were out of range. Another observed challenge was failure to analyse the concept to address the important aspects like title of the graph, scales, axis, transfer of points and slope indication when plotting the graph. Consequently, they failed to draw a conclusion based on the significance of the experiment. Extract 20.2 is a sample of candidates' incorrect responses to the question.

	e room temperatu	N OR = 28°C	
	•		
at	three quarter		
()()	Temperature (0)°(Time (min)	
,	80	0.00 2.5 2.5	
,	75	2.50	
	70	5.29	
	6 5	8.42	
	60	12 .02	
	\$2	16 · 22	
,	, 1	rime ter with wate	
ild) at	half filled water		
	Temperature « C		
	75	1.17	
	70	2.46	
	6.5	3.93	
	60 55	7. 56	
		. 7. 7/10	

2.	lil the mass y water (m,)				
	= mall of water with lateringter - moll of empt				
	adonnet				
	= 0.097kg - 0.029kg				
	The mass of water (m)= 0.0 68 kg				
	The mass of water (m2) = 0.087kg - 0.029kg				
	0.084kg - 0.029kg				
	The most of water (m2) = 0.055 kg				
	the time of the second to the second				
	iv) the singe of the graph from (18,4) to (4.5,10)				
	1000 = 1 Tim 200)				
	Slope = <u>ATin 2(e)</u> AT in 2(e)				
	41 14 24				
	= 10 - 4 4.5 - 1.8				
	4.5 - 1.8				
,					
	2.7				
	£ '				
2.	Slope = 2.222 ii/ The ratio of masses m, and m2				
- 2.	W/ Int touch of masses in and ins				
	M., - 0.068 kg				
	m, = 0.068 kg m, 0.055 kg				
	_				
	$m_{y} = 1.236$ m_{2}				
	m ₂				
	vi' The slage and the ratio as malled anno their				
	vi) the slope and the ratio of masses from this experiment it show that the hot objects have the same rate of boting.				
	have the same rate of bothny.				

Extract 20.2: A sample of incorrect responses to Question 2 of Paper 3

In Extract 20.2, the candidate recorded the data which were out of range. He/she failed to draw a graph correctly and apply the formula to obtain the required values of slope and the ratio of masses.

4.2.1.2 Physics 3B

In this question it was given that a hotel owner heats water for his customers every morning using electric heaters and has noticed that heat is lost because sometimes customers do not take bath. Therefore, he was aiming to use heat obtained from the heated water for other purposes. The

candidates were required to perform an experiment to prove to him that the heated water can also be used to heat other liquids by using the following procedures:

- (a) Fill the beaker with 100 ml of hot water of about 90 °C.
- (b) Pour 50 ml of normal water (at the room temperature) into a calorimeter.
- (c) Insert the calorimeter containing normal water into a beaker with hot water of 85 °C placed on a wooden block. Quickly close the beaker with lid as shown in Figure 2.

Figure 2

- (d) Read and record the temperature of water in the calorimeter for every half minute until the thermometer records about 55 °C.
- (e) Empty the calorimeter and the beaker.
- (f) Repeat the procedure from (a) to (d) by filling the calorimeter with 50 ml of liquid L.

Questions

- (i) Tabulate your results.
- (ii) Plot the graph of temperature against time for water and liquid L on the same axes.

- (iii) Determine the rate of temperature rise (°C/minute) for water and liquid L at 42 °C.
- (iv) Suggest any two improvements that will result into increase in the temperature gained by liquid L.

The average performance of the candidates in this question was contributed by their ability to arrange the given apparati and analyse heat experiments under forced convection. Those candidates measured accurately the mass of calorimeter when it is half full and when it is two third full of water. However, some of them had problems with reading stopwatch when recording time after every 5°C drop of temperature as instructed. They also failed to choose a proper scale for drawing the graph and determining its slope.

Those who scored 9 to 15 marks were knowledgeable about the concept of heat transfer particularly in investigating the factors that affect the rate of cooling. They made an experimental set up to collect and analyse the data in a tabular form. Moreover, they drew a correct conclusion by making comparison between the slope of the graph and the ratio between two masses. Extract 21.1 is a sample of the responses from a candidate who scored high marks.

2.	Arm: To prove that heated writer also lande used
	to heat other liquids
	, ,
	@ Experiment was done.
	6 Experiment was done
	@ Experiment was done
	•
	a Table of results of winter
	Room Temperature
	0 1 = 28°C
	, 02 28°C
	Average num temperature
	D= +, ++
	2
	= 28°C + 28°C
	2
	0 = 28°C
	. Loom temperature was 28°C

2, (i)	Table of resu	H 1			
• ‡	For water liz	we			
	Time (min)	temperature (°C)			
	0.0	28			
		40			
	0.5	49			
	1.5	52			
	2.0	54.5			
·	2.5	55.5			
		13/11/11			
·For	liquid L	7 38.			
1	Time Crim)	Temperature C	°C)		
	0.0	ta 1 11 28			
	0.5	(1) 44			
	1,0	51			
	1,5	56			
C ST r	1 N				
(2) Agr	aph was ploth	Zel			
6::)	· · · d				
(W) For	Whiter,	of an ARI			
	e rate of lempe	rature nie. all			
	AA U5	2 - 34°L			
	10 = 450 - 37 C				
	10 _ 45°C - 39°C at (0.925 - 0.575) Min				
	10= 1	7.140(/min			
•	00 = 1				
	At 42°C -	the rate of temperar	ture		
	hise were	the tate of temperar			

2	(iii) for liquid L
	at 42°C
	at
,	AD = 45°C - 39°C
	at (0.525 - 0.925) min
	at = 24° < /mi
	The take of temperature rise at 42°C unin
	was 24°C/min
	(v) Vays of Improvement 1. Wing of lagging Materials Suchas Cotton well 2. Covering well of top of liquid Surface
	1. Wing of lagging Materials Suchas Cotton wool
	2. Covering well of top of trywind Surface

Extract 21.1: A sample of correct responses to Question 2 of Paper 3B

In Extract 21.1, the candidate prepared a table of values but failed to get reasonable values of time. However, he/she plotted a graph and determined the mass of calorimeter and slope of the graph, and finally made a correct conclusion.

