

THE UNITED REPUBLIC OF TANZANIA MINISTRY OF EDUCATION, SCIENCE AND TECHNOLOGY NATIONAL EXAMINATIONS COUNCIL OF TANZANIA

CANDIDATES' ITEM RESPONSE ANALYSIS' REPORT ON THE ADVANCED CERTIFICATE OF SECONDARY EDUCATION EXAMINATION (ACSEE), 2022

CHEMISTRY

THE UNITED REPUBLIC OF TANZANIA

MINISTRY OF EDUCATION, SCIENCE AND TECHNOLOGY

CANDIDATES' ITEM RESPONSE ANALYSIS REPORT ON THE ADVANCED CERTIFICATE OF SECONDARY EDUCATION EXAMINATION (ACSEE), 2022

132 CHEMISTRY

The National Examinations Council of Tanzania P. O. Box 2624 Dar es Salaam-Tanzania.
© The National Examinations Council of Tanzania, 2022
All rights reserved.

Published by:

TABLE OF CONTENTS

1.0 INTRODUCTION
2.0 ANALYSIS OF CANDIDATES' PERFORMANCE ON EACH QUESTION
2.1 132/1-CHEMISTRY 1
2.1.1 Question 1: The Atom
2.1.2 Question 2: Chemical Equilibrium
2.1.3 Question 3: Relative Molecular Masses in Solution
2.1.4 Question 4: Chemical Bonding20
2.1.5 Question 5: Aliphatic Hydrocarbons24
2.1.6 Question 6: Energetics
2.1.7 Question 7: Environmental Chemistry34
2.1.8 Question 8: Gases
2.1.9 Question 9: Selected Compounds of Metals
2.1.10 Question 10: Aliphatic Hydrocarbons, Aromatic Hydrocarbons and
Halogen Derivatives of Hydrocarbons
2.2 132/2-CHEMISTRY 254
2.2.1 Question 1: Two Component Liquid Systems54
2.2.2 Question 2: Solubility/Solubility Product and Ionic Product/Acids, Bases and
Salts 62
2.2.3 Question 3: Carboxylic Acids and Derivatives/Amines70
2.2.4 Qustion 4: Electrochemistry
2.2.5 Question 5: Periodic Classification / Extraction of Metal85
2.2.6 Question 6: Polymer / Transition Elements
2.3 132/3-CHEMISTRY 3
2.3.1 Question 1: Volumetric Analysis
2.3.2 Question 2: Physical Chemistry Analysis
2.3.3 Question 3: Qualitative Analysis
3.0 ANALYSIS OF THE CANDIDATES' PERFORMANCE ON EACH TOPIC150
4.0 CONCLUSIONS
5.0 RECOMMENDATIONS
Appendix A: The summary of the Performance of the Candidates Topic-wise in Theory
Papers
Appendix B: The Summary of the Performance of the Candidates Topic-wise in Practical Paper

FOREWORD

This report is based on the Advanced Certificate of Secondary Education Examination (ACSEE) Chemistry paper, which was done in May 2022. The report analyses the responses given by the candidates to each question and the topics in the ACSEE 2022 Chemistry paper. This report also highlights factors that influenced the performance of candidates in Chemistry examination.

The general performance of the candidates who sat for the Chemistry examination in 2022 was good; 97.48 per cent of the candidates passed. This report is intended to give feedback to educational stakeholders such as Chemistry teachers, students, heads of secondary schools as well as educational administrators. The analysis presented in this report will reveal to educational stakeholders the responses that were given by the candidates to help them act appropriately to improve teaching and learning among prospective candidates.

The report has analysed in detail factors that hindered the candidates from responding to the asked questions as required. Such factors include insufficient knowledge of writing chemical equations, lack/shortage of appropriate skills in performing chemical calculations as well as failure to follow the requirements of the questions. The report has also identified factors, which enabled the candidates to perform well in the questions. Such factors include having appropriate competencies in the subject matter and the ability to understand the requirements of questions. The analysis of each question's responses has been supported with extracts from the candidates'scripts.

The feedback and the recommendations given in this report will help to improve performance of prospective candidates in the future examinations administered by the Council.

Lastly, the National Examinations Council of Tanzania thanks the examiners, chemistry examination officers and all other stakeholders who participated in the preparation of this report.

Athumani S. Amasi

EXECUTIVE SECRETARY

1.0 INTRODUCTION

This report analyses the responses given by the candidates and their performance in the Chemistry Advanced Certificate of Secondary Education Examination (ACSEE) 2022. The examination tested the candidates in three papers, namely 132/1 Chemistry 1, 132/2 Chemistry 2 and 132/3 Chemistry 3. The latter paper was examined in three equivalent alternative papers (132/3A Chemistry 3A, 132/3B Chemistry 3B and 132/3C Chemistry 3C). The candidates were required to sit for only one alternative paper.

Chemistry 1 consisted of two sections, A and B, with a total of ten (10) questions. Section A comprised seven (7) short answer questions, which weighed 10 marks each. Thus, the total marks in this section were 70. Section B comprised three structured essay questions which weighed 15 marks each. The total marks in this section were 30. The candidates were required to answer all questions in Section A and two questions from Section B. Chemistry 2 consisted of six (6) questions. Each question weighed 20 marks. The candidates were required to answer a total of five (5) questions. Chemistry 3 consisted of three practical questions. The candidates were required to answer all three questions.

In this report, the performance on a particular question is categorized based on the percentage of the marks that the candidate scored out of the allocated marks. Thus, the performance is good if the candidate score from 60 to 100 per cent, average if they score from 35 to 59 per cent and weak if they score from 0 to 34 per cent. The weak, average and good levels of performance are denoted by red, yellow and green colors, respectively.

A total of 34,747 candidates sat for the Chemistry examination in the ACSEE 2022. Among them, 33,731 (97,48%) of the candidates passed the examination (They scored 35 marks or above). This indicates that the overall performance was good. In 2021, out of the 34,517 candidates who sat for the Chemistry examination in the ACSEE, 32,541 (94.81%) passed. Thus, the candidates' performance in 2022 has increased by 2.67 per cent.

This report consists of five sections. The first section is the *Introduction*, which highlights the structure and rubric of Chemistry papers. It also introduces the classification/criteria for candidates performance in the ACSEE 2022. It further highlights and compare the overall performance of candidates in 2021/2022 Chemistry examinations.

The second part is *The Analysis of the Candidates Performance on Each Question*. In this part, the candidates responses to each question are analysed. The analysis given is supported with statistical data and samples of blind copies of good and weak answers from the candidates. In this part of the report, the reader will find what the candidates could or could not do with respect to the question demand. It further analyses the common mistakes or misconceptions that were observed in marking the candidates' scripts and suggests possible solutions.

The third part of the report is *The Analysis of the Candidates' Performance on Each Topic*. This part analyses the candidates' performance on each topic included in the Chemistry ACSEE, 2022. The part also compares the performance on the topics of examination in 2022 with those of examination in 2021.

The fourth and fifth parts of this report cover the *Conclusions* and *Recommendations*. Overall observations on the strengths and weaknesses of the candidates' responses to the examination questions are given in the conclusion part. The appropriate measures to address the observed issues from the candidates' responses to the examination questions have been described in the recommendation part.

2.0 ANALYSIS OF CANDIDATES' PERFORMANCE ON EACH QUESTION

This section analyses the candidates' responses to the question in Chemistry papers 1, 2 and 3. The analysis begins with the requirements of a particular question or the question as it appeared in the examination paper. This is followed by data analysis and a detailed description of the responses given supported with appropriate sample extracts.

2.1 132/1-CHEMISTRY 1

The paper consisted of ten (10) questions. The analysis of each question in this paper is as follows:

2.1.1 Question 1: The Atom

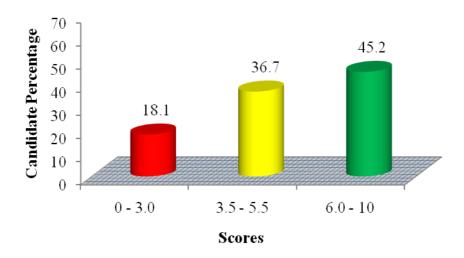
The question asked as follows:

(a) Energy of an electron in hydrogen atom is given by the expression

$$E_n = \frac{-1.312 \times 10^6}{n^2} J / mol.$$

- (i) Calculate the amount of energy required to promote an electron from the first energy level to the third energy level.
- (ii) Why an electron in its ground state possesses energy less than zero?
- (b) (i) The elements X, Y and Z have the following electronic configurations:

$$X: 1s^2 2s^2 2p^6 3s^2 3p^6$$


$$Y: 1s^2 2s^2 2p^6 3s^2$$

$$Z: 1s^2 2s^2 2p^6 3s^2 3p^6 4s^1$$

The first ionization energies of the three elements (not in the same order) are 420, 740, and 1500 kJ/mol and the atomic radii are 1.60, 0.94 and 1.97A°. Identify the three elements and match the appropriate ionization energy and atomic radius to each configuration.

- (ii) Excited sodium atoms may emit radiation with the frequency of 5.09×10^{14} /s. What is the energy of the photons associated with this radiation?
- (c) Briefly, differentiate the following terms:
 - (i) Line from continuous spectrum.
 - (ii) Absorption from emission spectrum.

This question was attempted by all 34,743 candidates. Among them, 6,283 (18.1%) scored from 0-3 marks; 12,739 (36.7%) scored from 3.5-5.5 marks and 15,721 (45.2%) candidates scored from 6-10 marks. The candidates who scored a pass mark or above (\geq 35 marks) were 28,460 (81.9%). Thus, their overall performance on this question was good. Figure 1 summarizes the candidates' performance on this question.

Figure 1: Candidates' Performance on Question 1

The candidates who scored high marks on this question were conversant with the concepts of quantum theory. Hence, they correctly performed mathematical manipulations in parts (a) and (b) of the question. They also gave explanation as to why an electron in its ground state possesses energy less than zero, correctly. Furthermore, they correctly applied the rules governing the filling of electrons in atomic orbital. Thus, they managed to relate the values of ionization energy with their appropriate electronic configurations which were designated letters X, Y and Z. In part (c), the candidates with good scores differentiated appropriately pairs of the given terms. This connotes a good understanding of the general concepts pertaining to atomic spectra. Extract 1.1 is a sample of the good responses to part 1(a) of the question.

Agy	En = -1.312 x 106 J/mol.
	n e
1	E1 1:312 ×106 5/mal
	(1)2
	E1 = -1.312 × 166 J/mol.
	F2 = - 1.312 X106 J/mol.
	(3)2
	E2 = -1.312 x106 J/mol
	9
	F2 = -1.458 × 105 J/mol.

ET= E2- E1
FT = -1.458 X105 J/mol - (-1.31 RX166) J/mol
ET = -1.458×105 Jlmol + 1.312×166
 ET = 1.166 x 106 J/mol.
 The amount of energy required to promote
an electron from the first energy level to the
third energy level = 1.166×166 J/mol.

Extract 1.1: A sample of the good responses to question 1(a)

In Extract 1.1, the candidate correctly calculated the energy (ΔH) required to promote an electron in hydrogen atom.

1	a) ii) Because	electron instractor allow it to stay.	of to the nucleus
	as a result	the energy becomes	loss than son
		ore energy becomes	(3) (10)
	6)1)	Solution	
	Quer X:	15225226352366	
	<u> </u>	Solution 15225226352366 15225226352266	146.1
	2	18 - 58 - 5 bo 38 - 3 bo	45'
	Guen ioniza	tion energies	
	920,	140 and 1500 kMm	
	The elements	74 and 1974	
	X:	is Argon (Ac)	
		Ic Magnecium (Ma)	
	2	is Argon (Ar) Is Magnesium (Mg) is Potassium (K)	
	dement X = Ar	Constantion energy	Atomic radius
	X = Ar	1500 KJ/mol	0.94 Å
	Y = Mg	740 tJ/mol 420	1.6 Å
	12 = 12	420	1.97 8
		() - 	
	b) ii) freq	Solution	19%
	(i) free	wed energy of plants and the plants are he plants and the plants and the plants are	no to
	Recall Do	nkt energy et p	118-104)
	Taccast, No.	#=b£	
	cot	ere h= blanth and	tant
		h = 6.65x10	16
	Ŧ	$= 6.63 \times 10^{-34} \text{Ts} \times 5$ $= 3.27467 \times 10^{-3}$	-09×1015/s
		I= 3.27467 X10	-19J
	Energy e	+ photon associated	is 3.37467x10 5

1 c) 1 line spectrum	Continuous spoctram
I the type of spectrum	- Is the spectrum that
that is characterised by	Contains radiations of
distinct descrete lines	all wavelength overlapping
	from each other
overlapping	
T J	
Absorption spectrum	emusion spectrum
Is the spectrum that	-15 the spectrum characterised
is characterised by dark	by dight lines formed
lines on bright background	
when atom absorbs	when atom abor emits
energy and get	radiations
excited	

Extract 1.2: A sample of the good responses to question 1, parts (a) (ii), (b) and (c)

In Extract 1.2, the candidate used the electronic configurations and atomic radii to identify the required elements. He/she also correctly calculated the energy of photons and differentiated the given terms.

In contrast, 6283 (18.1%) of the candidates failed to answer this question correctly. Hence, they scored below the pass mark. (≤3.0 out of 10 marks). Candidates with weak scores mathematically failed to manipulate the required formulae in parts (a) and (b) of the question. This was caused by their competencies in atomic theory concepts. In part (b) (i), the candidates failed to combine the concepts of electronic configurations and periodic trends to identify the elements given in the question. This was found to be caused by their poor understanding of the concepts of electronic configurations. Moreover, they lacked adequate knowledge of the hydrogen spectrum. Hence, they did not understand why an electron in its ground state possessed energy less than zero. In part (c) of the question, the candidates showed insufficient knowledge of the general concepts of atomic spectrum. They gave wrong differences between the given terms. A sample of the poor answers to this question is shown in Extract 1.3.

101	Ŋ =
	$N_2 = 3$
	$h = 6.63 \times 10^{-34}$
	C= 3.0 x 108
	PH = 1.097 x 107
	Inergy = ?
	<u>rolu</u>
	$f = 6.63 \times 10^{-34} \times 3.0 \times 10^{8} \times 1.097 \times 10^{7} \left(\frac{1}{1^{3}} - \frac{1}{3^{2}} \right)$
	(1,3 3,4)
	-14
	f = 2.182 x 10 8
,	9
	-18 , -1
	#= 1.939 x 10 Jmol -1
16 j.	The smaller the atom, the high the ionization energy due to higher
	elactionic attractive pull.
	Ionization energy to the energy required to remove the elections in the
	autemost stall of or atom.
	enterment stall a on atom. Hernert Y: 12 22 2p6 35 will have ionization energy a 1-974 due to i
	high attractive pull
	Hement x: 152 252 296 352 396 will have ionisation energy of 740 KJmol
	since I has large atomic partil compand to Y
	xtract 13. A sample of the weak responses to question 1(a) (i) and

Extract 1.3: A sample of the weak responses to question 1(a) (i) and 1(b) (i)

ll,	Dah gwen
	Frequency = $5.09 \times 10^{14} / s$
	Frequency = 5.09 x 104/s Energy = ?
	00
	From the pormula
	E= hF/
	, 0
	h = 6.63 x w ⁻³⁴ Js c= 3.0 x w ⁸ m/s
	C= 3.0 X W8 m/s
	E = 6.63 x 10-34 X 5.09 x 1014/s
	3.0 X W8 m/s
	Energy of photon = 1.12489 XW-27 KJ/mol
	Theregrore energy of photon associated with radiation is 1-12489 X W-27 KT/mol
	is 1-12489 X10-24 KJ/mol

Extract 1.4: A sample of the weak responses to question 1(b) (ii)

()	Is the point where no soprrate lines are observed a
	the hydrogen spectrum or line of spectrum.
	1 It the propert where an electron absorbs energy from the
	
- 1	sur and is excited to higher energy lovels.

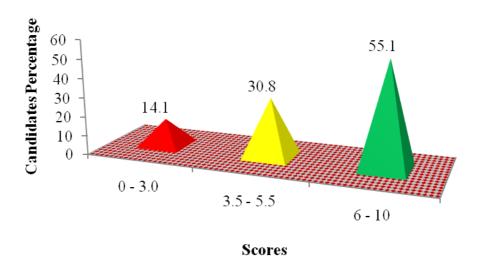
Extract 1.5: A sample of the weak responses in question 1(c)

In Extract 1.2, the candidate used Rydberg's equation in calculating energy but failed to include Avogadro's constant. As a result, he/she obtained the incorrect value of energy in part (a) (i). In part (b) (i), the candidate gave explanations about ionization energy. Though the explanations were correct, they were contrary to the requirement of the question. Yet, in Extract 1.4, another candidate applied the wrong formula to calculate the value of energy of the photons for the given radiation. Although the candidate knew all the components of the formula, he/she failed to arrange them as required.

Hence, he/she got the value 1.12489×10^{-27} kJ/mol instead of 3.3746×10^{-19} J/mol or 3.3746×10^{-22} kJ/mol. However, the candidates were supposed to use the formula: *Energy of photon* (*E*) = *hf*, *where h* = *Planck's constant* and *f*= *frequency of radiation*. In Extract 1.5, the candidate responded by defining line spectrum in part 1(c) (i) and excitation state in part 1(c) (ii) instead of differentiating them.