On the other hand, the candidates who scored 0 to 5 marks in this question faced different challenges including reading a stopwatch. They tabulated the results of time which were out of range. It seemed that they failed to

estimate the starting and stopping time of reading a stopwatch as instructed. Some of them misinterpreted the question as they drew a cooling curve instead of a heating curve. Moreover, their graphs were inverted such that they had incorrect rates in calculating slopes which led to incorrect suggestions. Generally, it was noted that, most of the candidates in this group had inadequate knowledge of conducting and analysing heat experiments. Extract 21.2 is a sample of incorrect responses.

2	Solm					
	The room remarrance 30°C					
	The table of result of experiment number (2)					
	Time see 0 30 60 90 120 150 180					
	water oc 35 76 71 65 60 56 53					
	lique 1°C 85 80 75 70 67 80 57					
-						
-	IloReof charer = Dic					
	DT sec					
	M = 49 - 62					
	N = 47-62					
-	- FIT 1°C					
	100-60 = (-15) °C -(40) see					
	M = -0.4					
	: Slore of water cure is =04°cs-1					
	July 4 death care 13204 ()					
	iii from the graph					
	For marer					
	DT = 85-42 = 43°C = 04°C/10					
	Dt 1185ec 1185ec					
	= 21.86°C minuses					
	For liquid L 5t = (85 - 42) °C sec - 1 5t 148					
	Bt = (85-42) °C sec					
	Dt 148/					
2	$\frac{111}{\Delta T} - \frac{43}{148} \circ C \operatorname{sec}^{-1} = 0.27 \mathrm{csc}^{-1}$					
	At 148 = 0.27° (sec)					
	17 = 19 (18 00/m.					
	DI = 17.43°C/minures					
	t and the second					
	" Plate of the temperature of raise in water is 21.86°C/minum and for upund us 17.43°C/minum					
	mater is 11.86°C/minus an leaving					
	1) " For minus					
	Web 11-4 & Commercial					
2	- Though decreases of rate of 1011 temp					
	- Thursh doctores a rate a 144 , tomas					
	- Thousa certain of real ton training					
	rature '					

Extract 21.2: A sample of incorrect responses to Question 2 of Paper 3B

In Extract 21.2, the candidate recorded the time in minutes instead of seconds as instructed. He/she further collected incorrect data and ended up with incorrect graph.

4.2.1.3 Physics 3C

The candidates were provided with the following information: A hotel with ten floors and 100 rooms has installed a solar heater at the top of the building. Copper pipes were used for distributing heated water from the heater to bathrooms. However, it has been noticed that there was a temperature drop as water flows from the heater to the outlets in the bathrooms. They were required to diagnose experimentally on how heat is lost in the pipes by proceeding as follows:

Pour hot water into the calorimeter so that it is $\frac{3}{4}$ full and set the (a) apparati as shown in Figure 2.

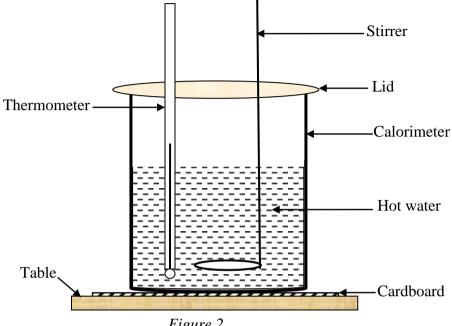
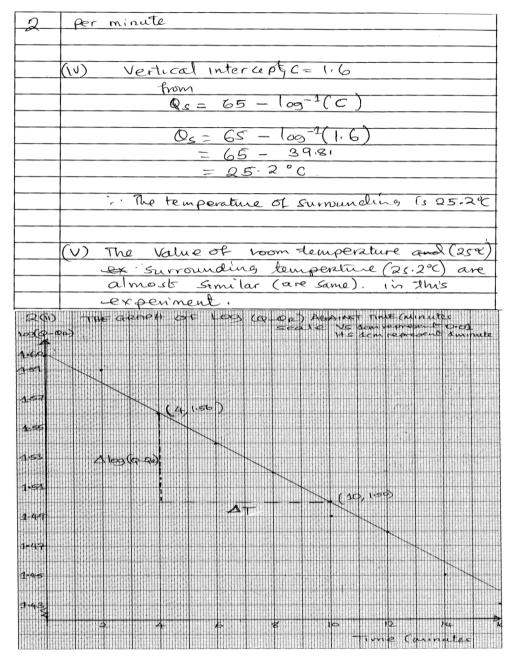


Figure 2


- Record the room temperature, θ_R . (b)
- While stirring start with the temperature 65 °C in the calorimeter, (c) record the temperature θ of water in the calorimeter as it cools at an interval of 2 minutes for 16 minutes.