2.1.2 Question 2: Chemical Equilibrium

The question asked as follows:


(a) Consider the following reaction that takes place in a fixed volume of a container:

 $H_2(g) + Br_2(g) \rightarrow 2HBr(g)$ $\Delta H^\circ = -104$ kJ/mol. How each of the changes affect the quantity of the reactants, products and equilibrium constant (K_C) ? Answer by writing "Increase", "Decrease", or "No change" appropriately, in a tabular form:

Change	H_2	Br_2	HBr	K _C Value
Addition of some H ₂				
Removal of some HBr				
Raise in temperature				
Increase in pressure				

(b) When the reaction $2NO(g) + Cl_2(g) \rightarrow 2NOCl(g)$ was studied at $25^{\circ}C$, the partial pressures at equilibrium were found to be 1.2 atm for NOCl, 5.0×10^{-2} atm for NO and 0.3 atm for Cl. What would be the K_P value for this reaction at $25^{\circ}C$?

This question was attempted by 34,742 candidates. Out of whom, 4904 (14.1%), 10,680 (30.7%) and 19,158 (55.1%) per cent scored marks from 0 - 3, 3.5 - 5.5 and 6 - 10, respectively. A summary of candidates' performance on this question is shown in Figure 2.

Figure 2: Candidates' Performance on Question 2

The general performance on this question was good since 29,838 (85.8%) of the candidates scored 3.5 marks or above. Those who performed well understood the concept of Le-Chatelier's principle and equilibrium constant. Thus, they appropriately predicted all the expected outcomes when changes were introduced to the equilibrium system given in part 2 (a). In part (b), they correctly calculated the value of K_p for the given reaction. Extract 2.1 is a sample of the correct responses to this question.

2-	9 given 42 (9) +	Br2 (9)	→ 2HBr (9	1 AH = - 10	4 KVmol
	change	H2	Brz	H.Br	kc
	Addition of some Hz.	Increase	docrease	Inoreasa	No chang
	Romoval of HBr	docrease	decrease	increase	No change
	haise in temporature	Increase	ncrease	decrease	decrease
	Increase in pressure	No dange	No change	No change	No chang
٦.		t Cl2 (9))	
		= 1.2 atr			
		= 5.0x 16			
					\neg

 from; Equillinium exprossion.
kρ = (p'Noc)2.
(p' No)2 (p'dz)
Kp = (1-2ahm)2
$\left(5 \cdot \text{ox} / \text{o}^{-2} \text{atm}\right)^2 \left(0 - 3 \text{atm}\right)$
kp = 1920/am-
- The value of kp is 1920 / am.

Extract 2.1: A sample of the correct responses to question 2

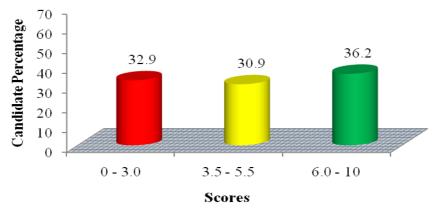
Extract 2.1 shows responses of a candidate who filled the table with suitable changes basing on Le Chatelier's principle. Moreover, the candidate calculated correctly the numerical value of K_p .

On the other hand, some of the candidates (14.1%), scored low marks in this question. Analysis done on the responses given in their scripts indicated that they predicted what was going to happen to the species that were involved in the given chemical equilibrium wrongly. In part (b) of the question, some of them used wrong formulae while others made incorrect substitution of data in the formula. These observations were caused by insufficient knowledge and skills on the factors affecting a chemical system at equilibrium and lack of competencies on *Equilibrium Constant*. Extract 2.2 shows a sample of incorrect responses from one of the candidates in this question.

2.	a Soln				
	H200 + Br	$(g) \longrightarrow 2$	HBr(g)	111°=-	lo4 KUmel
				1 //0	
	Change	H2.	Br.	HBr	Kvalue
	Addition of someth	Increase	No change	Increase	Increase
	Removal of some HBr				Decrease
1 1	Rave in temp	No change			No. of the second secon
	Increase inore	Increase			

2. (b) Soln.
2 NO(g) + Clo(g) -> 2 NO(L(g)
2 Noches) -> 2 Nocos + ches)
at $f=0$ 1 O O O at equile $O(1-x)$ O O
trequiti 2(1-4)
Kp = (PNOW) (Pching)
(PNOCLC9)
$D_{7} = 2 - 2x + 2x + x$ $D_{7} = 2 + x$
$K_{p} = \left(\frac{n}{n_{1}} P_{1}\right)^{2} \left(\frac{n}{n_{1}} P_{1}\right)$
$\left(\begin{array}{c} n \\ n\overline{l} \end{array}\right)^{3}$
(nt)
Hp - 2-00 2+0 At equilibrium
JAX //1 EYGILIBRIUM
Q (b) For
Noch 2-2x=112
$2 \times = 2 - 1 \cdot 2$
2 2 = 0.8
2 3
d = 0·4
$\Omega_1 = 2 + \infty$
N7 - 21014
$N_{7} = 2 \cdot 0.4$ $N_{7} = 2 \cdot A$ $K \rho = \left(0.8 \times 5.0 \times 10^{2}\right)^{2} \left(0.4 \times 0.3\right)$
(1.2 x 1.2)2
(3 14
$K \rho = (1.6 \times 10^{-3}) (0.05)$
2.0736
$4p = 3.85 \times 10^{-5} \text{ a.m.}$
Extract 2.2: A sample of the incorrect responses to question 2

Extract 2.2: A sample of the incorrect responses to question 2


In Extract 2.2, the candidate filled the table with the wrong changes of the reacting species and products in part (a). The candidate wrongly manipulated the formula for equilibrium constant in terms of partial pressure and made the wrong substitution of data in part (b).

2.1.3 Question 3: Relative Molecular Masses in Solution

The question asked as follows:

- (a) If the vapour pressure of water at 20 °C is 17.5 mm Hg and lowering of vapour pressure of a sugar solution is 0.061 mm Hg, calculate:
 - (i) The relative lowering of vapour pressure.
 - (ii) The vapour pressure of the solution.
 - (iii) The mole fraction of sugar and water.
- (b) Ethanoic acid had a freezing point of 16.63 °C. When 2.5 g of an organic solute was added to 40 g of the acid, the freezing point was lowered to 14.48 °C. Calculate the relative molecular mass of the solute (Given K_f for ethanoic acid = 3.9 °C/m).
- (c) An aqueous solution freezes at 272.07 K while pure water freezes at 273 K. Calculate the molality and boiling point of this solution (Given K_f for water = 1.86 K/m, K_b = 0.512 K/m).

The question was attempted by 34,741 candidates. Out of whom, 29,838 (85.8%) performed well as they scored a pass mark or above (\geq 3.5 marks). Thus, their overall performance on this question was good as shown in Figure 3.

Figure 3: Candidates' Performance on Question 3

The candidates who performed well on this question were conversant with the concepts of colligative properties as they apply to different solutions. Hence, they correctly calculated the vapor pressures and mole fraction in part (a) of the question. They also correctly applied the laws governing colligative properties to answer parts (b) and (c). Extract 3.1 is illustrative.

3.	(a) 5dg
	(Siven)-
	Vapour pressure of water, Pov = 17.5mmHz.
	(i) from -
	Relative lowering of vapour pressure = BP
	P'sv
	= 0.061 mmHz.
	17.5 mmHg
	= 3.485714286X10-3
	Relative lowering of vegour pressure is 3.48591 4286 ×10-3.
	(li) from:-
	DP = Por - Psola
	Retried: - Psoln.
	then;-
	Public = Pu - AP
	=(17.5-0.061)mmHz
	Proto = 17. 439 mm ttg.
	:- Vapour pressure of solution is 17.439 mmHg.
	(Tii) from! -
	101) from: - Note - Xou (mole of redute Congor). 100 / 000
	19°5V
	Now;-
	$\chi_{ru} = 0.061$ mmHz
	17-5 mmttg.
	Xsu = 3.48571428x10-3
	Then:-
	$X_{ov} + X_{sv} = 1$.
	Xov (water) = 1-Xvy (sugar).
	= 1- (8.48571428×10-3)

3.	(a) (iii) Xx= 0. 996514285.
1700	2. Male fraction of rugar is 3.48571 4286×10-3
	mole greeting of water 17 0.996514285
	(b) Solo.
	(nven;-
	Freezing point of Ethonore acid, Tor = 16.63°C
	Freezing point of solution, Trob= 14, 48°C.
	Mass of solute, Mry = 2.5g.
	Mass of acid (solvent), May = 40g/ = 0.04kg
	Recall:
	AT4=kem.
	but
	DTe = Tov - Trolo
	= (16.63-14.48)C
	ΔÎ = 2.15°C
11.0	ky = 3.9°c/m
	thon! -
	m= ote/
102	/kg.
	= 2,15°C
114.00	3.9°C/m
	mdality, n = 0.55 28205 m
	then:-
	molelity - men number of moler of volute (now)
	man by solvent in (kg) Mrs.
	Now = Max x m.
	= 0.55/28205/ molej/ x 0.04kg
	1/49
	Non = 0.022051282 moles.

3	(p) 2000
	ner = mer.
	Msu.
	Man = mont
	nu.
	= 2.54/
	= 2.5g/ 0.022051282 moles. My = 113.372093 gmoles = 113.37 glm+1
	May = 113. 372093 gmol-1 = 113.37glm-1
	Relative molecular most of solution is 113.37g/mol.
	(c) Seln.
	Given:-
	Freezing point of in lution, Tools = 272.07K,
	Freezing point of pure mater, Tov = 273 K.
	Ky = 0.512 K/m .
	kg = 1.86 K/m
	Recali
18	Ma=kx m
	$m = DT_{k_{\pm}}$
	/kg.
	but :- Mg= Tru - Tsolo
	= (273-272.07)K
	STR = 0.93K
	m= 0.93k/
	1.86 k/m.
	Molality, m = 0.5m.
	- Molelity = 0.5 moles /kg.
	Recall; -
	STL=KLM.
	= 0.312 k/m x 0.5m
	STb = 0.256K
	But:-
3.	(c) ATh = Trop - Tyv.
	Tou (water) = 373 K.
	Regume di - Toola
	Took = DIL HILV
	=(0.256+373)K
	Tsoln = 373.256 K.
	Boiting point of the polution is 373.256K
	act 3.1: A sample of the correct responses to question 3

Extract 3.1: A sample of the correct responses to question 3

Extract 3.1 shows that the candidate correctly answered all parts of the question. However, the candidate did not include "mmHg" as a unit of pressure in his/her answer in 1(a) (i).

Conversely, other candidates did not perform well on this question. Their responses revealed that they used incorrect relationships (formulae) especially in their attempt to determine lowering of vapour pressure, mole fraction, and depression of the freezing point. This indicated insufficient knowledge of the subtopic of *Colligative Properties of Solutions*. A further analysis indicated that they were not competent in applying the laws governing colligative properties to solve the problems given in the question as shown in Extract 3.2.

03a i,	DP = 17.439 but one some should in atm
	DP = 17.439 but pre sure should in alm P 0.061
94 Nr 4-1 SVII.	1 atm = 760 mm/ls 1755 - 17-5
	1735.
	17-5/ = 0.0235
	,
	0.061/ = 8.0 X W-5
	DP = 0.0235 - 8.0 × 60-5
	$\Delta l = 0.0283$
	231 - 0.02213
	DP/ = 0.02295/
	DP/ = 0.02295/ 8.0x w-5
	120 lahve luvenge a vapau pressure is 292.75 atm
	292.75 atm
17	Vapour prescure
	From the pormula PV = NRT
	PV= NRI
	P= PRT/
	n = RI
	1 *
	Where by
	P- pressure n- rumber of moles R- constant
	R-constant
	V- volume T- Zemperature

03@ii	N= 0.0821 X 293
	n = 1.0
	To get vapour pre-coure
	To get vapour pressure P = NRT/
	P= 1 X 0.0821 X 293
	1000
	P= 24.03 atm Vapour pressure is 24.03 atm
	Vapour pressure is 24.03 alm
ti	Mala mala a
11/	Mole pachon from the permula X = na
-	V'- na
-	DA = 1 $DT = 2$ $X sugar = 1 = 0.5$ 2 $DR = 50.5$ 2 2
	nT = 2
	$X \operatorname{sug} \operatorname{ar} = 1 = 0.5$
	, 2
	male prachon of sugar is 0.5
	' _
	Mole prachon of water = 1 = 0.5
	2
	770
	Therefore mole praction of sugar and water is
	0.5

Extract 3.2: A sample of the incorrect responses to question 3 (a) (i-ii)

(b) DEKCriven.
treezing point of elfonoicait 672- 16.632
Many asome solute (M) = 2:55
Many and (Ma) = cfus
freezing part los of (\$12) -14.44cc
Ky for of honoic aud 3.9°C/m
pegi Delative Morecalor Maisch
the solute (Mrs) =?
Mr. (CHSCOH) = (PARK) + 12 A16 F16 F1) S/NO) = 60 S/NO).
From ST = Post X M, Y1000
M. XII.
[1] // [] []
(16.63-1448); = 3.00c/ on X MJ X1000
Mnxtos

3	(5) 2.15°c = 3.9°c/A X 2.55 X 1000
· · ·	Ma Kros
	Mrz 0.00352 5/me).
	belotive Moderala Many solute = 0.00482
	(C) Data Given
	let forwater = 1.86 K/m
	K5 = 0512 K/m
	treezing paint for a Lqueous solution =272.07 K
	for fure water = 273/c
	Deg: Molality and Boiling painty this solution
	Deg: Molality and Boiling painty-this scrution,
,	
	21= Krolait
	1 = 124 × 1801197 Nobality = 17/ = 072.07 K 164 1.66 F/m
	1 18611.et
	(chality = 17/ = 072 of k
	1ct 1.56 F/m
	16 buily = 146.274 M.
	For Bailing paint (AT) AT = ICLI X polarly AT = 0.512 Ic/m X 1460074 M XT = 74.89 Ix.
	AT - 101 V. Dolla
	1- (- 0.512 to la X) float ()
-	71 - 71 (. sc) x
	1 Wality and ballon sint of the
	Solution dis 146.274 M and 74.891c
	Derpe five In
	inc ive in

Extract 3.3: A sample of the incorrect responses to question 3 (b) and 3 (c)

Extract 3.2 shows that the candidate divided the values of pure vapour pressure of solvent with that of relative lowering of vapour pressure, instead of its vice versa in 3 (a) (i). In 3 (a) (ii), the candidate used the ideal gas equation to calculate the vapour pressure of the liquid. However, this was The candidate the not correct. was supposed to use formula $\Delta p = p^{o}_{solvent} - p_{solution}$. In 3(a)(iii), the candidate used the incorrect number of moles to calculate the mole fraction of sugar and water. As a result, the candidate arrived to the wrong answer.

Extract 3.3 shows that, although the candidate used the correct formula and made the correct substitution of the data into the formula, he/she failed to get the correct answer in part 3(b). This was caused by poor skills in using

the calculator. Hence, he/she missed some marks allocated to the correct answer (113. 372 g/mol). Moreover, in part 3(c), the candidate used the value for the freezing point of solution, which was 272.07 K as the depression of freezing point of solution. This was not correct because the candidate was supposed to subtract the value he/she used from the freezing point of pure water, which was given as 273 K. Thus, the candidate was expected to have 273 K-272.07 K= 0.93 K. Then, this value was supposed to be plugged into the formulae to calculate the molality of the solution and hence its boiling point.

2.1.4 Question 4: Chemical Bonding

The question asked as follows:

(a) (i) Predict whether a chemical bond will be covalent or ionic basing on the charge and the relative size of the cations and anions as follows:

Cation/anion	Ionic radius (nm)	Chemical bond
C^{4+}	0.015	
I^{-}	0.216	
Na ⁺	0.095	
F^{-}	0.136	

- (ii) "Intermolecular hydrogen bonding and dative covalent bonding are among the types of bonds exhibited by a number of molecules." Justify this statement by drawing a structure of a molecule for each type of the bonds aforementioned.
- (b) Briefly, comment on the following observations:
 - (i) Fluorine, chlorine and bromine form hydrides, but the hydride of fluorine forms hydrogen bond, whereas those of chlorine and bromine do not.
 - (ii) When molecules of hydrogen chloride are placed together, they do not show induced dipole interactions but they do so when placed with molecules of argon.
- (c) (i) What is the difference between sp^2 and sp hybridization?
 - (ii) Which bond is stronger than the other in each of the following pairs? Give a reason for your choice.

$$C \equiv O \text{ or } C=O$$
; C-N or C-O; C-C or C=C

The question was attempted by 34,743 candidates. Among them, 13,487 (38.8%), 14,564 (41.9%) and 6,692 (19.3%) scored 0–3, 3.5–5.5 and 6.0–10 marks, respectively. These data show that 21,256 (61.2%) passed as they scored 3.5 marks or above out of 10 marks. The overall performance of candidates on this question was good as the majority (61.2%) correctly answered the question. A summary of candidates' performance on this question is shown in Figure 4.

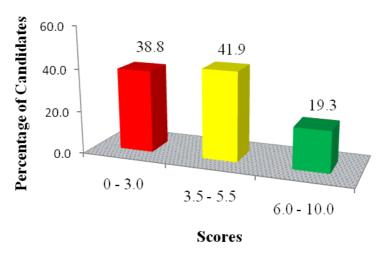


Figure 4: Candidates Performance on Question 4

The candidates who scored high marks on this question (19.3%) predicted the type of bonds that were expected to be formed in 3(a) (i) of the question appropriately. They also correctly drew the structures of the molecules for each of the bonds given in 3 (a) (ii). A further analysis of their responses in their scripts indicated that they applied the knowledge of hydrogen bonding formation and induced dipole interactions appropriately in part (b) of the question. In addition, they differentiated sp^2 from sp hybridization and identified the bond which was stronger than the other among the given pairs of bonds correctly. Such good responses from candidates were attributed to their good understanding of the characteristics of chemical bonds and the concept of hybridization of atomic orbital. Extract 4.1 illustrates a good response to this question.

4 · Garation lamon	lonic radius	Chemical bond
T-	0011	Covalent :
Na T	0.2/6	lonic
F	0.136	lonic
(iv) frample		lar hydrogen bending
H4	o (alernol	emlar hydroson bond
	н.	
	h 1,	
sta chine	of Patrio	bond
/H	N - H	+
	pative bond	

4 (b) (c) Fluince is small element and
highly electronization dement hence
it hydride can form strong hydrogen
Goodines between its notember while
chloring, bromme are large in size
bence their hydride counsel from
hydrigen bonds between ite intentes
(ii) Hydrogen Chloride is polar notembe
this when placed together with,
another Hel they tend to generale
permenent dipolos between hydrogen and
perment dipolos between hydrogen and chloride in hence ladts dipolo dipolo
enteroctions instood of induced dipole
with argon form induced diple
with ergon form induced dipole
unleraction because argon is non polar
hence Hed induce Comporary dipoles to
argen .

((211 802	Ly brid, ration	50	hybodia	Lin
*) wore	s ushital ov	o, lap in a	one 1 u	rbital
	with	two poshla	ls over	las with	one
		7.	p - 0	or sital	
		esults int		Lt result	ts un to
	dou	ble bonds	triplo	bond	
			+1		
	,	= 0 ista		000	dne
	10	VI CP	- Li		
		-0 is si			
		higher elec	troregativo	o, 0 to	han that
		of. N		· · · · · · · · · · · · · · · · · · ·	1
11. (C.	ا رين د	= 0 11 17	ronger Ch	cm C-(1.0

4. (c) (ii) c = c is stronger than c-c due

to double bond:

Extract 4.1: A sample of the correct responses to question 4

Extract 4.1 shows that the candidate correctly filled the table and drew the correct structures of molecules to illustrate the concept of hydrogen and dative covalent bonding asked in 4(a). The candidate provided appropriate examples to illustrate the concept of hydrogen bonding while responding to observations expected in 4(b). Finally, the candidate differentiated sp^2 from sp hybridization and identified the strong bond correctly in each of the given pairs.

In contrast, 38.8 per cent of the gave incorrect responses. Some of them even skipped some parts of this question. Hence, they scored low marks. Analysis indicated that they did not understand the concept of bonding and its application. Moreover, they had insufficient knowledge of hybridization as illustrated in Extract 4.2.

ĭi)	C=0 Bond Ps Annuar than C=0 because it has only
	one Ti(pr bond) and one signar band but in CEO is has
	two picti) bind which more un stable

4ci)	(-N is mad stranger because at wooder the continual
	with man electrocoatrie element which from money bund
	but C-0 is weak because unaline land with less
	e rechnogative exement.
	C-C is mad stronger barquie test band affact is
	styma and which includ overlap of maximum cribital but
	C=C is weak acque at formed by minimum avertapping
	of armic usited which give P. (II) band.

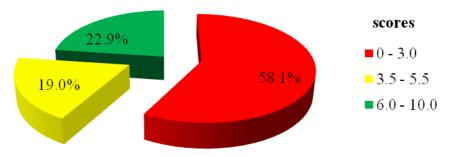
Extract 4.2: A sample of the incorrect responses to question 4 (c) (ii)

In Extract 4.2, the candidate identified weak bonds among the given pairs of bonds and explained them as strong ones. This was contrary to the requirement of the question; hence, he/she lost the marks allotted to this part.

2.1.5 Question 5: Aliphatic Hydrocarbons

The question asked as follows:

- (a) A certain chemical industry in Tanzania got an order to supply some reagents for research purposes. However, the requested reagents were not in the stock at that moment though enough starting materials shown in each case were present. What synthetic route(s) will you device in each case to meet the order required? Confine your reactions in not more than four steps.
 - (i) Propan -1, 2-diol from propene
 - (ii) Acetone from 2-methyl propene
 - (iii) Ethanol from propane
 - (iv) Ethyne from calcium carbide
- (b) Use Markovnikov's rule to predict the products of the following Reactions:


(i)
$$H_3C^-C = CH_2 + H_2O \xrightarrow{H'} H_3C$$

$$\begin{array}{cccc} (ii) & H_3C - C = CH_2 & + & HBr & \longrightarrow \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ \end{array}$$

$$\begin{array}{cccc} (iii) & H_3C^-C = CH_2 & + & HI & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ \end{array}$$

(c) "Wurtz synthesis is not suitable for preparation of an asymmetrical alkane." Briefly, justify this statement while supporting your answer with a chemical equation.

The question was attempted by 34,740 candidates. The analysis of statistical data indicates that 20,201 (58.1%) scored 0–3, 6,589 (19%) scored 3.5–5.5 and 7,950 (22.9%) scored 6–10 marks (Figure 5). A further analysis of data indicates that 14,539 (41.9%) scored from 3.5–10 marks. Therefore, the overall performance of candidates on this question was average.

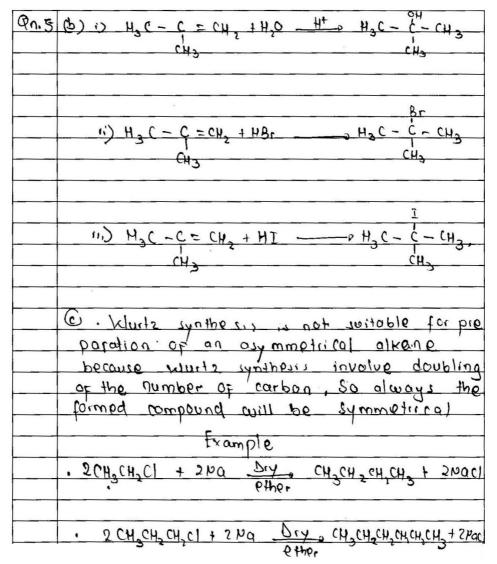
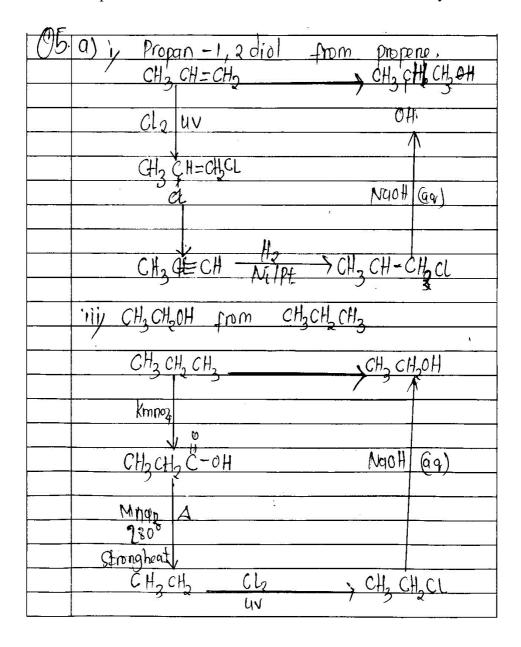


Figure 5: Candidates' Performance on Question 5

Analysis indicated that the 22.9 per cent who scored from 6 to 10 marks were conversant with the different types of functional group interconversions. They understood the reactions involving hydrocarbons, alcohols, carbonyls and alkyhalides. They were also familiar with electrophilic addition reactions. Hence, they understood properly the Wurtz reaction and its implications in synthesizing various organic reagents.

Some candidates only responded well to some parts of the question. This was because of their partial knowledge of organic reactions and reaction mechanisms. Consequently, they scored averagely marks from 3.5–5.5 marks. Extract 5.1 is a sample responses by a candidate who correctly responded to this question.

On. 3	(G) i) OH - CH3-CH-CH2OH + CH3-CH-CH2OH
	· CH - CH = CH KMOOH > CH - CH - CH OH
	3 P ₂ O, OH-
	9
	11) CH3-C-QH3 from CH3-C=CH3
	CH3
	1.03
	$\frac{\text{CH}_{3} - \text{C} = \text{CH}_{3}}{\text{CH}_{3} - \text{C} - \text{C} + \text{C}} = \frac{\text{CH}_{3} - \text{C} - \text{C} + \text{C}}{2 \cdot \text{Pn} / \text{H}_{2} \text{O}} + \text{A cetone}$
	CH3 2. En/H2U : Acetone
	+HCOH
	511
	iii) Ethanol from propone
	CH3CH3CH3 - CH3CH3OH
	· · ·
	$u^{\prime\prime}/c_{15}$
	CH3CH2CH2C1
	(ottopolic)
	CH3cH=cH2
	CH3 1.03
303 HAVE 10	
*	34/40 O
	CH 3
	7 1
	(w)
	(1,1,2,1,0)



Extract 5.1: A sample of the correct responses to question 5

In Extract 5.1, the candidate performed functional group inter-conversion correctly in parts (a) and (b). Moreover, he/she provided plausible responses to the subsequent parts of the question.

However, 58.1 per cent of the candidates failed to address this question. Their responses indicated that they used wrong chemical structures for the asked organic compounds. Most of them gave incorrect explanations on the Wurtz reaction. Hence, they failed to convert one organic reagent into another. They were supposed to understand the varieties of functional groups such as hydrocarbons, alcohols, alkyhalides and carbonyls to

perform well. Moreover, they were supposed to be conversant with the basic reaction mechanism which, in this case, would have enabled them achieve suitable products. This is important because organic reactions cut across all (sub) topics under organic chemistry as stipulated in the syllabus. Extract 5.2 shows responses from a candidate who did not answer correctly.

05	b) is CH ₃ -C=CH ₂ + H ₂ 0 H+ > CH ₃ -C + CH ₃ CH ₃ CH ₃
	11/ CH3-C=CH2 + HBr CH3-C-CH2Br
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	c) Wutz Synthesis is not Syitable for the preparation of unsymptrical alkane.
	-Wutz reaction is Suitable for the synthe sis of unsymetrical alterne because it involves addition or carbon and hydrogen.
	addition or carbon and hydrogen. CH3CH2 Nu/dnether CH3 CH2 CH2CH3
	2 Watt reaction 3 2 1 3

Extract 5.1: A sample of the incorrect responses to question 5

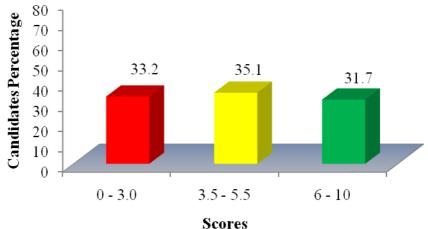
In Extract 5.2, the candidate gave the wrong conversions in 5(a) and gave incorrect reaction products in 5(b). He/she also gave a reason in part 5(c) which did not address the requirement of the question. The candidate supported his/her reason with wrong chemical reaction.

2.1.6 Question 6: Energetics

The question asked as follows:

- (a) (i) Given that, the heat of formation of $CO_2(g)$, CO(g) and $H_2O(g)$ are -393.5, -121.31 and -241.8 kJ/mol, respectively. Calculate the enthalpy change (ΔH°) for the reaction $CO_2(g) + H_2(g) \longrightarrow CO(g) + H_2O(g)$.
 - (ii) What are the four factors affecting the quantity of heat evolved or absorbed during a physical or chemical transformation?

(b) Determine the heat of formation of ethyne basing on the following information given by the reactions **A-D**.


A:
$$C(s) + O_2(g) \rightarrow CO_2(g) \Delta H_f = -393 \text{ kJ mol}^{-1}$$

B:
$$H_2(g) + \frac{1}{2}O_2(g) \rightarrow H_2O(l) \Delta H_f = -286 \text{ kJ mol}^{-1}$$

C:
$$6C(s) + 3H_2(g) \rightarrow C_6H_6(g) \Delta H_f = +50.2 \text{ kJ mol}^{-1}$$

D:
$$C_2H_2(g) + \frac{5}{2}O_2(g) \rightarrow 2CO_2(g) + H_2O(l) \Delta H_f = -1323 kJ mol^{-1}$$

The question was attempted by all 34,743 candidates. Their performance was as follows: 11,541 (33.2%) candidates scored from 0–3; 12,185 (35.1%) scored from 3.5–5.5 and 11,017 (31.7%) scored 6–10 marks (Figure 6). The candidates who passed this question were 23,202 (66.8%). They scored from 3.5 to 10 marks (i.e. from average to good marks). Such performance on this question was generally good.

Figure 6: Candidates' Performance on Question 6

The candidates (31.7%) who performed well on this question correctly applied Hess's law to calculate heat changes associated with given reactions in parts 6 (a) and (b). These candidates had sufficient knowledge of the concepts of heat of reaction and their pathways (Hess's Law). Extract 6.1 shows a sample of the correct responses to this question.

6.	
	Hat 402 + 40 DH= -241.8 KJ/mP.
	C+0, - 0 CO DH = -121.31 KI/mol
	Then.
	required oguation.
	CO25+ H2197 - P CO + H20
	(3)
	CO2 - + C+ O2 DH = 393 - S to /mo)
	C/+10/03 -> CO(5)
	H2+ 20/2 = + 420 (1) SH = -241-8 10/mo)
	$\frac{\text{co}_2 + \text{th}}{(9)} \xrightarrow{(9)} \text{cqs}_3 + \text{H}_2\text{Q}_0$
	(9) (9)

b april then DHO = (893.5 - 241.31 +21.31) to mo) DHO = 30.88 KJ (mo) The enthalpy change sho = 30.88 kJ/mol. 1 . A mount of substance contained (amantration) Temperature present. Pressure. Number or moles or water (amant or water)
OHO = 30.88 KJ (mo). The enthalpy change sho = 30.88 kg/md. Amount OF substance contained (amountration) Temperature present. Pressure.
I Amount OF substance contained (amcentration) Temperature present. Pressure.
· A mount OF substance contained (ancentration) • Temperature present. • Pressure.
· Temperature present.
· Temperature present.
· Preisure.
· Preisure.
· Number or moles or water Camount or water
·
b. Solution
required equation
Then evolder the reactions provided
Then unider the reactions provided
2502 + H2647 - D C2 + 12 + 5/5/2 AHF= 1323 45/1 0)
2Cut 20(3) - 2 2027 (304 = 2(302) 45/m)
2 Cust 2062 - D Collat 5 10 AHE = 132315/m of 2 Cust 2062 - D 2002 (5) OHE = 2(302) Hormon Higgs + 1202, - D H2012, OHE = -28645/mol)
2 C _S + H _O , — C _A H _Q .
Then
Heat of Formation OH; = (1323-2x893-286) \$0/mol
AHF. = 251 KJ/mol.
The heat of formation or ellipse = 251 15/mer

Extract 6.1: A sample of the correct responses to question 6

In Extract 6.1, the candidate used one of the correct approaches to calculate the heat of formation for the reaction given in part 6(a) and the heat of formation of ethyne in part 6 (b). However, the candidate used -241.3 kJmol⁻¹ as the value for the enthalpy of formation of water instead of using 241.8 kJmol⁻¹. The candidate also forgot to include state symbols for the required equations in part 6(a) and (b); hence, he/she could not score full marks.

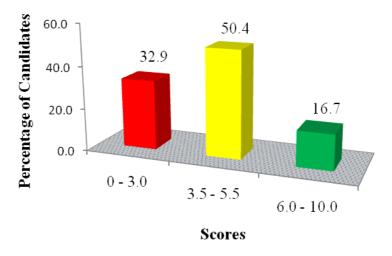
In contrast, 11,541 (33.2%) of the candidates failed to address this question; they scored below 3.5 out of 10 marks. They did the wrong calculations of heat changes that accompanied the given chemical reactions. This was caused by their insufficient knowledge of and skills in applying Hess's law in parts (a) and (b) of the question. Moreover, some of them gave partial answers when giving factors that affect the quantity of heat evolved/absorbed during chemical transformation. These were attributed to their insufficient knowledge of the subtopics of the *Heat of Reaction* and *Hess's Law*. Extract 6.2 is illustrative.

6	a) i) Data
	Head of formation of cos = -393-5 K3/NOI
	Heat of formation of co = 121.31 k5/mol
	Head of formation of 1/20 = -241.8K3/mol
	Enthalaply change =)
· · ·	Required;
	co2 + t/2 2 co + t/20
	Att = 2 prod reasone - 2 product
	=(-393.5+0)-(-121.31+-241.8)
	= -393.5 -(-363.11)
	= -393.5 + 363.11
	= -756-61 K3/NW1
	The enthalpy Change for reaction is - 956.61 KS/NO

ii) a) ini	ial State of the	reactions, and	product
b) F?	nal state 4 the	reactant and	product.
2 Vol	umo ex the cluster	770,	1
/			
	Uba.		3 8 W
Required	liac + H2 -		
Given;	1233427		
	C+02-2	സു	DHG = -393
	Ha + 1/20 - 1	120	Dlf = -393 Dlf = -286
	6C + 3H2	-PCCHe.	bly = +602.6
	Ca Ha +5/202 -	-72 cg +60	Aff =-1323

6 6)	C+ 102 - 7 CO2 Mp=-393
	3 H2 +3/202 P3H20 , DH4 = -286 X3
	3H2+9/202 P2H60 , DH4 = -286 X3 6C + 3H2 P C6H6, DH4 = +502.6
	2002 + H20 - PGH2+5/02 BH4=-1323
	2C+262 22662, BH =-393 x2 15/ml
	2C+262 - 2C62 BH =-393 x 2 16/mil
	2 000 + HO P CO HO + 5/62 Dtf = -1323 15/me
-	2c + H2 P C2H2
	$\Delta H_1 = 2c + H_2 + C_2 H_2$ $= (2(-393) + -266 + -1323) k5 / m $
	-(-786 +(-286) +-1323) K5/NW1 =-786-286-1323
	= -2395K5m017
	The Heat of formation of ethypne is -2395K5/Mol.