Ouestions

- Record your results in a tabular form including the values of (i) $(\theta - \theta_R)$ and $\log(\theta - \theta_R)$.
- Plot the graph of $\log(\theta \theta_R)$ against time, (t) in minutes. (ii)
- Relate the slope of a graph plotted in (ii) to the water flowing from (iii) the heater to the outlet in the bath rooms.
- Deduce the temperature of the surroundings, θ_s from the equation, (iv) $\theta_s = 65 - \log^{-1}C$ where, C is the vertical intercept of the graph.
- What can you conclude on the values of room temperature, θ_R and (v) surrounding temperature, θ_s obtained in this experiment?

The analysis of candidates' responses reveals that, those who scored high marks in this question recorded correctly the room temperature under forced convection. They demonstrated their competence in using thermometer and stopwatch to read and record the temperature and time respectively. Consequently, they plotted the graph to determine the slope and temperature of the surroundings θ_s using the equation $\theta_s = 65 - \log^{-1}\!C$ where C is the vertical intercept of the graph. Finally, they concluded that the room temperature and the surrounding temperature θ_s obtained experimentally are almost the same. Extract 22.1 is a sample of candidates' correct response.

Q	Room Temperat	ine Q	_= 25°C		
(1) TABLE OF R				
	Time, t (min)	LD(.c)	Q-QR(C)	10g (φ-QR)	
	0 2	65		1.60	
	2	64	39	1.59	
	4	62	37	1.56	
	6	60	35	1.54	
	8	58	33	1.52	
	10	62 60 58 56 549 53	31	1.49	
	12	549	29.9	1,48	
	14	53	28	1.45	
	16	52.	27.	1.43	
	(11) The graph o	e los	3 (Q-QR) against line	
	in moute	_22			
		,			
	(my slope =				
		\$ TIV	_و		
		- (1.50	-(-1.56) -4)mi		
		(10	-4)mi	n	
		= -0	.01 min	1.	
			0,01 min-		
	The rate of h				
	buthroom is antilog	anthm o	fexcess le	imperatine of 0.01	

Extract 22.1: A sample of good responses to Question 2 of Paper 3C

In Extract 22.1, the candidate measured and recorded correctly the values of temperature and time. He/she also used the collected data to plot the correct graph and determine the slope as well as the rate of heat loss.

On the contrary, some of the candidates who attempted this question scored low marks because they had little knowledge of the concepts of heat transfer. It seemed they faced difficulties in reading thermometers and stopwatches because they obtained the data which were out of range. They failed to examine the factors on which the rate of cooling of a substance depends. Another challenge that the candidates faced was lack of drawing and mathematical skills. Most of the candidates failed to employ the correct formula to analyse the concepts. Moreover, the graphs they plotted lacked some important features such as title, scales and slope indication. Extract 22.2 is illustrative.

20	Table o	y results.			-
,		Q0 = 28°C.			
	Time (T)	0	(Q-00)	log (Q-QR)	
	2	85.44°C	57-44.	1.76	
	4	82.10°C	54.10	1.73	
	6	78.95°c	50.95	1.11	
	3	75.98°c	41.98	1.68	
	10	73.19°c	45.19	1.66	
	1.2	70.56 °C	42.56	1.63	
Dipo.	14	68.08°	40.08.	1.60	
	16-	65·75°c.	37.45	1.58	

O/R=28°E
Q=28+616-003t
a= 28 + 61e-0-06
QU=85.44 Pt=a
0=82.10 + t=4
Q = 78.95 \$ t = 6
$Q = 75.93 \Rightarrow t = 8.$
$0 = 73.19 \rightarrow 1 = 10$
$Q = 70.56 \forall t = 10.$
$\omega = 68.08 \Rightarrow t = 14$
$Q = 65.75 \rightarrow t = 16$
2000 As the time increases the temperature drops so the
time is inversely propertienced to the temperature of
the pater.
T < 1,
΄θ

Extract 22.2: A sample of incorrect responses to Question 2 of Paper 3C

In Extract 22.2, the candidate provided incorrect table of values and a wrong graph. He/she used mathematical method instead of experimental method to generate the data.

4.3 Question 3: Current Electricity

This part contains three questions from three alternative papers derived from the topic of Current Electricity. The analysis of each question is as follows:

4.3.1 Physics 3A, 3B & 3C

The question was attempted by 21,697 (100%) candidates, of which 61.8 per cent scored from 0 to 5 marks; 23.0 per cent scored from 5.5 to 8.5 marks; and 15.2 per cent scored from 9 to 15 marks. This suggests that the general performance of candidates in this question was average as only 38.2 percent scored above 5.0 marks. Figure 20 presents the analysis of these data.

Figure 20: Distribution of candidates' scores in Question 3

4.3.1.1 Physics 3A

The candidates were provided with a meter bridge, a standard resistor of 2 Ω , a dry cell, a 100 cm wire of unknown specifications, a zero centred galvanometer, a switch, a micrometre screw gauge, a meter rule and several pieces of connecting wires. Then, they were required to perform an experiment to obtain the specifications of the wire using the following procedures:

- (a) Measure and record the diameter of the wire.
- (b) Connect a 2 Ω resistor in the right hand gap and in the left hand gap connect the wire at length x = 15 cm. Close the switch and quickly determine the balancing point. Record the balance length L on the metre bridge located on the left hand side of the jockey of the galvanometer, then open the switch.
- (c) Repeat procedures in 3 (b) by connecting the wire at lengths x = 25 cm, 40 cm, 50 cm and 65 cm. In each experiment, record the corresponding values of L.