Extract 6.2: A sample of the incorrect responses to question 6


Extract the candidate wrongly the formula used $\Delta H_{\rm r} {=} \sum \! \Delta H_{\rm f} \left(\text{reactants} \right) \! {-} \sum \! \Delta H_{\rm f} \left(\text{products} \right),$ instead of $\Delta H_r = \sum \Delta H_f$ (products)- $\sum \Delta H_f$ (Reactants). Accordingly, he/she got the incorrect answer in part 6(a) (i). In the subsequent parts of the question, the chemical equations without reversing them. the candidate used Furthermore, the candidate made a summation of enthalpies without multiplying them by stoichiometric coefficients. Hence, their responses were weak, and they scored low marks.

2.1.7 Question 7: Environmental Chemistry

The question asked as follows:

- (a) Suppose you are employed by the National Environment Management Council (NEMC), an institution which has a mandate to oversee the environmental management issue in Tanzania; what are the four possible intervention measures of environmental degradation you can address to the community.
- (b) "Most of the greenhouse gases are produced from anthropogenic activities." Justify this statement by giving two reasons while supporting your answer with appropriate chemical equation in each case.
- (c) Acid rain is formed as a result of excessive dissolution of gases in the atmosphere to produce acids with pH less than 5.6. What are the four chemical reactions that take place during the formation of an acidic rain?

All 34,743 candidates attempted this question and scored as follows: 11,423 (32.9%) scored 0–3; 17,520 (50.4%) scored 3.5-5.5 and 5800 (16.7%) scored 6-10 marks (Figure 7). A further analysis indicates that 23,320 (67.1%) of the candidates scored from 3.5 to 10 marks. Thus, their overall performance on this question was good.

Figure 7: Candidates' Performance on Question 7

The candidates who performed well on this question provided appropriate measures to address the current environmental degradation. They also wrote the correct chemical equations as required in parts (b) and (c). They demonstrated a good mastery of the contents from the (sub) topics of *Conservation* and *Pollution* in the topic of *Environmental Chemistry*. These candidates were conversant with the current environmental issues. The candidates with average scores responded partially to some parts of the question. Extract 7.1 is a sample of the correct responses to this question.

	<u> </u>
7	a/7 Encouraging the was a alternative cleaner sources
	of onoray in place of topull-fuely for example the
	of emorgy in place of tournituals for example the
(*)	
	1/ Encouraging afteroxilation and reafferoxilation ud
	au to noutralize the circumulation of contandroxide and
	pronout soil oration.
	11/ Encuroging rocycling, roducing and rouning of dylaront motorian used in curhomos for example
	afferent motorials insecting curhomos for example
	backets and the bags.
	thom to water and anvironment.
	thom to water and anvironment.
(4)	
	by o Burning a cool increases carbonalizate gases
	in armogologia
	C (8) + 02 (9) -> (U2 (9)
	A LONG CONTRACTOR OF THE CONTR
	on storing of notwal gas (Motherno) increases can
	an Maxing to annionment.
	211 - 421 - 5 26 - 241 - 5 200 200 - 5 211 - 0111
	CH4 (91 + 202 (9) - > (02 (0) + 2H20(1)
	C/D-Routin botwoon carbonidioxido and water
	A KRAMION COMMAND (ALDONICATE YOUR COLORS
-	(02 (0) + H2 (0) = H2 (0) = 2H+ + (032-
	Acid
	11/ Roadym between between supplier druxide
	day any major
	and man and a

a	(/ JC2(0)+ H20(1) -> H2JC3(1)	
	Acia	
	III/ ROaction botween nutrogen droxide gos and w	ator
	4 NO2 (0) +2H2 0 H) - 12HNO2 -12HNO3	
	Acid.	
	IV Roactron botwoon sulphur tricking gas and i	worter
	<u> </u>	
	502 (D) +H20 (1) -> H2V04 (1)	
	A eid	

Extract 7.1: A sample of the correct responses to question 7

In Extract 7.1, the candidate, assuming roles of a NEMC officer, encouraged the community to use four appropriate intervention measures to combat environmental degradation in part 7(a). The candidate justified the given statement and supported his/her answer with the correct chemical equations in part 7(b). Moreover, in the last part of the question, the candidate gave chemical reactions with their correct corresponding equations for the formation of acidic rain.

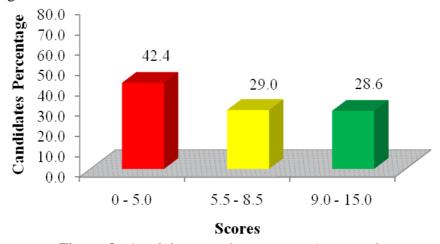
In contrast, 11,423 (32.9%) of the candidates responded incorrectly to most parts of the question. Hence, they scored below the pass mark (i.e. below 3.5 out of 10). Some of them did not understand the key words "environmental degradation" and "anthropogenic activities" that were used in parts (a) and (b). Hence, they responded wrongly. They also wrote incorrect chemical reactions to illustrate the formation of acidic rain in 7(c), as shown in Extract 7.2.

7: a/ Jour possible intervation Measure of environment degradation are
i/ Crutting the trees (Deforetation)
il Bruhing fire.
N/ Overgrazing.
from anthropogenic achieter because this
activities leads to the formation of harmful
guses which are the Cause of greenhouse

7.	c) the fillowing are the g showned reacher
	of gaves which leads to the formation of
	oeidir rain
	1) Su + C2 -+ Sc2 (s)
	(1) (5)
	11/ Suz + 026, -+ Suz (g)
	11) (0+1/02 - 1 (02/9)
	11/2N2+ 023 - + NO2(5)

Extract 7.2: A sample of the incorrect responses to question 7

In Extract 7.2, the candidate gave the causes of environmental degradation, instead of intervention measures. The candidate gave partial reason without justification in part 7 (b). In part 7 (c), the candidate gave reactions for the formation of gases without reacting them with water, which is a prerequisite for the formation of the acidic rain.


2.1.8 Question 8: Gases

The question was asked in Section B and carried 15 marks. Candidates were considered to have passed the question if they had scored from 5.5 to 15 marks. Candidates were asked as follows:

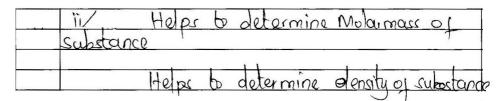
- (a) (i) While pumping air into a ball, the volume as well as the pressure increase. Does the Boyles's law applicable here? Briefly, explain.
 - (ii) Hot air balloons are being used in the Serengeti National Park by tourists. Why hot air is more preferred in filling these balloons than cold air? Briefly, explain.
 - (iii) It is said that "Dalton's law of partial pressure cannot hold true for a mixture of SO_2 and O_2 gases. Briefly, explain the truth of this argument.
 - (iv) What would have happened to the gas pressure if the molecular collisions were not elastic?

- (b) The density of a gas at 27 °C and 1520 mmHg pressure was found to be 5.46×10^{-3} g/cm³. What will be its density in g/dm³ at **s.t.p.**?
- (c) (i) Relative densities of carbon dioxide and oxygen are 22 and 16, respectively. If 25 cm³ of carbon dioxide diffuses in 75 seconds, what volume of oxygen gas will diffuse in 96 seconds under similar conditions?
 - (ii) What are the two significances of Graham's law of diffusion in our daily life?

The question was attempted by 31,163 (89.7%) out of the 34,743 candidates since it was an optional question in Section B. The statistical data (Figure 8) show that 13,220 (42.4%) of the candidates scored from 0–5; 9,030 (29%) scored from 5.5–8.5 and 8,913 (28.6%) scored from 9–15 marks. Overall, data analysis indicates that 17,943 (56.7%) of the candidates scored from 5.5 to 15 marks. The general performance of candidates on this question was average.

Figure 8: Candidates Performance on Question 8

The candidates who performed well (28.6%) gave the correct responses to most parts of the question. This indicated that they were knowledgeable about the concept of gas laws, especially Boyle's law, Charles' law, Dalton's law of partial pressure and Graham's law. They were also competent in applying the kinetic molecular theory of gases and the ideal gas equation. The 29.0 per cent of the candidates who scored averagely responded partially to some parts of the question and skipped others. Extract 8.1 is a sample of the to question 8.


8.	(A) cil
0.	(A) (i) N P 1 ()
	No, Boyle's law is not applicable there
	BECAUSE, Boyle's law is applicable for a Constant mass of a gar, but when pumping air into a ball, mass of
	a gay, but when pumping air into a ball, made of
	ach mange
	Buyle's law states that," Yilune of a fixed may of a gar Is inversely proportional to it's programe at anytout temperature!
	Is inversely proportional to it's progune at Constant temperature
	(ii) Hot air is preferred in filling ballown then all air BECAUSE; Hot air har high temperature and so, air expand
	BECAUSE; Hot air har high temperature and so, air expand
	(charle's law) in doing so density of air decreager and
	(charle's law) in doing so density of air decreager and therefore thought in produced he to I low density of air
	(11) Yes, In a maxture of or and Suz, Dalton's law on of
	partial pressure can not hold true
	BECAUSE; Daygen gay react with sulphur locals in a misky
	(11) Yes, In a mixture of oz and Suz, Dalton's law con of partful pressure can not hold time RECAUSE; Oxygen gas react with sulphur liveds in a mixture oz + Suz -> Soz
	Delton's his is appliable only in a mixture of gares which
	Dulton's his is appliable only in a mixture of garger which can not reach to each other
	Salton's law steady that," In a mixture y gasof which an not result to each other, total properse y a gasof is equal to the sum of partial preserve use each gas!
	not rent to each other, that propers of a gas of is exact to the
	Sun of partial pressure us each gay",
	(iv) It motocular Collision were not elastic,
	- Far pressure would decrease untill became zero, (0)
	BELANSE energy or gaser molecules will decrease
	BELAUSE energy of gaser molecules will decrease Continuously untill energy became zero and there fore
	no more every possessed by marar mobales required to
	no more energy possessed by grases molaules required to make them more and collide again , since gas prosure
	is produced by collision of molecules then even pressure of
	a gas will be zero (d) after doctoring Continously.
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

8	(b) Infielly
	Duta given / Tanperature, T= 27°2 + 273k.
	= 300 K
	Pressure, P, = 1520 multing
	Nemaly, $j = M = \frac{S \cdot 46 \times 123}{1123}$
	- Jun-
	Vilume =, 1 = 1 cm3 (in 5.46 x123 g a 2 y)
	at siting
	Pressure, Tz = 760 months 2.73 K, Pressure, B = 760 months Volume, Vz = 2
	Promore, B = 760mmly
	Volume, V2 =?
	General gar quantin; P, V, _ P, V2
	T ₁ T ₂
	$V_2 = P_1 V_1 \times T_2$
	$V_{2} = \frac{\rho_{1}v_{1}}{T_{1}} \times \frac{T_{2}}{\rho_{2}}$
	= 15 20 mully x 1 cm3 x 273 k
	300k 760mmHz
	V2 = 1.82 cms
	ats. T. P, got mell have V=1.82 cm3
	mess remain Construt, m= 5.46x10-3g
	Jensty, g = m = 5.41x125 - 3x123cm.
	-1.821m3
-	.: Density y a gay will be = 3×10 g cm?
	1 00.13. 1

8,	(c) (i)
	Duta given, RADeraty y as, p = 22
	R. Density of 02, Poz = 16
	Ydumo y Coz, Var = 25 and, time, tor = 755 Volume y vz, Voz =? tor = 965.
	Molar mass = 2x Relative Lossets of G2 = 2x 22
	Mrio = 44gmet',
	molar may $j_{ij} = 2 \times 11$ $M r_{oj} = 32 g m C^{1}$
	$mr_{o} = 32 gmd^{1}$

 Graham's law; Rate & 1
\mr
 R Vmr = Lungtut.
Run Jorgan = Run Jones Box
But Rate = V
 Ŧ
Van Mran - Vin Jmrin
 tur
25 cm / 4 4gm1 = Voz / 32ymt2
25 cm \ 4 4gr (1 = Voz \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Voz = 25 m² x (449 m²) x 965 - 37.520
755 Toant!
= 37.52 cm
Volume of oxygen differed will be = 37-52 cm?
)

Extract 8.1: A sample of the correct responses to question 8

Extract 8.2: A sample of the correct responses to question 8

In Extract 8.1, the candidate correctly applied the general concept of gas laws in answering parts (a) and (b). However, the candidate did not give density in g/dm³; hence, he/she lost some marks. The candidate was supposed to multiply the value of the density he/she obtained by 1000 as it was in g/cm³. Extract 8.2 shows a response from a candidate appropriately applied the Graham's law.

Despite the good and average responses given by such candidates, 42.4 per cent of the candidates who attempted this question gave incorrect responses. Hence, scored marks below the pass mark (i.e. they scored marks below 5.5). These candidates incorrectly related the variables for the states of gases in part 8(a) (i-iii). They also gave the wrong reasons in part 8(a) (iv) and used the wrong formula or substitution while responding to part 8(b).

Moreover, some of them wrongly converted Graham's law of diffusion of gases to its mathematical expression. Hence, they did not address part 8(c) of the question. The responses given by these candidates indicated inadequate knowledge about the subtopics of *The Gas Laws, Kinetic Theory of Gases* and *Relative Molecular Masses and Densities of Gases*. Extract 8.3 is illustrative.

8	a) rubble pumping our finto a ball, the volume as well as the
	pressure fricteuse. Boyles law are not applicable here
	because due to chailes law the forecase of
	wheme is directly propertional with pressure . so
	when the volume Encrease and the Pressure will increase
	in Ital air is more preferred in ruling there ballo
	on than cold air because cold air mul reduce the
	amant a heat since it will relax.

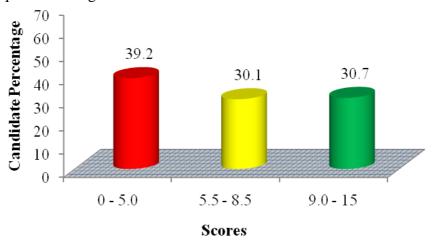
My Datter law of puthcul pressure can not hald the
true for soo and on our due to the volume of
 a gus of this to be negligible.
is) When the gas pressure the molecular adisons were
not elaste of many cause the randomtr force or
attraction of the violecular, because it may go
Forward without backward during the reaching.

1/2 Temperature = 23°C
Pressure 13.20 mm rtg
Density \$ 5.46 x 10-39/cm3
Density = Hous
Value
Density 5:46×10/3 9/cm3
2000
1 clm3, = 1000cm3
1 clm3 = 1000 cm3 5.46 x 10-3 9/cm3
- 5.46x10 ⁻³ x 1dm ³
1000 cm²
5.46×10-69/clm3
. Density = 5.4C x 10-6 9/dm3
pr=ner

8	(1) Eurbondiexed Mr = 22
	Oxygen on r = 10
	volume = 25 cm3 Illrbandioxide Valume, = X
	bittue 75 96
	V1 + t1 - m2
	$V_2 + t_2 \int mr_1$
	$(25 + \frac{15}{2})$
	x 96/16/
	625 + 5625 - 22
	X 9216 16
	£250 ,2 2L
	ds1ex, 1e
	x = 238·7
	The serond volume = 238 7 cm
	· fue significance a Eraham's now a diffusion
	my of it is applied in absorben a nutrient in
	the soil by plants
	IV It is applied in hospital when water and
	blood are added in the body to diffused

Extract 8.3: A sample of the incorrect responses to question 8

In Extract 8.3, the candidate gave inappropriate responses to all parts of the question and missed all marks alloted to this question.


2.1.9 Question 9: Selected Compounds of Metals

The question was asked in Section B and carried 15 marks. Candidates were considered to have passed the question if they scored from 5.5 to 15 marks. The question asked as follows:

- (a) Briefly, explain five uses of metal oxides in daily life.
- (b) When a dilute nitric acid was added to a green solid **P**, a blue solution **Q** was formed and a gas **R** that formed a white precipitate with lime water was evolved. When the blue solution was evaporated to dryness by heating it in a crucible, a black solid **S**, brown fumes of gas **T** and a gas that relighted a glowing splint were formed.
 - (i) Identify solids P and S, and gases R and T.

- (ii) Write an equation for the reaction between solid **P** and dilute nitric acid.
- (c) What is the importance of the following metal compounds in everyday life?
 - (i) Lime stone
 - (ii) Plaster of Paris

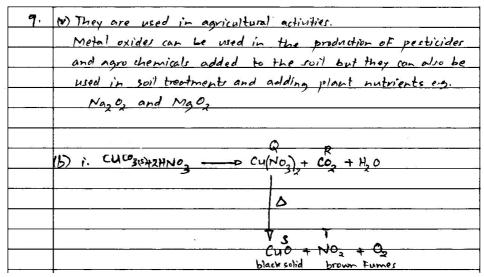

The question was attempted by 27,353 (78.7%) out of the 34,743 candidates who sat for the Chemistry examination in the ACSEE, 2022. The candidates' performance (Figure 9) on this question was as follows: 10,722 (39.2%) scored from 0–5; 8,236 (30.1%) scored from 5.5–8.5 and 8,395 (30.7%) scored from 9–15 marks. A further statistical analysis indicates that 16,631 (60.8%) of the candidates who attempted this question passed; they scored 5.5 marks or above. Thus, the candidates' general performance on this question was good.

Figure 9: Candidates' Performance on Question 9

The 30.7 per cent who scored good marks on this question gave appropriate uses and chemical reactions in part (a), identified the solids and gases asked in part (b) and suggested the uses of metal compounds in part (c) appropriately. Their good responses were attributed to sufficient knowledge of the subtopics of *Oxides*, *Carbonates and Hydrogen Carbonates*, *Sulphates* and *Nitrates*. Extract 9.1 is a sample of the correct responses to this question.