Questions

- (i) Draw a clearly labelled circuit diagram of this experiment.
- (ii) Tabulate your results including the values of x (m), $\frac{1}{L}$ (m⁻¹), L (m) and $\frac{1}{x}$ (m⁻¹).

- (iii) Plot a graph of $\frac{1}{x}$ (m⁻¹) against $\frac{1}{L}$ (m⁻¹).
- (iv) Determine the slope and the intercept of the graph in 3 (iii).
- (v) Determine the average value of unknown resistivity of the wire from the results in 3 (iv).
- (vi) If a customer wants to buy a piece of this wire, what will be the length of the wire required to make a resistance equivalent to 10Ω ?

High achievers in this question were knowledgeable of the concept tested. They connected the circuit properly, which enabled them to collect the correct data. Those candidates had abilities to draw a clearly labelled circuit diagram which they connected. Some of the candidates were aware of the requirements of the graph. They plotted correct graphs of $\frac{1}{x}$ (m⁻¹) against

 $\frac{1}{L}$ (m⁻¹) and determined correctly the slope and the intercept of the graph.

Moreover, they had good computational skills to establish the required equations and relate them to compute the average value of resistivity of the wire. Finally, some of the candidates calculated the value of e correctly and the length of the wire required to make a resistance equivalent to $10~\Omega$. Extract 23.1 shows the sample of the correct response provided by a candidate.

	-					
	ìi					
	x(m)	/x (m-1)	L(m)	/L (m-1)		
	0.15	1/x (m-1) 6. 24 4	0.24.	4.2		
	0.25	4	0.340	2.94		
	0.40	2-5	0.467	2.14		
	0.50	2	0.512	1.95		
	0.65	2	0.577	1.73		
	051		V-371	1 + 2		
			A 1/			
3-	(m) 2	Tope =	$\frac{\Delta}{\chi}$ (m)	-1)		
				n ')		
		- 7	- 3.5			
	-	- 6 3·	9 - 2.7			
		Slope =	2-083			
	intercept.					
	intercept. => // intercep = 1.2 (m-1)					
	$\Rightarrow /x \text{ in tracept } = 2.2 (m^{-1})$					
	/	/x inter	ept = 2	$\frac{2(m^{-1})}{}$		
		,		,		
	(V) Pru	- Re	sistance O	1 100,00		
	()	P C		(E-GAZ		
		Ri -	- R ₂			
	L ₁ L ₂					
		R _× =	2	V		
		L	1-L			
		-L = 2				
		L R,	<			
	1	1=2				
			×			

but Rx = J Kx
1 -1 = 2 A. 2 X
$\frac{1}{L}\left(\frac{S}{2A}\right) - \left(\frac{S}{2A}\right) = \frac{1}{X}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
From the equation of line.
Slope = 5 2A
$Bul A = TI d^{2}$ $= TI (Q-37 \times 10^{-3})^{2}$
$= \pi \left(\mathbf{Q} - 37 \times 10^{-3} \right)^{2}$
A = 1.075 × 10-7 m2
J, = 2A(510pp)
J, = 2A(Slopp) = 2x1.075x10.7 x 2.083 = 4.48x10-7 2m
intercept = $-2 \cdot 2 = -32$ -2A
$S_2 = 2A \times 2.2$ = $4.4 \times A$ = $4.4 \times 1.075 \times 10^{-7}$ = 4.73×10^{-7} JZ M
Average resistanty (3) = 5, +52 = 4.48×10-7 + 4.73×10-7 2
= 4.605 × 10-7 JZm

Extract 23.1 A sample of correct responses to question 3 of Paper 3A

The responses in Extract 23.1 show that the candidate know how to use a micrometre screw gauge as a result he/she measured the diameter of the wire correctly. He/she also demonstrated enough skills to use mathematical equations to determine the required quantities.

In contrast, most of the candidates who scored low (0 - 5) marks had inadequate knowledge of the concepts of current electricity specifically the metre bridge. Some of those candidates connected inappropriate electrical circuits, which led them to obtain incorrect data. The candidates had limited drawing skills as they drew improper electric circuits. Most of them did not draw proper graphs because of incorrect data they had obtained. In addition, they were not familiar with the requirements of the graphs. Some of them lacked computation skills as they failed to determine the correct value of slope and the intercept of the graph. Failure to obtain the values of slope and the intercept led them to provide incorrect answers to the rest of the examined items. For example, some of the candidates used the ratio

slope =
$$\frac{\Delta X}{\Delta L}$$
 instead of slope = $\frac{\Delta(\frac{1}{X})}{\Delta(\frac{1}{L})}$. Others used the correct formula

 $\rho = \frac{AR}{L}$ but they substituted wrong data to calculate the resistivity of the wire. Furthermore, some of the candidates had inadequate skills in measurement instruments. They failed to use properly the micrometre screw gauge, as a result, they obtained incorrect diameter of the wire. For example, one of the candidates obtained the value of the diameter as 0.29 mm instead of 0.37 \pm 0.02 mm. Extract 23.2 shows the sample of incorrect response provided by one of the candidates.