	Uses of metal oxides.
	(i) They are used in making building materials.
stere	-10 Metal exides can be used in the manufacturing of coment,
	limestone and mortor but it can also be used in the making
	of bricks and different building materials. e.g. Cao and Mgo,
	can be used in making Calo, Catto, and Mg Coz.
	ii. They are used in Pharmaceutical industries.
	Metal oxides are used in the production of tooth pastes,
	cosmetics, dental cleaners and they are used in the
	neutralization of other medical reactions such as ulcors and
	bee stinge.
	iii Nanotechnology
- 0	They are used in agricultural production of chemicals,
	pesticides and the production of materials used in the
	neutralization of soil pH and soil colloids.
	iv. Used in production of other chemicals.
	Metal oxides one used in the production of other chemical
	like Ammonia (NHz), Zine and other inorganic chemi
	cals and this includer compounds like Cao used as
	n drying agent.

(i)	P - Cu co30	(Copper (11) carbonate)
	S - Cuo	(Copper (11) oxide)
	R - Co,	(Carbon dioxide)
	T - No.	(Nitrogen dioxide)
(ji)	CUCO3 + SHNO	D Cu(NO3) + H O + CO3

9.	(c) i. Limostone.
	-o It's used in the industrial manufacturing of cement,
	limestone chalks and in the manufacturing of a
	large number of building materials.
	-D Used in the Liming of the suil and the neutraliza
1,51,500 \$00.50 <u>)</u>	tion of acidic roil to form best roil pH.
	ii. Plaster of Paris
	-p It's used in medical sector for the treatment of
	Fractures and disjointing of bones and its pharmaceuti
	ral used in manufacturing of instruments used in
	treatment of body
-	-D Used in the manufacturing of chalks and other
	materials used in schools For studying but also used
	in Laboratory For experimentations.

Extract 9.1: A sample of the correct responses to question 9

In Extract 9.1, the candidate provided the correct answers to most parts of the question and scored good marks. However, while responding to part 9(a) of the question, in the first use of metal oxide, the candidate wrote CaHCO₃ instead of Ca(HCO₃).

Conversely, other candidates provided partial answers or failed to correctly respond to any part of the question. These failed to understand the key terms used in the question. Such terms include metal oxides, green solid, white precipitate, black solid, brown fumes, limestone, and Plaster of Paris (POP). Understanding these common terms in the topic of *Selected Compounds of*

Metals could have helped them to respond appropriately to the question. Extracts 9.2, 9.3 and 9.4 show samples of the incorrect responses to this question.

9	(a) To explain five ruse of metal exides in dail life 11+ provide ruw material to the including Notal exide may help to provide ruw material Tike from diamonal may used to produce different
	yet provide raw material to the finality
	Metal oxide may help to privide rain material
	metericals like partition metascits.
	materials the building materials
-	#/ It wed as ornament
-	Many metal oxide used as a source of Ornament like
	Early wetch Exemple
	Earny, water retiriple
	my It used as a source of tourist attention
	The to the passence of moter extell to con circust
	act as a source at tourst attraction which help
	ad as a source of tourist attraction which help to some foretyn among on a particular country.
	, ,
	iv/It used to cutting different materials. But to same motal oxide like disamend it rused to cutting different materials like Alhaminiam whole which are glass in nature.
	Due to some metal oxide like drumand it used
	to culting different matericals like Alhuminium whole
	which are glass in nature.
	,
	U/A used as a source of employment among the people
	If occur in mining activities due to the presence of
	moted oxide people they can be employed by
	the occur in mining activities due to the presence of mateur extended people they can be employed by exetract metal existed.

Extract 9.2: A sample of the incorrect responses to question 9 (a)

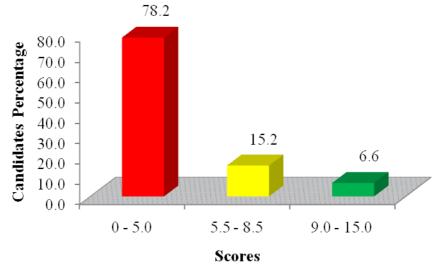
(6)	
_	HNO3 + groen solved (P) - P Rlue solution Q + Q
	Q - Black solal (s) + Brown games (T)
(i)	P _ Caco1,
	S - Ca
	R - Hydrogen Gas
	T - Oxygen gas

Extract 9.3: A sample of the incorrect responses to question 9 (b)

 i) Lime stone
It holps in determination of carbondioxide que
 ny Playlor of Paris
Used as an indicator

Extract 9.4: A sample of the incorrect responses to question 9 (c)

In Extract 9.2, the candidate wrongly explained, in general terms, the uses of metal oxides. In Extract 9.3, the candidate gave only initial steps while trying to identify the asked solids and gases. In Extract 9.4, the candidate gave incorrect uses of the Plaster of Paris.


2.1.10 Question 10: Aliphatic Hydrocarbons, Aromatic Hydrocarbons and Halogen Derivatives of Hydrocarbons

The question was asked in Section B as one of the three optional questions. It carried 15 marks. The candidates were considered to have passed the question if they scored from 5.5 to 15 marks. The question asked as follows:

- (a) Briefly explain the following concepts:
 - (i) Concentrated sulphuric acid is necessary for nitration of benzene.
 - (ii) Bromination of benzene takes place in the presence of Lewis acid, while that of hydroxybenzene does not require the presence of Lewis acid.
 - (iii) Despite chlorine atom being an electron withdrawing group, it directs an incoming group to the ortho or para positions in electrophilic aromatic substitution reactions.
- (b) During one of the practical sessions in a school, a student wanted to differentiate a set of reagents. Briefly, advise the student on how to differentiate the given sets of reagents while supporting your answer with a chemical equation:
 - (i) Benzene and ethane
 - (ii) 3-chloro-2-methylpent-2-ene and 1-chloropropane
 - (iii) Bromobenzene and bromomethane
- (c) Briefly explain the following concepts:
 - (i) $(CH_3)_2CHBr$ undergoes SN_1 mechanism, while $CH_3CH_2CH_2Br$ undergoes SN_2 mechanism when they react with aqueous alkalis.
 - (ii) Haloalkanes undergo nucleophilic substitution reactions, while halobenzenes undergo electrophilic substitution reactions.
- (d) Two isomeric hydrocarbons K and L have the molecular formula C_9H_{12} . On oxidation, K gives a monocarboxylic acid which when

heated with excess soda lime yields benzene. When L is oxidized, it gives tricarboxylic acid, which can undergo nitration to give a monoderivative. What are the structural formulae of K and L?

The question was attempted by 10,968 (31.6%) out of the 34,743 candidates who sat for the Chemistry examination in the ACSEE, 2022. Their performance on this question was as follows: 8572 (78.2%) scored from 0–5; 1,668 (15.2%) scored from 5.5–8.5 and 728 (6.6%) scored from 9–15 marks (Figure 10). The candidates' overall performance on this question was poor since the majority (8,572, 78.2%) scored below the pass mark (i.e. they scored from 0–5 marks). In addition, statistical data indicate that this question was the least chosen by the candidates in Section B.

Figure 10: Candidates' Performance on Question 10

The candidates who performed poorly on this question provided the wrong answers to most parts of the question. Their responses indicated that the candidates had insufficient knowledge about the delocalization of the benzene π system as well as its ring and outside the ring chemical reactions. They also lacked knowledge of the chemical properties of hydrocarbons and haloalkanes. Hence, they were not knowledgeable about the function of concentrated sulphuric acid in the nitration of benzene in parts (a) (i). Moreover, they failed to understand the role of Lewis acid on Bromine molecule as well as the impact posed by the OH group on the resonance of benzene. Besides, they lacked knowledge of the effect of lone pairs present in chlorine atom in directing the incoming group to the benzene ring in part (a). The candidates failed to give the correct identification of compounds

in parts (b) and (d). They gave inappropriate explanations for nucleophilic substitution reactions asked in part (c). Extract 10.1 is an example of the poor to the question.

10	a) i) long Heloy prevent reaction Nor Chitrates
1	a) i) lone Heloy prevent reaction Nor Chitrates
Marry L	1 12 Hally 1 00
	(0) + 11PO2 (0) 101 VOZ
	(Nutrobensene)

CO	as of Because Bromine supplies electron
	bo to begrene This allow Bromine
	Actas Actuator while hydroxy besser
	15 due to electronegative of war give
	electron to benene no need less, acid
	B12+0 -00
	76.
	86
	as its Because begrene a electronectivity
	allow portive inductive effect hence direct ortivor para portion on benzere
	direct OFTENDER AGE POLITICADO LEGARDES
	ovices partition of sevies
10	Difference (0) + HBr - > (0) WHILE CHIJCH3 + HBr - OCH3Br
10	1
	(a) + HB(==================================
	15HILE
	CHOCH + HOr - 20H Or
	4.3613
	(2) Asr
	(1) + A5NOZ -> 10)
	(J) 1 N) 1 V J
92	Inte CHZBr + Agwo, -> CHZWO,
	Chile Chile I May a Chile
	2 M
	CH CH
10	d) 1) }
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
-	
	· '

Extract 10.1: A sample of incorrect responses in question 10

In Extract 10.1, although the candidate wrote the correct equation for bromination of benzene, he/she did not explain the role of concentrated sulphuric acid in that process as per requirement of part 10(a)(i). The candidate gave the wrong explanations and equations on the subsequent parts of the question.

A few candidates (728, 6.6%) chose this question. They responded well and scored good marks. Their responses showed that they gave the correct explanations for the concepts required in part (a). They also correctly differentiated the given sets of chemicals in part (b). They also explained the nucleophilic substitution reactions in part (c) and correctly deduced the structural formula of the unknown isomeric hydrocarbons in the last part of the question correctly. In general, the good performance was due to the candidates' sufficient knowledge of the chemical properties of aliphatic, aromatic and halogen derivatives of hydrocarbons. Extract 10.2 shows an example of the correct responses to the question.

100	@(9),
	The Concentrated displace and facilitate the formation
	of Notion, which is necessary for electrophilic
	substitution reaction on the barrere ring.
	ie.
	H-204 + HNG -D. NO + + HIGT FHO.
	(ii) The hydroxyl group on hydroxy bentions article
	the benzene ring making it more recutive
	towards on destachile have of bromination (a)
	take place without lowir and codalyst
	unlike beatene ing bramination,
	, and the second
	5 S
((iii). The presence of lone pairs on dilaine atom
	make it to ait as dection donating group. And
	the effect of lone point of dection in clinguater
	than its negative industrie affect which involves
	only partial with draw of deutron.

b	i Benzene	will react	with tr	ichloromethane
	to give	a Gright	coloured	dye where as
	ethane	goer not	realt with	trichtmomerhane

10 6	
	3 \(\) + CH(\(\)_3 \(\) + 3H(\(\)
7	H
	Bright coloned dye
	CH, CH, + CHCL, -> No reaction
	is. 3-chloro-2-methylpent-2-ene does not reach with
	todalum hydroxide in presence of Silver nitrate
	whereas 1-Chloropropane realts with sodium
	hydroxide in prosence of silve, nitrate to form
	White precipitate of likerchloride.
	CH3 CH-c=c-CH3 + NaUH +3ND,> No reaction
	CH3 CH-C=C-CH3 + NaUH ~3003> No reaction
	· (H)
	à - A VI
	CH3CH2CH2CL + NACH AgNO3> AgCL (1)
	White precipitate
	(iii), Ketl followed by AgNog tost.
	- on treating bromomethane with Kett follows of by
	- on treating bromomethane with Kott follows of by
	precipitate of Ag Rr.
	16.
	(HyBr f KoH f AgNO, - O. CHJCH + Ag Br f KNOZ.
	Pranjstote.

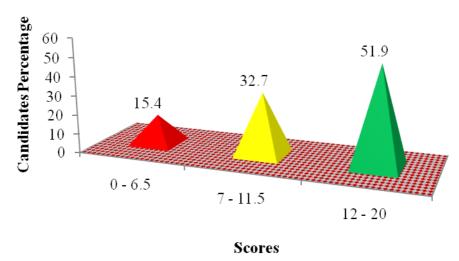
12	
10 0	i. Conseller
	CH3
	CH3-C-B, undergoes IN, mechanism due to the
	it Stevic hindrance which is caused by
	the bulkness of the compound as it
	is more substituted this making sumultineously
	learns of learning group and attacking of nucleophile
	becomes difficult. Thus it occur, step unise.
	Again CH2(H2CH2Br undergoes SN) because
	of lacking steric hindrance which makes
	eaver for it to have sumbtaneously leave of
	Ceaning group and attacking of the nucleophile.
	11. Halobenzenes undergo electrophilie substitution
	because of resonance which makes the double bond in benzene to be delocalized hence its
	bond in benzene to be delocalized hence its
	breaking of double bonds becomes very difficult
	Thus due to the presence of double bond bennene
	Es nucleophile in nature home it requires
	El muleophile in nature honce it requires electrophile. Hence undergoes electrophilic substitution.
	Halvalkanes undergo nudeophilic substitution
	because when halo group leave the compound
	the alkyl group remaining becomes electrophide
	thus it requires nucleophile . Thus à undergo
	nucleophilic substitution reaction
_ &	K 12 CH2CH2 CH3 and] is CH3
11/44	снз снз
	СНЗ

Extract 10.2: A sample of the correct responses to question 10

In Extract 10.2, the candidate correctly explained the concepts asked in part 10 (a). He/she made correct choices of reagents/conditions and differentiated the given pairs of organic compounds correctly. Lastly, he/she gave the correct structural formulae for K and L.

2.2 132/2-CHEMISTRY 2

Chemistry 2 was a theory paper and consisted of six (6) questions. Each question carried 20 marks. It required the candidates to answer five (5) questions. The candidates were considered to have passed the question if they scored 7 or above out of 20 marks.


2.2.1 Question 1: Two Component Liquid Systems

The question asked as follows:

- (a) (i) A solid Y is added to a mixture of benzene and water. After shaking well and allowing the mixture to equilibrate, 10 cm³ of the benzene layer was found to contain 0.13 g of Y while 100 cm³ of the aqueous layer contained 0.22 g of Y. Calculate the value of the distribution coefficient of Y between benzene and water.
 - (ii) Comment on the solubility of Y in benzene and water with respect to the distribution coefficient you have obtained in I(a) (i).
- (b) (i) What are the two applications of fractional distillation? Explain briefly.
 - (ii) Calculate the percentage by mass of bromobenzene (C_6H_5Br) in the distillate when a mixture of bromobenzene and water distills in steam at 95 °C. The vapour pressures of bromobenzene and water at 95 °C are 1.59×10^4 and 8.50×10^4 N m⁻² respectively.
- (c) Heptane (C_7H_{16}) and octane (C_8H_{18}) form an ideal solution. At 373 K, the vapour pressures of pure heptane and octane were 105.2 kPa and 46.8 kPa respectively. Calculate the vapour pressure of the mixture of 26.0 g of heptane and 35.0 g of octane.

This question was selected by 34,087 (98.1%) of the candidates. Among them, 5,251 (15.4%), 11,134 (32.7%) and 17,702 (51.9%) scored 0–6.5, 7–11 and 12–20 marks, respectively (Figure 11). Moreover, the analysis of statistical data indicates that 28,836 (84.6%) of the candidates scored the pass mark or above (i.e. scored \geq 7 out of the 20 marks). Thus, the overall performance of the candidates on this question was good.

The candidates who passed this question (51.9%) correctly applied the distribution law to calculate the value for distribution coefficient. They also managed to provide their views on the solubility of Y with respect to the

Figure 11: Performance of the candidates in question 1

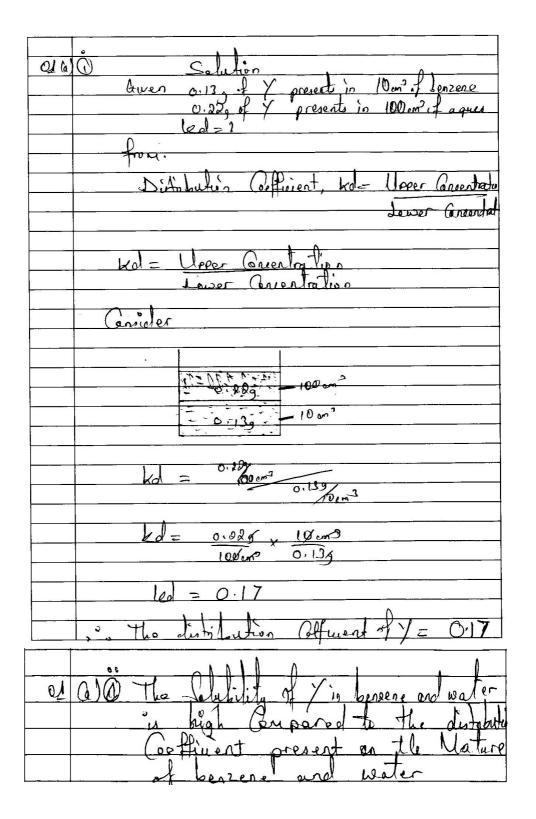
distribution coefficient observed in the preceding part. In addition, candidates who scored good marks correctly calculated the partial pressures of heptane and octane, the total pressure of the mixture, and the percentage by mass of bromobenzene. Their correct responses were attributed to the ability to apply theoretical knowledge. Moreover, the candidates' ability to solve numerical problems and manipulate units contributed significantly to their good performance observed. Extract 11.1 shows a sample of the correct responses to this question.

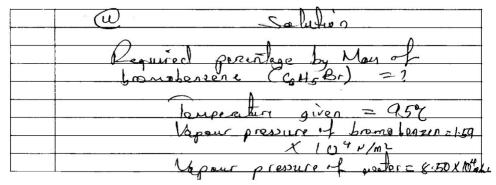
(Ot-)	(a) if - This is a process of distribution governed by the formula:
	Ko = Concertration of solution extracting volvent (i)
	Concentration of value in residual volvent
	⇒ Now:
	Concentration of volute in Benzenc = Mass of volute dissolved
	Volume of volvent
	C _B = 0-139
	10 cm ³
	C8 = 0.013 glams
	Conantration of volute in Water = Mass of solute in water
	Volume of water.
	Cw = 0.229
	100 ans
	: Cw = 0-0022 glon3

* Now, from egn(i):
KD = CB (Between Benzene and Water)
Cw
$K_b = 0.013 \text{ g/cm}^3$
0.0022 g/gm3
Ko = 5.91
. The Value of the Distribution Coefficient of Y between
Benzene and Water is 5.91.
(ii) → Now, distribution wefficient can be expressed in terms of
 valubility as pllows;
Ko = Solubility of solute in Benzene
Solubility of solute in agreeous layer
Thus, we can say that the volute is 5.91 times soluble
in Benzene as compared to water-

OI (b) i) → Fractional dishillation is used in:-
· Separation of constituents in onde oil
- This is a common application sma crude oil is a
raw material for many products such as petral, diesel,
kerosene, naphtha and many others in the process of
crude oil refinery at different temperatures.
Pitationalabelia
Purification of alabolis:
- This is a useful application in industries where alcohol is passed through different stages of temperature until
finally, the pure alcohal is obtained as product and
ready for other processes of manyfacturing.
W.Z. T.
P - P' V P' V P' V P' V
T - 1 XX + 1 RXB + FCXC + FDXO+ + 1 NXN
ii/ -> From; P_T = P_X X_A + P_R X_R + P_X X_C + P_X X_O + + P_N X_N -> For N constituents in the mixture:
→ Nou :
Number of moles of = No
Bromobenzene
Number of males of = Nw
Water
= For Steam distillation the liquids are immirrible, hence
$ \frac{P_B^{\circ}V = n_B RT}{P_W^{\circ}V - n_W RT} $
TWV NWRT
$P_B^{\circ} = II_B$
$P_{\omega}^{\circ} = n_{\varepsilon}$ $P_{\omega}^{\circ} = n_{\omega}$ $\Rightarrow Bul n_{\alpha} = m_{\varepsilon} \text{and} n_{\omega} = m_{\omega}$ $M_{r_{\varepsilon}} = m_{\varepsilon}$
$\Rightarrow Bul \Omega_{g} = M_{g} and \Omega_{w} = Mw$
M _B M _W

01	(b) 11/ P'a = Me/Mra	
	P'w Nw/Mrw	
		1
	MB = PB X MrR	
	Now Pin Nrw	
	= Perantage by mass = Ne x 100%	
	New + ME	
	$\frac{M_{E} \times 100\%}{M_{W}} = \begin{pmatrix} P_{B} \times M_{FB} \\ P_{W} & M_{FW} \end{pmatrix} \times 100\%$	
	Mw (Pi Mr w)	
	= 159 x 10+ x 157 x 100%	
	8-50 × 10 4 18	
	= 1.632 X100%	
	Henia -	
	Me = 1-632 Mw	
	From .	
	$M_{8} = M_{5}$	
	M_T $M_B + M_W$	
	1/ by mas = 1-632 NW X 100%	
	1-632 Mw + Mw	
	"/ by mars = 1.632 Mw x 100%	
	2.632 Mw	
	1. by mass = 62%	
	. The Percentage by moss is 62%	


01.	(0) Number of males of Heptane = 269
	100 g/ml
	1. NH = 0-26 molu
	Number of male of Octone = 359
	114 g/mol
	No = 0.31 maly
	Note faction of Heatons = DH
-+	Mole fraction of Heptane = NH NH + No
	X#: = 0-26
	0.26 + 0.31
1	$\times_{H} = 0.456$


=> Sma, there are two components;
$X_{H} + X_{o} = 1$
$\chi_{\omega} = 1 - \chi_{H}$
Xo = 1 - 0.456
X. = 0.544
⇒ Now;
Pressure of soln = PH XH + POX
Ps = (105.2 × 0.456) + (46.8 × 0.544)] kpa.
Ps = 73.43 kPa
The Pressure of the Solution is 73.43 kPa.

Extract 11.1 A sample of the correct responses to question 1

Extract 11.1 shows that the candidate correctly related the distribution coefficient and the amount of solute dissolved between the two solvents. Moreover, in part (b), the candidate manipulated the units to obtain the correct value for the percentage composition of the distillate. Lastly, the candidate correctly computed the pressure of the mixture between heptane and octane using Raoult's law.

However, 15.4 per cent of the candidates who attempted this question did not address it accordingly. Their responses indicated that they wrongly calculated the distribution coefficient and provided the wrong comments on the solubility of **Y** in benzene and water in part (a). This was attributed to the insufficient knowledge about the subtopics of *Immiscible Liquids*, and *The Distribution Law*. Likewise, the candidates who scored low failed to calculate the percentage values by the mass of bromobenzene and the vapour pressure of the mixture of heptane and octane in 1 (b) and 1 (c), respectively. They were not knowledgeable about the subtopic of *Immiscible Liquids* (determination of molar mass of a high boiling liquid using steam distillation) and *Completely Miscible Liquids* (application of Raoult's law). Extracts 11.2 and 11.3 shows samples of the incorrect responses to the question.

Extract 11.2: A sample of the incorrect responses to question 1

In Extract 11.2, the candidate divided the concentration of water with that of benzene in part (a) (i) and obtained the value for distribution coefficient (Kd) as 0.17. However, this was not correct. The candidate was supposed to put the concentration of \mathbf{Y} in benzene on top and divide it by the concentration of \mathbf{Y} in water to get $\mathrm{Kd} = 5.9$. The candidate gave an irrelevant statement about the solubility of \mathbf{Y} between the two layers in part 1 (ii). Besides, the candidate wrote the data given in the question paper without calculating the percentage by the mass of bromobenzene that was asked in 1 (b) (ii).

1	bill for bromobenzeno
	$P' = 1.009 \times 10^6$
	1.59×10^4 $P' = 63.46 N/M^2$
	By Mass 1.
	40 0 housono.
	63.46 × 100/ = 40.42/. = 40.42/.
	167
	dor water
	1. 19 × 100%. = 60 59.59%.

1	bill for bromobenzeno
	P' = 1.009×106
	$P' = 1.009 \times 10^{6}$ 1.59×10^{4} $P' = 63.46 \text{N/M}^{2}$
	By Mass 1.
	400 pousous.
	63,46 × 1007 = 40.42% = 40.42%
	dor water
	1. 19 × 100%. = 60 59.59%.
	.' The percentrage by mace will be 40.42%. for biomobonsone
-	c) soln-
	Vapour prossure of (C2 H16) =105. 2 kpg
	Vapour produce of (cettie) = 46.8 kpg
	Napour produce of (cettie) = 46.8 kga Mass of (C4His) = 260 Mass of (C8His) -350.
	$\Delta P = \chi_7 \cdot R$
	Pr - 1015-2-46.8
	= 58.4 KPo

C) Molor graction - Mno Mroc Mano Moc
[VIIII VIOC
= 26 × 144_
35 × 100
= 2964
3500
= 0.864
Than
P _T = 58 · 4 0 · 864
Pr = 68,96 KPa.
1. The Vapour pressure of the mixture

Extract 11.3: A sample of the incorrect responses to question 1

Extract 11.3 shows that the candidate wrongly calculated the percentage by the mass of bromobenzene in 1(b) (ii). The candidate also used the wrong formulae to calculate the vapour pressure of the mixture of heptane and octane in the last part of the question.

2.2.2 Question 2: Solubility/Solubility Product and Ionic Product/Acids, Bases and Salts

The question asked as follows:

- (a) Calculate the pH of a sample of pure water at 25 °C. Given $K_W = 10^{-14} \text{ mol}^2/\text{dm}^6$ at 25 °C.
- (b) A 500 cm³ of 0.1 M aqueous solution of CH₃COOH (acetic acid) were mixed with 500 cm³ of 0.1 M HCl solution. If 3 g of NaOH are added to the mixture, calculate the pH of the mixture before and after addition of NaOH, assuming that no change in volume occurs on mixing.
- (c) (i) Although lead(II) chloride is sparingly soluble in pure water, it is soluble in concentrated hydrochloric acid. Explain briefly.
 - (ii) A chemist wanted to separate Al^{3+} and Zn^{2+} using fractional precipitation method. In the first experiment, NH_4OH was added and both Al^{3+} and Zn^{2+} precipitated. In the second experiment, NH_4OH was added followed by addition of NH_4Cl and only Al^{3+} precipitated. Comment briefly on the results obtained in the second experiment.
- (d) Equal volumes of 0.025 mol/dm³ barium nitrate and 0.010 mol/dm³ sodium fluoride were mixed together. Show whether the solution is saturated, super saturated or unsaturated (K_{sp} value of BaF_2 is 1.7×10^{-6} mol³/dm⁹).

The question was chosen by 31,185 (89.8%) of the candidates. Among them, 23,211 (74.4%) scored from 0–6.5; 7,110 (22.8%) scored from 7–11.5 and 864 (2.8%) scored from 12–20 marks (Figure 12). Statistical data show that 7,974 (25.6%) candidates scored a pass mark or above (i.e. they scored 6.5 or above out of the 20 marks). The candidates' overall performance on this question was weak since majority (74.4%) scored below the pass mark.

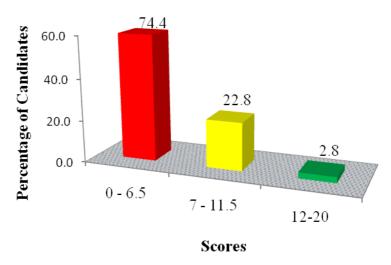


Figure 12: Candidates' Performance on Question 2

The candidates who scored low marks on this question failed to calculate the pH of pure water. They had insufficient knowledge about the ionic product of water (K_W). They also failed to assume that the concentrations of hydrogen ions and hydroxide ions are equal at 1 atm and 25 $^{\circ}$ C in 2 (a). The candidates failed to compute the pH of the mixture between acetic acid and hydrochloric acid in 2 (b). This was attributed to the lack of knowledge about dilution and electrolytes. In part (c), the candidates explained the effect of the formation of complex compound and common ion on the solubility of sparingly soluble salts incorrectly. Moreover, they predicted wrongly the preferential precipitation of ions. They seemed to have no idea about how ionic product (Q_{SP}) and solubility product (K_{SP}) could have been used to predict/determine the preferential precipitation of ions. Extract 12.1 is an example of the incorrect responses to the question.

2a	Sola	
	Kw = 10-14 mol 2/dm6 at	25°C.
	PH = LogPka.	
		DKa + PKb = 14
	Pka=Vkw	PKa =14 - PKb.
		Pka = 14 - 3.8x10-12
	PKh = V10-14	PKa = 14 .
	3.0 ×108.	
	Pkb = 5.8 VID-12.	
	PH = 104 5-8×10-17 14 PH = 1+1-2 1.146	

26,	(CH2 (COH) = SOD CM?
-	M(etta (sott) = or M
	V(HEL) = 50 0 cm
	CHel) = Oul M
	35 of Matt added tog mixture.
	PH =9 before addition
	pt = pla + los [sout]
	Mdant = Concentration melames
	Orl met = loul Bohne
	Come Cestacoutt) = 6 3/dm3
	and of (Hal) = of xxxx = 31610/20

	oll a Characteristic
	pH = pKin + log [CHs cost]
26	1 Deel
	pfb=-lostb
	PH-pKin + log (CH3 costs)
	The state of
	pro zos as
	Plan = 149
	pt = 14 - 100
	()
	pt = pzp et =15
	pt = 15p
	PH=14.
	-
	Add 35

PC (D) lead III) chlorde li spart of y Shill e ignorter
Ploch Hel ame
it is soluble in Concentrated hydrochloric
alid be carse lead of chlamic ions produced by
Concerprated hadrochlore alid but nivoder
lead Campt react with by droxide.
2d Covenfration of burning trate = 6.625 mol/des
Concentration of lodium fromde = 0.010 molfin
Cop = 1 17 X 0-6 mo 3/2mg
form
Form Cane (.
G = 9
92
(0 = .0.025 mol/dm)
Tolomol/3
- Jan
to= 2.5.
10-93
The solution is saturated belowse Kois
greater than KSp'

Extract 12.1: A sample of the incorrect responses to question 2

In Extract 12.1, the candidate used the incorrect formula to calculate the pH of pure water. The candidate responded incorrectly in the subsequent parts of the question.

In contrast, 864 candidates (2.8%) performed well on this question. They calculated the pH of water in 2 (a) and that of the mixture of acetic, hydrochloric acid and sodium hydroxide in 2 (b). This was possible for them because they had sufficient knowledge about the concept of the ionic product of water (K_W) and pH. They understood that the concentration of hydrogen and hydroxide ions were equal; hence, they calculated the required pH correctly. The candidates also explained the effects of common ion effect and the formation of complex compound in 2 (c). This was because

they had sufficient knowledge about the subtopic of *Solubility*. In the last part of the question, the candidates calculated and interpreted the values of ionic product and solubility product to predict the status of solubility of the given sparingly soluble substances. This was associated with their good understanding of the subtopic of *Ionic Product*. As a result, candidates managed to explain the effects of common ion effect and the formation of complex compounds, which increased the solubility of the given sparingly soluble salts. Extracts 12.2–12.4 show sample responses from candidates who performed well on this question.

2	(b) Given. Kw at 25°C = 10 ⁻¹⁴ mol ² /dm ⁶ . Regulared; pH of pure water at 25°C.
	Rowmed: at a one pater at 25°C
	and the state of t
	HaD H tag) + OH ang)
	Then Run - CH+7COH-7
	Since: [H+] = [OH-] = X.
	[H+] = [OH-] = X.
-	. Κω = × ^{\$} .
	. KW = X
	X= VKW
	x = V10-K12
	X= 1 ×10-7M
	Nous:
	pH = -100 [H+]
	PH = -log (1 x10-7)
	ρH = 7·
	: The pH of pure water at 25°C is 7

2 (b) Given
Volume of Ct13COOH (Va)= 500cm ³ Molanty of Ct13COOH (Na) = 0·IM
Molarity of CHOCOOH (Ma) = 0.1M
Volume of HC (Vb) = 500cm ³
Mdanly of HCl (Mb)= 0.1M
Mass of NaOtto added (M)=30
Required, PH of the mixture before and ofter the addition of NaOll.
the addition of NaOll.
Before the addition of NaOtt.
The second secon
CHCOOH + HC
500cm3 500cm3 >->Mixture
0.1M 0.1M

Now molarly of each component in the mixture
for CH2 COOH
McVc = MdVd.
Mara = Mara
Md = Mava
Vd
Md = 0.1M x500 cm3
1000 cm ³
Md = 0.05M
for HC
MeVc = McNd
MbVb = MdVd
Md = MbVb
Vol
Md = 011M x 500 cm3
1000 cm ³

2	b) Md = 0:05M.
	Then;
	HClasi + Clasi
	$CH_3(OOH_{cag}) \Longrightarrow CH_3(OO_{cag}) + H_{can}^+)$
	Since CH2000H is only a weak accid and if dissociates partially, the hydrogen ions (H1) in the mixture are mainly due to HC1
	Then; HC/199 -> H/199) + C/1999 0.05M 0.05M 0.05M
	from; PH = -log CH+7
	PH = - log (0.05)
	PH = 1.3.
	The pH before the addition of NaOH is 1.3
	After the addition of NaOH
	CH3COOH + NaOH >> Mixbre
	CH3COOH + NaOH -> CH3COONA + H2O.
	HCI + NaOH -> NaCl + H2O

2 (b) Considering NaOH.	
Number of males (n) = Mouss Moleur mouss	
n= 30/ 400/mol	
n= 0.075 mol. In 1000cm3 there are 0.075 mol of N	lacti.
Then;	
Then; The molarity of NaOH is 0.075 M.	
On reaching with the mixture the OH-FI NaOH react with the Ht in the mix to produce water.	nom Jure
H+ + OH> H2.O. 0.05M 0.075M 0.05M	
Since the reaction is 1:1 the OH- is to excea reagent;	ho
Amount of OH- remaining after reaction = 0.075 M - 0.05 M	
= 0.025 M.	
Then; [OH-] = 0.025 M.	
POH = - 100 [OH-]	
POH = - 100 [OH -] POH = -100 (0.005) POH = 1.6	
8 (b) Then from; PH'+ POH = 14.	
PH = 14-ρθH.	
PH = 14-1.6.	
PH = 12.4.	
The pH after the addition of 12-4 NaOH is)2,4
(1) is Lead (11) chande is spaningly solide in water become because it ionizes partially its ions.	
In concentrated hydrochloric accel hower Lead (11) chloride forms a complex that shifts the equilibrium to the right restints the increase in the solvality of (11) chloride for this reason Lead (11) (1	ultim
a soluble in concentrated hydrochloric au	ploride
Pb(12 + Conc.HCl -> [Pb(14]2 Soluble Complex	

Extract 12.2: A sample of the correct responses to question 2 (a), 2 (b) and 2 (c) (i)

In Extract 12.2, the candidate correctly wrote the mathematical expressions for the ionic product of water (K_w) ; he/she managed to apply the dilution law, substituted the data, and correctly manipulated the units in parts 2 (a) and 2 (b). Furthermore, the candidate correctly explained the solubility of lead (II) chloride in 2 (c) (i).

05.	11) NH40H => NH4+ + OH-
	A 3+ + 3NH40H -> A 1(OH) 3 + 3NH4+
	Zn2+ + 2NH4011 -> Zn(011)2 + 2Ntlat
	Addition of NH4GI increases The concentration of NH4+ NH4EI -> NH4+ + GI-
	tion of NHa+
	NH4E1 -> NH4+ + G1-
	One to common ion expect NH4+ react with OH- to form NH40H so as to balance the equilibrium Since Zn2+ precipitates at higher concentration
	to form NHaOH so as to balance the aguilibrium
	Since Zn2+ precipitates at higher concentration
	ed DH- compared to Alst, decreased amount
	of OH- allows A1st to precipitate only and
	of OH- allows A1st to precipitate only and not Zn2+, mainly due to common ion effect.