3	a) Diameter = 0.29mm
	of the wire
	W
	L. G 100-1,
	TABLE OF DECLARE
- 20	TABLE OF RESULTS $X(c_m) \times (m) \times (m^2) \times (m^4) \times (m^4)$
<u> </u>	15 0.15 98.89 6.67 0.0101
	15 0.15 98.89 6.67 0.0101 25 0.25 96.97 4.00 0.0103
	40 0.40 92.59 2.50 0.0108
	50 0.50 88.89 2.00 0.011
	50 0.50 88.89 2.00 0.011 65 0.65 82.56 1.54 0.012
	DATA ÅNALYSIS
	From the theorem
	Ratio of Resistance = Ratio of longth
	Rs = Li
	From the theolem Ratio of Resistance = Ratio of Length Rs = L1 Rw 100-L,
	but
	from: Jw = Aw Rw
	Lw
	Rw = LwIw
	$A_{\mathbf{w}}$
	$RSAw = L_1$
	Swlw 100-4

```
From
                        Aw Rw
                                      100-LA
                           Lw
                                    but 100- L1 = L2
                           \mathcal{Q}_{\mathcal{S}}
                                        La
                         Aw Ru
                            but Lw = X

Rsx = Li
                            AwRw
                                           LI
                              AwRw
                                dwide by Li both side
                                           Lzx
                               AwReu L, x Lo
                                 multiply to both use
                              1 = Rs [2
2 Aw Rw 4
                             \alpha
                             \frac{1}{\alpha} = \frac{-\left(\frac{R_{s}L_{2}}{A_{w}R_{w}}\right) \cdot 1}{\left(\frac{R_{s}L_{2}}{A_{w}R_{w}}\right) \cdot 1}
3îy
                Slopa
                             AVX
AVL
                         - 6 67 - 2.00
                            0.0101-0.011
                         = 4.67
                         - 0.010
= -9×10<sup>-04</sup>
                  Slope = -9×10-04
           Intorcept of the graph - 0.015
         Regulared the alleging value unknown resistivity
                    S-AR
                          Nd2 X R
                          8.14 × 0.29×104×6.67(2m2)
                             4 × 98.89%
                  Residuly of unknown = 4.9 ×10 mm
  Ŋ̈́
          from,
                          Li
                  R2
                         100-L
                 200 = LL
                        100-L,
                 100
      2(100-4)= 104,
           200-24 = 104
200 = 124 : Li = 16.7 cm
```


Extract 23.2: A sample of incorrect responses to Question 3 of Paper 3A

Extract 23.2 shows the responses of a candidate who obtained wrong data and ended up with incorrect answers. He/she also drew an incorrect graph with negative slope, contrary to the requirement of the question.

4.3.1.2 Physics 3B

In this question the candidates were required to investigate the value of the unknown resistance, R which was coupled parallel to a wire labelled W by means of wheatstone meter bridge. In order to achieve the task, the following instructions were given:

(a) Connect the standard resistance of 2 Ω in the left hand gap of the Wheatstone meter bridge. The unknown resistance R is connected parallel to the wire labelled W and placed in a right hand gap as shown in Figure 3.

- (b) With x = 1.0 m close the switch, K and find the balance point L, then determine the equivalent resistance R_e .
- (c) Repeat the procedure in 3(b) using x=0.8 m, 0.6 m, 0.4 m and 0.2 m, determine the corresponding equivalent resistance R_e in each case.

Questions

- (i) Tabulate your results in (b) and (c) including the values of $\frac{1}{x} (m^{-1})$ and $\frac{1}{R_a} (\Omega^{-1})$.
- (ii) Plot a graph of $\frac{1}{x} (m^{-1})$ against $\frac{1}{R_a} (\Omega^{-1})$.
- (iii) Determine the slope S.
- (iv) Deduce an equation that governs this experiment.
- (v) Compute the value of unknown resistance, R.
- (vi) Determine the specific resistance of a wire, W.

The candidates who scored high marks in this question had adequate knowledge of metre bridge theory. They acquired skills in setting the given apparati to perform the experiment. The data analysis reveals that most of the candidates tabulated the table of results correctly and applied them in plotting the graph of $\frac{1}{x} (m^{-1})$ against $\frac{1}{R_e} (\Omega^{-1})$. They further, deduced an equation governing this experiment to determine slope, unknown resistance

and specific resistance of the given wire. Extract 24.1 provides an example of a correct response from one of the candidates.

3						
(e)						
(1)	X (m)	: L (m)	Re (si)	1/x(m)	/no (si-1)	
	0.8	0.707	6.83	1	1.20	
	0.8	0.714	0.80	1.25	1.25	
		0.727	0.75	1.67	1.33	
	0.4	0.749	0.67	2.5	1.49	
	0.2	0.803	0.49	5	2.04	
ćii)	,	GNAPH				
('āi')	SLOPE Pur Slop	e = 1/1x	(m)) //ne·(\omega^{-1})			
			ne. (sc.)			
	$= 4.54 - 0.63$ $1.92 - 1.12$ $Slop e = 4.8875 fam \Omega m$					
	s. Sla	pe; r=	4 · 88 7	5 Ω m.		
(iu	for the equation of the experimenti- Po = R x Rw ; Po = Effective resistance of the R + Rw Right Hand gap. Pw = 9/ x A P/A = specific resistance of wie W					
	lo.	1A SPECI	101010		ie W	
	Do =	P/A = R x rx	1 ,			
	10	Rtrx				
		15.1.7				

No.							
3(c)	2 1-22						
	(Ded proved hus)						
	$\frac{y}{R} = \frac{R + rx}{Rrx \cdot Rrx \cdot Rr$						
	TR Rrx Rrx.						
	1/2 - 1/						
	$\frac{1}{R} = \frac{1}{R} + \frac{1}{R}$						
	$\frac{1}{rx} = \frac{1}{12} - \frac{1}{12}$						
	$\frac{1}{X} = \frac{(r)}{1} - \frac{r}{R}$						
	$y = m \times - c.$						
	Also (-						
	2/ = 1/2/						
	T 100- L						
,							
	Re = (00-L/ x 2.						
	/ L						
	Re = (100 - L) 2 -						
	1						
	De = 200 - 2L when LB in cm						
	<u></u>						
	Re = 2-21. When L is in welles						
	L						