Extract 12.3: A sample of the correct responses to question 2 (c) (ii)

In Extract 12.3, the candidate correctly deduced and explained the solubility of the ionic species given by associating the observation made with the concept of common ion effect.

2-	Na F D Na + F (as)
	Naf + Fas)
	Concentration of = concentration of Na F of F-
	Nat of F-
	ancestrature of F = 0.005millar
	PV
	Ba 5 (4) Ba2+ + 2 F(as)
	(4)
	Kep = [Ba2+]x[F-]2
	But But 2 For
	Iniz Puducet (Qp) Osp = (Barr)x(+)2
	Osp = (Bar)x(+)2
	Qp = (0.0125) x(0.005) Qp = 3.125 x107 mol3/dmg.
	Q10 = 3.125 X10-7 mol3/dm9.

0 -	d) Emil product of Batz is
	3-125 x10-7 mol3/dm9 which is
	Per than Kop of Butz which
	ir 1-7×10-6mol3/dus hence the
	Solution is unsaturated.

Extract 12.4: A sample of the correct responses to question 2

In Extract 12.4, the candidate correctly calculated the value of the ionic product. He/she made an appropriate conclusion after comparing the value of the calculated ionic product and the given Ksp.

2.2.3 Question 3: Carboxylic Acids and Derivatives/Amines

The question was set from two topics, namely *Carboxylic Acids and Derivatives* and *Amines*. It asked the candidates as follows:

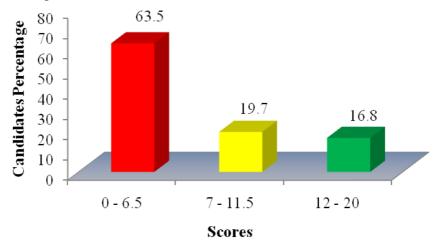
(a) Compound Q is commonly added to foods to give them rum flavour. It has the following structural formula:

$$H-C-O-C-C-H$$

- (i) To which class of organic compounds does the compound Q belong?
- (ii) How would you synthesize compound Q from ethanol and methanol and any other suitable inorganic reagent?
- (iii) What is the IUPAC name of compound Q?
- (iv) Compound Q can react with NaOH in presence of heat. How can you represent this reaction using a chemical equation?

Briefly, comment on the following observations:

- (i) The boiling point of ethanoic acid is higher than that of ethanol.
- (ii) Methylamine is a stronger base than ammonia.
- (iii) Trimethylamine and n-propylamine have the same molecular mass but the former boils at a lower temperature (276 K) than the later (322 K).


(c) Complete the following organic reactions:

(i)
$$NH_2$$
 $NaNO_2 + HCl$ $5 - 10 \, {}^{o}C$

(ii)
$$CH_3CH_2NH_2 + CHCl_3 + KOH \xrightarrow{alcohol}$$

(d) Arrange the following organic compounds in order of increasing their basic strength.

The question was choosen by 23,063 (66.4%) out of the 34,744 candidates who sat for the Chemistry ACSEE 2022. The candidates' performance on this question was as follows: 14,654 (63.5%) scored from 0–6.5, 4,540 (19.7%) scored from 7–11.5 and 3,869 (16.8%) scored from 12–20 marks (Figure 13). These data indicate that 8,409 (36.5%) of the candidates effectively addressed this question as they scored from 7 to 20 marks. Thus, the candidates' overall performance on this question was average in the lower margin.

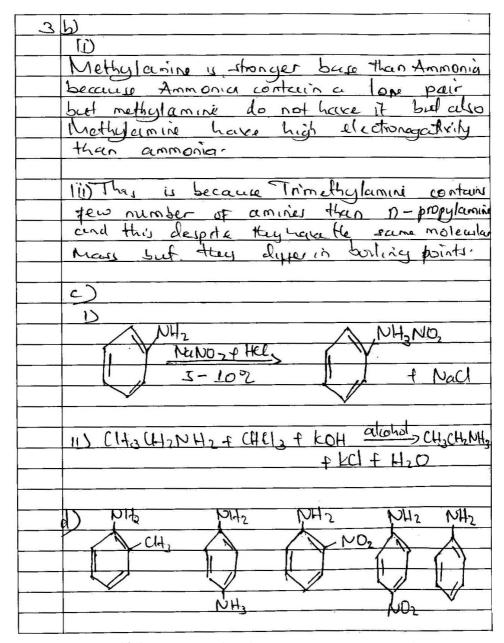
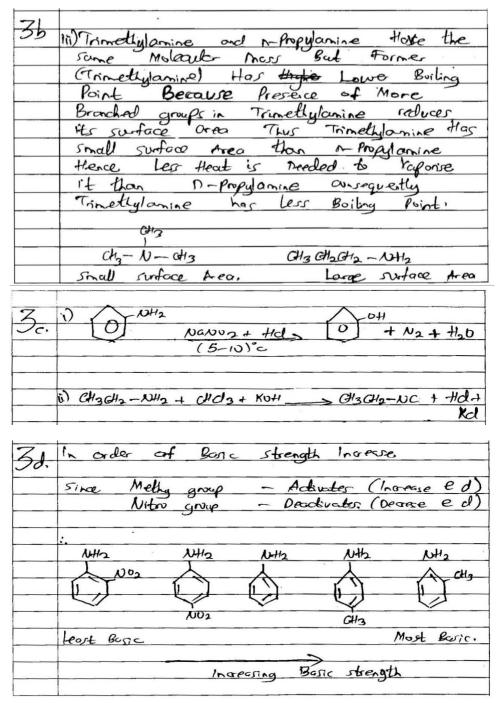


Figure 13: Candidates' Performance on question 3

The majority of candidates who failed part 3 (a) of the question (63.5%), mentioned other classes/functionalities of organic compounds such as carbonyl group and ethers, which were not correct. They were supposed to

identify the functionality of ester, which was presented in the given compound **Q**. These candidates identified the class of the given organic compound **Q**; hence, failed in part 3 (a) (ii-iv). Their weak performance on part (a) of the question was attributed to insufficient knowledge about the subtopics of *Carboxylic Acids* and *Esters*, which comprise the Topic of *Carboxylic Acids and Derivatives*. In part 3 (b), the candidates who scored low marks gave comments which did not address the requirement of the question. This was because they did not understand the concept and effects of hydrogen bonding on organic acids and amines. Thus, they failed to give appropriate comments on the observations presented in 3(b) (i-iii). Moreover, the candidates with low scores gave incorrect products for the reactions and the arrangement of organic compounds in 3(c) and (d), respectively. A sample of such incorrect responses is given in Extract 13.1.

3 a) I The Organic compound belongs to
clay of carboxylic
The compound of can be synthesized from ethanol and methanol by reaction
from ethanol and methanol by reachon
with a strong buse such as NaOH
111.) Ethan - 1 - one
(11.) (11.)
(V) solution
CH, CH, CHOO - P Nach - CH3CHNOCHOO+
H ₂ O
(1) (1)
5) 1)
The boiling point of ethanoic and whigher than that of ethanol because of higher
number of carbons in ethanois will than
in ethanol but also due to presence
of carboxyliz group on the ethanois acid.


Extract 13.1: A sample of the incorrect responses to question 3

In Extract 13.1, the candidate gave carboxylic acid in 3 (a) (i) as a class to which compound \mathbf{Q} belongs instead of an ester. The candidate responded by repeating the requirement of the question in 3 (a) (ii) and named compound \mathbf{Q} incorrectly in 3(a) (iii). Moreover, the candidate gave an incorrect chemical reaction in 3 (a) (iv). The candidate gave incorrect answers in the subsequent parts of the question.

Despite the weak responses to this question by the majority of candidates, 3,869 (16.8%) responded well and scored good marks. These candidates correctly identified the class to which compound **Q** belonged and used ethanol and methanol appropriately to devise the synthesis of compound **Q**. Besides, they named compound **Q** as ethyl methanoate, which was the correct name according to IUPAC rules. Such good responses to this part of the question indicated good mastery of the subtopics of *Carboxylic Acids* and *Esters*. They also managed to associate the concept of hydrogen bonding with the observations given in 3(b). In the last part of the question, they gave correct reaction products and the arrangement of organic bases as per the requirement of the question. Such performance on this part was contributed by adequate knowledge about the subtopic of *Preparation*, *Properties and Uses of Amines* as shown in Extract 13.2.

7	
Da,	i) The compound Belings to Esters.
	à) From Ethanol and Methanol
	@ first
	I would to Oxidize Methanol
	into Methanoic acid / Formic. acids
	b
	CH3-04 + MnO2 -> +1 C-0+ + +20
	*
	To The Methanoic Formic Acid I would use
	with Ethans in Estachration reaction
	Under sulphene Acid.
	O U
	HC-OH + CH3CH2-OH +2504 H-C-O-CH2CH3
	<i>L</i>
	tho
	: The Product would be a
	H-C-0-CH2-CH3
	<u>΄</u>

Z	
Da	iv) / UPAC name of 0
	Ethylmethanoate.
30	(v)
	0
	H C-0-CH2 CH2 + NacH -> + C-0Na + HO-CH2CH2
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	ú Ø
	0+ NOOH -> HC-ONA + HO-CH2-CH3
	Δ
31.	i) Boiling point of ethanoic acid is Higher than that of Ethanol Because Ethanoic Has Breater Hydrogen Bonds Forming ability than Ethanol this is due to presence of double sites of Hydrogen Formation is Ethanoic acid as contains & -OH group thus two
	than that of Ethanol Because
	Ethanoic Has Breater Hudogen Bonds
	Forming ability than Ethand this is
	due to presence of double sites of
	Hydrogen Formation is Ethanoic and
	as contains 6-04 group this two
	3
	Oxygens are possibly used Unlike Ethanol Hence Hydrogen Bonds in At. Ethanoic Acids accounts for its greater Boiling point than Melhanol with one oxygen Hence less Hudrogen band forming ability
	Here Hydrogen Bonds in Atthanoic Acids
	accounts for its grader Boiling joint
	than Methanol with one oxygen Herce
	less Hudrogen band forming ability
71	- Mall . d a t
26	(i) Methylamine is a stronger base than
	Ammonia Because Methylamine contains
	the Methyl group (413-) which is
	an Advicting group that is supply
	ii) Methylamine is a stronger Bare than Ammonia Because Methylamine contains the Methyl group (CH3-) which is an Adviciting group that is supply Chedrons to the functional group While Ammonia Doer not cointain such
	While Ammonia Doer not cointain such
	a group Thus Both Nitrocken in
	Metil thing and tomories contains
-	Lone election Rin However there is
	o group Thus Both Nitrogen in Melly Amine and Ammonia contains Lone electron Prin However there is More electrons descript in Melhylamine than Ammonia due to Added electron from
	A Add of Add of the
	Made I We was road beach from
	Methyl group there Methylamine torily donoter its election Pair than Ammonia terce More Bosino Basic.
	anotes its election Pair than
	Ammonia Herce More Bosina Basici

Extract 13.2: A sample of correct responses in question 3

In Extract 13.2, the candidate responded very well to the requirement of the question. He/she gave the correct explanation and supported it with appropriate chemical equations. Thus, the candidate scored full marks.

2.2.4 Qustion 4: Electrochemistry

The question was as follows:

- (a) During a tour to one of the emerging local industries in Tanzania, it was noticed that some of the machine parts made up of iron were corroding. What do you think would be the factors affecting the extent of corrosion? Briefly, explain three factors only.
- (b) By using half-reaction method, balance the following redox reaction if it takes place in an acidic medium: $Cr_2O_7^{2-}(aq) + HNO_2(aq) \rightarrow Cr^{3+} + NO_3^{-}(aq)$.
- (c) Ethanedioc acid crystal, $H_2C_2O_4$. $2H_2O$, weighing 0.95 g was dissolved in a 0.25 dm³ of distilled water. A 25.0 cm³ of the resulting solution required 33.0 cm³ of potassium permanganate(VII) solution for complete reaction during a titration experiment. Calculate the concentration of potassium permanganate(VII) solution.
- (d) With a reason, predict if the reaction will occur when iodine and bromine are added to a solution containing ions of iodide and bromide both maintained at 1 M. The electrode potential for the reactions are given as follows:

$$I_2 + 2e \rightarrow I^-$$
 E°=+0.54V
 $Br_2 + 2e^- \rightarrow 2Br^-$, E°=+1.08V

This question was attempted by 32,446 (93.3%) of the 34,744 candidates who sat for the Chemistry ACSEE, 2022. The candidates' performance (also summarized in Figure 14) was as follows: 19,550 (60.3%) scored from 0–6.5; 9,360 (28.8%) scored from 7–11.5 and 3,536 (10.9%) scored from 12–20 marks.

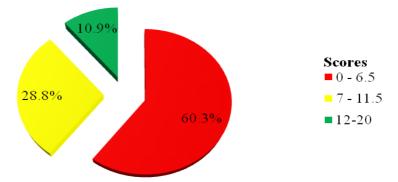


Figure 14: Candidates' Performance on question 4

The candidates' overall performance on this question was average as 12,896 (39.7%) candidates who answered this question passed (i.e. they scored 7 marks or above). Though their overall performance was average, a few of them (3,536, 10.9%) answered most parts of the question correctly. They explained the factors affecting the extent of corrosion and correctly balanced the given chemical equation in 4 (a) and 4 (b). Such good responses to these parts were attributed to their sufficient knowledge of oxidation and reduction reactions as well balancing half reactions. Moreover, the candidates correctly calculated the molarity of potassium permanganate(VII) and observed manipulation of units. In the last part of the question, the candidates managed to predict the occurrence of a reaction using the values of given electrode potentials. The appropriate responses observed from the candidates' scripts in part 4 (c) and 4 (d) were attributed to their competencies in performing redox titrations and applying standard electrode potentials. Examples of the correct responses are shown in Extracts 14.1 and 14.2.

4 @ Corresion; Is the deterioration of the
metal due to chemical reaction
occuses.
FACTURS AFFECTING
(i) presence of metal in destructionical
series.
> The extent of Corrusion depend on
the electrodomical series, when electrodem
series is more reactive the cornsion
will occur faster and the vice.
Versa.
(ii) presence of Carbondavide in water.
=> cornsion occur when curbon dioses
Combine with water, the Cause comosin
Lause, Cor concentration have
greater extent to to cause Cornsian
in presence of water.
(11) Presence of electrolyte;
= mederias which is electrolyte in

U.	@ nature	Cause 1	orression.	in presence u	& muisture
	(Air) . Jo	when	there is	high extent	uf electron
		-	Corrossion	/1)

Extract 14.1: A sample of the correct responses to question 4 (a)

In extract 14.1, the candidate appropriately explained the factors that could affect the extent of corrosion in our emerging local industries.

(b) Given Crop (can) + HNQ (can) - Gr3+ + NOs (can)
Half-reduction equation
Cr2072> Cr3tag)
Cr207° (29) -> 2(r3/ca9)
 (ra 0, 2 cag) -> 2 (r cag) + 7 H2 O
Cr20, 2-(19) + 14H+(199) -> 2(r3/49) +7/420
Crop ag) + 14H+rag) + 600 > 2(r (ag) + 7H20

4 (b) Half-oxidation equation.
HNO2 cag) -> NO3 cag)
HNO2 (ag) + H2OH) - 5 NO2 (ag)
HNO2(99) + H2OU) -> NO3(99) + 3Htcs)
HNO2009) + H2Ou) -> NO31097+ 3Htog) + 2E
Overall equation
3 S HNO2000) + H2Q1) -> NO3-1000) + 3H200) + 2F
1 (Cr20709) + 14H++60 -> 2(r3+ + 7H20u)
(3HNO2009) + 3H2O4) -> 3NO3 (019) + 9Ht09) + 6E
(r,072 caq) + 14H+ +60 -> 2(rcaq) + 7H2Ou)
3HNO2 cag) + C202 cag) + 5H+ -> 2(23+ 3NO3 int) 4H20 u)
The overall balanced redox reachon is as follows
3HNO2mg) + Cr2O2 (29) + 5H+ -> 2Crc99) + 3NO3-+
4H2Ou)

4	(c) Given
	Mous of H2C2Q1. 2H2O = 0.950 Volume of water = 25 0.25dm³ Volume of H2C2Q1. 2H2O und = 25cm³ Volume of KMnOy used = 33cm³ Required; Concentration of KMnOy.
	Volume or mater = 26 0,25 dm3
	Volume of H2(200, 2H2O upd = 25cm3
	Volume of KMnOv used = 33cm3
	Required; Concentration of KMnOy.
	Consider the reaction
	C20 (rag) + MnOy -> Mnot + CO2 Then: MnOy (ag) -> Mnotag) + 4H2O(1) MnOy (ag) + 8Htag) -> Mnotag) + 4H2O(1) MnOy (ag) + 8Htag) -> Mnotag) + 4H2O(1) MnOy (ag) + 8Htag) + 5ē -> Mnotag) + 4H2O(1) L> Haff-reduction equation. Also:
	Moore - Most
	Man Tana > Magtana) + 4Halla
	Mon-con + 8Ht - Mostron + 4Ht Our
	Manua coal + 81+1, + 50 -> Matrices + 4Ham.)
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	> Half-reduction equation.
20 11200	Alco:
	$C_0O_0^2(q_0) \longrightarrow CO_0$.
	(2012) -> 2002
	C20102-(ag) → 2(O2 + 2E
	Alw, CoOy2ing) -> COa. CoOy2ing) -> 2COa. CoOy2-(ag) -> 2COa + 2E Shalf - Oxidation equation
	Overall equation. 21 MnOyrag) + 8/1+ 50 -> Mnog) + 44201) 51 C20112-(ag) -> 2002 (a) + 20
	23MnOurag) + 8Htg) + 5E -> Mnrag) + 4H2Ou)
	51 (20112-(ag) -> 2(U2 (g) + 20
	(2NO) = 1 1/4+ 100 - 20 Most + 8 Home)
	(2MnOy cag) + 16H+ + 10e -> 2Mna+ + 8H2OU) 5 (2042-(ag) -> 10 CO2 + 10e
· · · · ·	2Mn 04 (24) + 5(204 (24) + 16H (24) -> 2Mn (24) + 10CO2 + 8H2O10
4	E) from the balance oquation:

4	O from the Edanced equation: None = 2 None = 5
	DMOOU = 2
	$\Omega_{c_2O_4} = 5$
-	,
	mm M
	Monoy VMnoy Mnoy
	Manore Valore Diago
	THE POPPER THE PROPERTY OF THE POPPER THE PO
	Margaria = Margaria Vanor Comon =
	- Coa Vison Vison
	MMnoy = Mczay2 - Vczor MMnoy - VMnoy - Nczoy2 -
	Bot's
	Mc Mass
	Mcoog2 - = Mass Molarmass x Volume.