300.	fum'r					
	the laterapt of 1/x - axis.					
	1/- 1 m/2 cpt, e = - r					
	Buf 1-					
	r = dope = 4.8875/2m					
	1/2-Interept from graph = -4-977 n-1					
	Leng'l-					
	R = -/					
	/ C					
	R = - 4.8875					
	-4.977					
	R = 0.98					
	2 1					
	The value of unknown restatance is					
	aqual to 1.					
(vi)	spectre realstance of given wire W is					
(01)	specific resistance of given wire w is					
	stand in the critical of close					
	Slope = r, specific resistance					
	= 4.8895					
	2 4.9.					
	_					
	00 Specific resistance of use W = 4.01.52 m					

Extract 24.1: A sample of correct responses to Question 3 of Paper 3B

Extract 24.1 shows that the candidate was competent in presenting, analysing and evaluating the data to obtain the correct responses.

In contrast, the candidates who scored low marks in this question failed to describe the mechanism of electric conduction in metals. The responses given by those candidates revealed that they failed to make proper connection of the metre bridge circuit. Consequently, they recorded incorrect values of the required quantities. The wrong data resulted into incorrectly plotted graphs as well as slopes. Another remarkable challenge to most of the candidates was lack of mathematical skills to deduce the equation that governs the experiment. Due to this most of them got incorrect values of unknown resistance and specific resistance of the wire. Extract 24.2 is a sample of an incorrect response to this question.

03. 0) Table of results X /2 Re 1/Re. 0.3 1.25 0.7 \$ 1.333 0.6 1.67 1.00 0.4 2.60 1.5 0.670 0.2 5 3 0.333 0.1 10 6 0.167	
0.6 (.67 (1.00 0.4 9.50 (.5 0.670 0.2 5 3 0.333 0.1 10 6 0.167	
0.4 2.50 1.5 0.670 0.2 5 3 0.333 0.1 10 6 0.167	
0.1 10 6 0.167	
0.1 10 6 0.167	
(10) 13/00 (1) 2 2 12	
(ii) slope (1) ~ 1/2.	
= 10-3	
0 34 - 0.07	
2 = 9.09 m-1 /n-1	
· ·	
W from	. ,
(m) from	
2 : 1/2	
X /00-X X /00-X	
12 (100) - XP.	
10017 - Dx = XB.	
look - Rx = XR;	
1 2/12 = 22	
1/2 - 1 (/Re)	
1/2 - 1 (/Re) - (8)	
y = 18 x + d	
3. D from of high	-
from the graph	
the greet - fr.	
tou the equation of the graph	
= 2 (Po) - (Po)	
(Re Intopol Intopol - /p.	
thes	
\/ = \ P-1	
(P.	
P = 10	

Extract 24.1: A sample of incorrect responses to Question 3 of Paper 3B.

Extract 24.2 indicates how the candidate analysed the tested concepts by producing incorrect responses due to the use of wrong data. The candidate prepared the table of results without indicating the units of all variables. In addition, he/she derived an equation governing the experiment as

$$\frac{1}{x} = s \left(\frac{1}{R_e}\right) - \left(\frac{s}{R}\right) \text{ instead of } \frac{1}{x} = \frac{\rho}{A} \left(\frac{1}{R_e}\right) - \left(\frac{\rho}{AR}\right) \text{ and ended up with}$$

incorrect slope, resistance and specific resistance of the wire.

4.3.1.3 Physics 3C

In this question the candidates were given a series that a car manufacturing industry used electroplating technique to paint car parts whereby a selected part of the body of a car becomes one electrode and the second electrode was a selected metal. In order to paint these parts, the resistance of the electrodes must be known before introducing a current through them. They were provided with an aluminium foil (30 cm \times 2 cm), 1 Ω standard resistor, resistance box, dry cell, switch and two crocodile clips. Then, they were required to proceed as follows:

(a) Connect the meter bridge circuit in a usual manner with the aluminium foil in parallel with the given 1 Ω standard resistor. Use

- crocodile clips to fix the foil in its position. The resistance box should be connected in a right hand gap of the meter bridge.
- (b) With the resistance box set at $R = 5 \Omega$, close the switch, K and find the balancing length, L on the bridge wire on the side where aluminium foil is fixed.
- (c) Repeat the procedure in 3(b) for the values of $R = 4 \Omega$, 3Ω , 2Ω and 1Ω .

Questions

- (i) Draw a circuit diagram of your experimental set up.
- (ii) Tabulate your results including the values of $\frac{1}{L}$.
- (iii) Derive the equation governing this experiment.
- (iv) Plot a graph of $\frac{1}{L}(m^{-1})$ against R (Ω) .
- (v) Determine the gradient of the graph in (iv).
- (vi) Estimate the resistance of aluminium sheet of the surface area of 30 m² to be used as an electrode.

Few candidates who scored high marks in this question demonstrated their competence in performing this experiment. They connected the circuit properly which enabled them to obtain the correct data. In addition, they had enough skills in drawing a circuit diagram of the experimental set up as well as the graph of $\frac{1}{L} (m^{-1})$ against R (Ω) . Moreover, they demonstrated good computational skills to establish relevant mathematical equations in analysing the concept by computing the slope of the graph and estimating the resistance of aluminium sheet. Extract 25.1 is a sample of the candidates' correct response.

200	Re = Effective resistance
3(4)	
	Re Rex1
	Where Ry = Resistance of abandonium Fil.
	More 10 = peristing of apparation por
	Re
	R 700-L
	(100-L) Re = RL
	100Re-ReL = RL
	Rel HRL = Tooke
	L(PatR) = Toole
-	Re+R= 100 Re
	K = Re+R 700Re
	Tooke
-	1 = P
	1 100Re + 100
	From Re = Re
	Then 1+Re
	/ R
	100 (RE) + 100
3(11)	1, 0
SCIIIS	100RT + 100
	1+27
	K - (1+PF) R + 100
1	100Rg / 100
	. The equation governing to experiment
	15 / - (1+R) R + 100
-60	
3(V)	From
	(madient (m) = DK
	Δμ.
	m= 0.4-0.06
 	3.5-1.5
	M = 0.04
i	
	W= 0.05 W5V1
	The gradient of the graph is 0.00m2m2

Extract 25.1: A sample of correct responses to question 3 of Paper 3C

Extract 25.1 shows that the candidate was competent in presenting, analysing and evaluating the data, which enabled him/her to get the correct answers of the tested concepts.

However, the candidates who scored low marks had insufficient knowledge of meter bridge theory. Most of them failed to interpret the given instructions in drawing the circuit diagram of experimental set up. Failure to design a proper circuit led them to obtain incorrect data. Further analysis reveals that, the candidates faced challenge in selecting a suitable scale in drawing graphs and points on the best line to determine the slope. Another significant shortcoming was lack of mathematical skills for applying meter bridge theory in deducing an equation governing the experiment. Consequently, they obtained incorrect resistance of aluminium sheet. Extract 25.2 presents a candidate's incorrect responses to this question.

Extract 25.2: A sample of incorrect responses to Question 3 of Paper 3C

In Extract 25.2, the candidate presented irrelevant responses due to use of incorrect data. The obtained data resulted in incorrect graph with a negative slope.

5.0 ANALYSIS OF CANDIDATES' PERFORMANCE IN EACH TOPIC

The Physics Paper 1 had ten (10) questions extracted from five (5) topics. The topics include *Mechanics; Heat, Environmental Physics, Current Electricity* and *Electronics*. The Physics Paper 2 comprised six (6) questions derived from six (6) topics, which were *Fluid Dynamics, Vibrations and Waves, Properties of Matter, Electrostatics, Electromagnetism* and *Atomic Physics*. Physics Paper 3 had three equivalent actual practical papers (131/3A Physics 3A, 131/3B Physics 3B and 131/3C Physics 3C) each consisting of three questions. The questions were set from the topics of *Mechanics, Heat* and *Current Electricity*.

The data analysis reveals that the candidates had good performance in seven (7) out of eleven (11) topics that were tested in both Physics Paper 1 and 2. Those topics were *Properties of Matter* (82.1%), *Atomic Physics* (79.9%), *Electromagnetism* (74.4%), *Vibrations and Waves* (74.3%), *Environmental Physics* (74.2%), *Mechanics* (71.7%) and *Electronics* (66.3%). The candidates had average performance in four (4) topics of *Electrostatics* (58.5%), *Heat* (57.75%), *Current Electricity* (53.9%) and *Fluid Dynamics* (47.5%). Those candidates demonstrated their competence in the subject matter as they correctly analysed the examined concepts. However, some of them had insufficient knowledge and lacked computational skills for applying the correct formulae to perform calculations.

In Physics Paper 3, three topics of *Mechanics, Heat* and *Current Electricity* were averagely performed. The reasons for average performance include poor mastery of the subject matter especially in the examined concepts, misconceptions when presenting the ideas, lack of analytical skills, failure to describe and analyse the concepts to draw conclusion, lack of drawing skills and failure to follow instructions when assembling apparati in performing experiments. The summary of the candidates' performance in each topic is shown in Appendices I and II.

6.0 CONCLUSION AND RECOMMENDATIONS

6.1 Conclusion

Generally, the candidates' performance in Physics examination paper was good. Analytically, it was observed that adequate knowledge of the content and good mastery of the subject matter were among the major reasons for good performance. In this perspective, many candidates provided relevant responses which met the requirements of the questions.

Further analysis revealed that, mastery of computational skills was another reason that contributed to good performance among most of the candidates, especially in questions that involved the use of formulae and procedures to obtain the required answer. However, some of the candidates lacked mathematical skills. Consequently, they scored low marks. The case in point is question 1 of Physics Paper 2, which was averagely performed but more than a half (52.5%) of the candidates scored low marks (0-6.5). These candidates lacked numerical skills to interpret and analyse the examined concepts.

In addition, most of the candidates were consistent, neat and precise in providing their responses with very few grammatical errors due to good mastery of the English language. For instance, in question 7 of Physics Paper 1, which required a brief explanation of the tested concepts, 74.2 per cent of the candidates provided detailed responses which enabled them to score the pass mark or above.

Another factor that led to good performance was the skills to interpret diagrams. Most of the candidates proved their competence in studying the given figures by applying the relevant formulae and procedure to analyse different concepts. For example, in question 6 of Physics Paper 2, more than three quarters (79.9%) of the candidates scored from 7 to 20 marks.

However, although a significant number of candidates had good performance, some of the candidates faced difficulties in attempting the questions. They provided inappropriate responses due to misconceptions of ideas. Lack of numerical skills affected most candidates in this group. They failed to think critically and to establish and apply proper formula and procedure when performing calculations. It was also observed that some candidates attempted few parts of the questions incorrectly, especially the structured questions, and skipped other parts.

Moreover, poor mastery of drawing skills contributed to candidates' average performance, especially in Physics Paper 3 of which, questions 1, 2 and 3 required the candidates to plot graphs. Most of them ignored the important aspects to consider when drawing graphs. They also faced difficulties in providing the title of the graphs, their units, the axes with

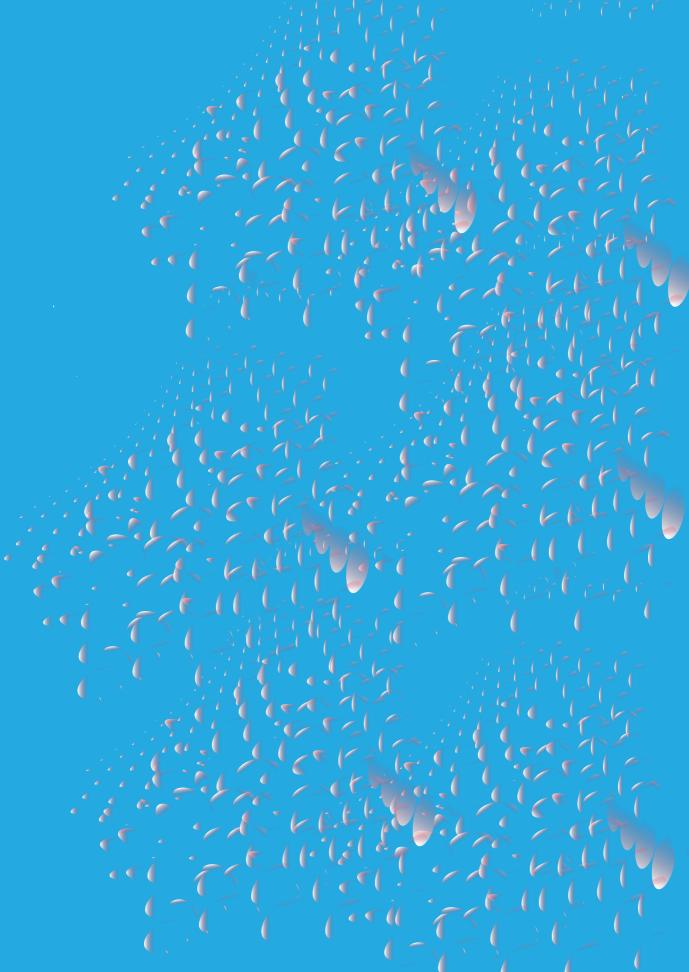
their respective S.I units, the scales used, the transfer of points, the best line or curve and the slope indication which could help them score high marks. Furthermore, they failed to prepare the table of results, interpret the plotted graph and analyse the data to make conclusion.

6.2 Recommendations

For future improvement of the candidates' performance in Physics examination, teachers are advised to:

- (a) guide students in groups to discuss and demonstrate the application of Bernoulli's principle in *pitot-static tube*, *jets and nozzles*, *aerofoils* and *venture meter*.
- (b) guide students to describe various concepts of *Electrostatics*, particularly the force between two charged bodies, electric field of a point charge and electric field intensity as well as to analyse the motion of a charged particle in a uniform electric field.
- (c) assist students in groups to examine the mechanism of electric conduction in metals, and to deduce and apply Kirchhoff's laws for electrical networks.
- (d) help students to deduce the Newton's law of cooling and investigate the factors that affect the rate of cooling.
- (e) demonstrate to students the proper way of preparing the table of results and technique used in plotting graphs.
- (f) apply participatory methods to guide students to conduct experiments as stipulated in Physics Syllabus and instruct them the proper ways of writing reports.
- (g) help students acquire drawing skills by providing them with more assignments during practical sessions.
- (h) encourage students to be critical and analytical when attempting the questions. This will help them to be neat and precise in evaluating the tested concepts.
- (i) promote students' attitude of reading different textbooks and reference books in order to promote their knowledge of different concepts, theories and laws of Physics.

APPENDIX I


The Candidates' Performance in Each Topic in Physics 1 & 2 in ACSEE 2022

		2022 EXAMINATION PAPER			
S/n.	Торіс	Number of Questions	Percentage of Candidates who Scored an Average of 35 Percentage or Above	Remarks	
1.	Properties of Matter	1	82.10	Good	
2.	Atomic Physics	1	79.90	Good	
3.	Electromagnetism	1	74.40	Good	
4.	Vibrations and Waves	1	74.30	Good	
5.	Environmental Physics	1	74.20	Good	
6.	Mechanics	4	71.70	Good	
7.	Electronics	2	66.3	Good	
8.	Electrostatics	1	58.50	Average	
9.	Heat	2	57.75	Average	
10.	Current Electricity	1	53.9	Average	
11.	Fluid Dynamics	1	47.50	Average	

The Candidates' Performance in Each Topic in Actual Practical Papers 3A, 3B and 3C in ACSEE 2022

APPENDIX 1I

S/n.	Topic	Number of Questions	Percentage of Candidates who Scored an Average of 35 Percentage or Above	Remarks
1.	Heat	1	54.30	Average
2.	Current Electricity	1	38.20	Average
3.	Mechanics	1	37.40	Average