4 (C) from the balanced ognation.
$ \frac{\bigcap_{\Omega \cap \Omega } - = 2}{\bigcap_{\Omega \cap \Omega } - = 5} $
1/C2O4-=5.
From
From Mc2042-Ve2042- = Pe2042-
Minor Vinor Minor
THINDY MINDY
MMnoy- = Mcgap-Vcaoy MMoar
Vmay - Reage-
But;
Mcooup = Mass Molarmass x Volume.
Mizour = 0.959 126glmol x 0.25
126glmol X 0.25
Mc204°- = 0.03 M.
Then;
$M_{MNOy}^{-} = 0.03M \times 25cm^{3} \times 2$ $33cm^{3} \times 5$
Barn v 2.
Mmnoy = 9.09 x10-3 M.
,
. The contration of KMnay is 9.09 X10-3M

4: (d) Given.
I2 + 2€ →2I FO= +0.54V
12+2€ →2I FO= +0.54V Br2+ 2€ → 2Br, FO=+1.08V
The reaction will occur since Is is more
reactive than Brs. This is due to their
electrode potentials of iacline being more negative than that of Brs. Is will act as anode and
than that of Brs. Is will act as anode and
by as cathode.
Erell = Erathode - Earode.
Erell = Erathode - Earode . = 1.08V - 0.54V
= 0.54V.
Sina the Eim-f is positive a reaction is
likely to occure when i

5: 6) is Periodialis is the repetition of a chemical
property of equal intervals WHILE
Dipagnal relationship is the similarly
lip chemical proporties holiver two element
of two different periods and groups that are diagonally positioned in the periodic table
dragonally positioned in the periodic table
iy In the reverberator hot air reach with
Coke to produce CO2.
$C + O_2 \longrightarrow CO_2$.
The O2 romad med is reduced by whe
to produce carbon monoxide wy which is
the main reducing agent.

Extract 14.2: A sample of the correct responses to question 4 (b-d)

In Extracts 14.1 and 14.2, the candidates correctly addressed the asked questions and scored good marks.

Conversely, 60.3 per cent of the candidates did not perform well on this question. Their responses indicated that they had insufficient knowledge of the factors affecting the extent of corrosion asked in part 5 (a). Likewise, in parts (b) and (c), the candidates were not knowledgeable about how to balance redox reactions in acidic medium. Hence, they failed to calculate the molarity of potassium permanganate solution. In part (d), the candidates were knowledgeable about how to use the value of electrode potential in calculating the cell potential. Hence, they failed to predict the feasibility of the redox reaction between bromine and iodide ions. Extract 14.3 is an example of the incorrect responses to question 4.

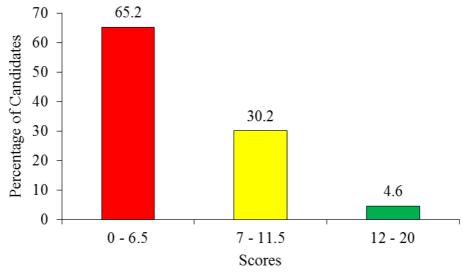
1 a Presence al mate
4, a) Presence of water.
Through the presence of water in iron
EAST Iron can easily ende away its
surface since Iron and water will
react and form nut.
- Availability of Oxygen gas.
In any Iron motal which is not prevented
either by the method nesting will take
Place since oxygen have the tendency of
forming next when reacted with more.
- Availability of Daygen gas. In any Iron metal which is not prevented either by the method nisting will take place since anygen have the tendency of forming nust when reacted with Irone. Fe + Q -P FeO,
- Pressence of moisture.
In Iron surface when there is some sort
of moisture it is easy for the iron to be
enoted and camed or weared away since
when moisture is exposed in mon surface
form must.
(orr) rusc.
b. Soln.
b), Soln.
given equation
given equation (croposition) Crosty Notag),
Reduction.
Crg. Ug - D Cr
Cr. 0,2 Cr3++7H2U
14H + Cr (12 - + Cr3+ + 7H, 0
14H+Cr2000-0 Cr3+7H200+E

4 b.	Oxidation. half-reaction,
7 0	HNO - NOT
	1100 11110
	HNO2 - NO- H20+HNO2 - NO-
<u> </u>	
	H2O+HNO299> 3H+NO3-+ R
	11 7 1111
	H20 +H1200 - 23H + NO + E
	Adding two half reaction to get net.
	equation,
	equation, 14H+ Cr. Cray + > Cr. 7+7H20+e
	H20-9 HN0 2 011 1110 = 2
	H20-9 HNgg) -> 3H+Ng-+ &
	net equation
	11H+ Cr2 O2 + HN9 - Cr + 6H2 O+ NO3
c.	Mass of Ethanedlec and = 0.95g.
	mass of Ethanedlec acid = 0.95g.
	Volume of distilled water = 0.25 dm
	Volume of solution or 25.0 cm.
	Volum of Potassum promar(VI) 83-0 cm
	Required To Calculate concentration of polarium permanagenate (VII) solution
	To calculate concentration of polarium
	permanganate (VII) solution
	mom.
	Concentration gldm = mass in g.
	volime (d/m²)
	= 0.95g 33.*\moo
	33.*(000

4	e 0.95q.
,	e 0.95g.
	Concentration = 28.7889ldm.
	<i>—</i>
	The concentration of Potassium permanga
	nate (VII) Solution is 28.788 gldm.
	ds. 1, +2e-+1"
	d). 1, + 2e-+1" Br, +2e-+2Br"
	Brf T2+Br2-1 2Br! E.
	There will be reaction since both
	electrode potential of 1.62%.
	Electrode potential of 1.62%.

Extract 14.3: A sample of the incorrect responses to question 4

In part (a) of Extract 14.3 (a), the candidate confused the concept of conditions for corrosion and the factors affecting the extent of corrosion as a redox reaction. Furthermore, in parts (b) and (c), the candidate failed to calculate the molarity of potassium permanganate solution. In part (d), the candidate failed to use the value of electrode potential to calculate the value of cell potential. Hence, he/she failed to predict the feasibility of the redox reaction given.


2.2.5 Question 5: Periodic Classification / Extraction of Metal

This question had three parts, namely (a), (b) and (c). The question was as follows:

- 5. (a) (i) What is the difference between periodicity and diagonal relationship?
 - (ii) How is tin reduced by thermal method in the reverberator furnace? Explain briefly while supporting your answer with appropriate chemical equations.
 - (b) "Lithium and magnesium relate diagonally in a periodic table of elements." By giving three reasons, briefly justify this statement.

(c) The metallic characters of the elements change across the period. Illustrate this concept with reference to chlorides and hydrides of the elements of period 3.

This question was attempted by 29,498 (84.9%) candidates; out of whom, 19,237 (65.2%) scored from 0–6.5 marks, 8,895 (30.2%) scored from 7.0–11.0 marks and 1,366 (4.6%) scored from 12.0–20.0 marks. Figure 15 summarizes the performance of the candidates on this question.

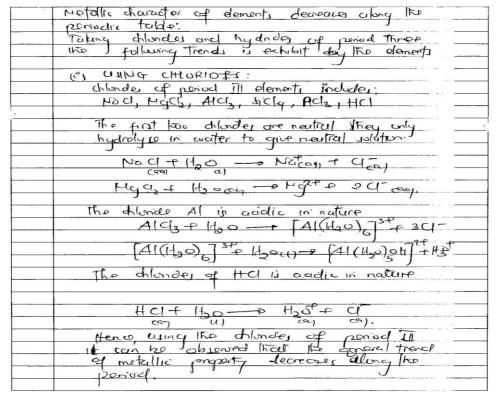
Figure 15: Candidates' Performance on question 5

The general performance on this question was weak since majority of candidates (19,237, 65.2%) scored below 7.0 marks.

The analysis of the candidates' responses to this question revealed that those who scored weak marks failed to comprehend the concepts of reduction based on the reactivity of metals. This caused them to fail to use the common reducing agents such as carbon and carbon monoxide to reduce cassiterite ore (stannic oxide) in part (a) (ii). In part (b), the candidates were not knowledgeable about the causes of the diagonal relationship within the periodic table; hence, they gave incorrect responses about the physical and chemical properties of lithium and magnesium. In part (c), they lacked knowledge of how atomic size influences the trend of metallic characteristics in period 3. Extract 15.1 is illustrative.

-	11 1- Paral II H - Im
5 q,	i). In Periodicity there is difference between en element on period to the element of the first groperrod. WHILE in diagonal relationship the element of the
	en element on period to the element
	of the first gro period. WHILE in
	diagonal relationship the element of the
	different period and group have the
	Same or similar themis properties.
	11). The fin is reduced by thermal method in reverberator humance through heating
	reverberator himanco through heating
	and addition of carb calcium
-	Carbonate which helps in removing
	all impulse which raps in rangering
	all impunites that contaminate with
	7111.
	tin. Sno -> Sn + Qg,
	3 3) **
Ъ.	Lithium and magnesium relate diagonally
	51000
	i) They both increase their atomic
	i) They both increase their atomic Size down the group due to the increase in number of Shells. ii) Both Lithium and magnesium
	the increase in number of shells.
	ii) Both Lithium and magnenium
	are metals
	(70) Their extensic radius decrease
-	(III) Their atomic radius decrease from left to right deross the
-	11011 left to right allows the
-	period.
_	The motalla command
C.	
	decrease due to the nuclear effect
	size due to the increase or presence
	Size dul to the increase or presence
	of Shielding effects and number of
5 c	Shells.
	Sodium chlorides arome the period
	decrease in size due to increase in num
	decrease in Size due to increase in num protons number but down the group it
	decrease due to the Increase in number of
1	Chall action!

Shell or orbitals.


Extract 15.1: A sample of the incorrect responses to question 5

In Extract 15.1, the candidate wrote about the decomposition of stannic oxide in the presence of calcium carbonate instead of using carbon / carbon dioxide for the reduction of stannic oxide (cassiterite ore). Moreover, the candidate confused the concept of diagonal relationship with periodic trends such as atomic size, ionisation energy, metallic character and electron affinity. Furthermore, he/she candidate failed to illustrate the influence of atomic sizes on metallic characters of the chlorides and hydrides of the elements of period 3.

However, a few (4.6%) candidates who scored high marks on this question were knowledgeable about the extraction of metals, periodicity and periodic trends. Henceforth, they correctly explained the thermal reduction of tin and the diagonal relationship between lithium and magnesium. Moreover, they managed to illustrate the metallic characteristics of elements across period 3 in terms of the chemical properties of their chlorides and hydrides. Extract 15.2 is a response from one of the candidates with high scores on this question.

05 @ (i') rejudicity - refer to the reoccurrence of
o5 @ (1°) Periodicity - refer to the reoccurence of a particular property in a given arrangement of elements
elements
MHILE
Diagonal relationship - reges to the reremblance in chemical proporties between the first element in a particular group diagonally with the second element in the next group.
chemical jongraties between the first element in
a partiaular group diagonally with the second element
in the next group.
V /
The themal reduction of this in the resolvature
2002x11+3C -> 54+3co
In the reversate tin is reduced using coke:

05	(i) Both Eithium and magnessum burns in air to
	4 (1° 5) + Q > > (1) 0(1)
	Hgu) + oxon - Ngou.
	(ii) Both Eithrum and Hagnesium bourse is aux to react, with Militagen to form nitrides
	6 lice) + Macg) - 2 LizMan
	3 Mycn + Nocan - Mg, Necy
	(ii) Both Ellium and Magnesium cuibonates,
	(ii) Both Ellhium and Magnessium cuibonates, hydrogen cubonates, and hydroxides decompose under heat to form oxide, 3li OH Heat 10000 - 1100
	Mg(ott), A Mgu + H20.
	lizes - A Plizon + Coz
	Hywy - Myo + Cuscan

(11) USING HUDRID & OF PERIOD [] The hydroes of period III indudes: Vall, right, Al Hz, PHz, & Itz, Hzs,
The first two hydrodes of period I are ber
The first two hydrodes of period I are ber basic in nature. They hydrolye in water to give basic solution
19/2017 1/20 19(0H) 1/20)
The hydrids of Al are amphateric in malite. They recess with both bases and auds
Al Ho + Ho - Al (OH) + Ho (a)
Al Cotly + Nach - No Alog + Ho
Bare property A1 (0+1) 2+ He1 - A(C/3+ Hzo
The hydride of phosphone known as phosphine is neutral. It does not hydrolyte in water due to composable electropogalisty dysperace with hydrogen.
silane, sittle hydrolyse to for silium hydrixude
5/14-1/20 - 5/0H)p-1/20
The remaining hydrides are acidic in native Its conf the Hours 1207.
Here, metallic character decreases along the

Extract 15.2: A sample of the correct responses to question 5

In Extract 15.2, the candidate managed to write the thermal reduction equation between the reducing agent (carbon monoxide and carbon) and stannic oxide ore correctly. In addition, he/she gave correct explanation and

equations showing how lithium and magnesium are diagonally related. Likewise, he/she wrote the correct chemical reactions of the hydrides and chlorides of period 3 elements with water based on the trend of atomic size across the period.

2.2.6 Question 6: Polymer / Transition Elements

This question comprised of four parts: (a), (b), (c) and (d). The question was as follows:

6. (a) By giving a reason, arrange the following complex compounds in order of increasing their magnetic properties.

$$[MnCl_4]^{2-}$$
; $[FeF_6]^{4-}$; $[Fe(CN)_6]^{4-}$

- (b) Briefly explain the following:
 - (i) A concentrated aqueous copper(II) chloride solution is bright green in colour but changes to light blue when diluted with water.
 - (ii) The d orbitals for both zinc and copper contain paired electrons, but copper is considered a transition element while zinc is not.
- (c) You have been employed as a chemist in a chemical industry which plan to use transition elements as catalysts in their production. Briefly, explain four applications/uses of transition elements as catalysts. Support your answer with one chemical equation in each case.
- (d) (i) With an example in each case, explain two types of polymers based on physical properties.
 - (ii) Why Tanzania government banned the use of polymers obtained from ethylene monomers? Briefly, explain.
 - (iii) How does the structural differences of High Density Polythene (HDP) and Low Density Polythene (LDP) account for their differences in behaviour and nature?

This question was attempted by 23,435 (67.5%) of the candidates. Out of whom, 15,619 (66.7%) scored from 0–6.5 marks, 5,962 (25.4%) scored from 7–11.5 marks and 1,854 (7.9%) scored from 12.0–20.0 marks. Figure 16 summarizes the candidates' performance on this question.

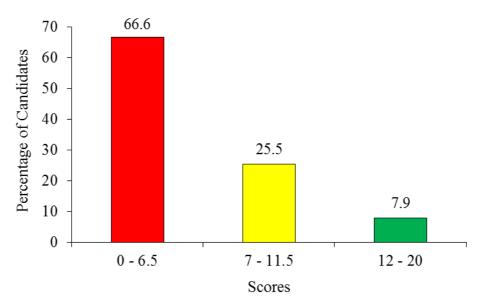


Figure 16: Candidates' Performance on Question 6

Figure 16 shows that the general performance on this question was weak; the majority of the candidates who attempted the question (66.7%) scored below the pass mark (<7 marks).

Their responses show that candidates lacked the required competencies in understanding the topic of *Polymer* and *Transition Elements*. For example, in part (a), they were not knowledgeable about the oxidation number of central metal atoms. This resulted in the failure to correlate the number of unpaired electrons present in the *d* orbital in relation to the strength of the ligand bonded to the central metal atom. In part (b), the candidates lacked knowledge about the excitation of electrons in relation to colour formation in transition elements. In part (c), they demonstrated inadequate knowledge about the conditions that favour transition elements to exhibit catalytic property. In part (d), they showed insufficient knowledge of how the structures of different polymers affect the strength of Van der Waal's forces, which differentiate the behaviour and nature of different polymers as shown in Extract 16.

6.	(b) (ii) copper is considered as a transition element becay
	1e copper is extracted from its cred by wing punt
	es (cuters) and when is extracted can be used in-
	cooking pans, fungicide and positicide but zinc de
	es not. This is force even it coppor and zinc-
	contain paire d'electrons.
	Controller Faire 1 Statement 1
	,
	(c) The Application of the transition element are asto
	1/aw] 1
	(i) transhin elements are used in contang pan's
	example copper (cu+),
	(ii) transition elements are used in production of
	scap
	(ill) transition elements are used to form the com
	pound when two or mor elements are combin
	e P.
	(iv) transition elements are used for techniq fung
	cide and pectrade. example copper (cut)
	(d)(1) two types of polymers are as follows.
	· Natural polymers
	- Thu has got example of Natural number its
	shown bolow!
	CH2 CH-
	ccc
	CH2 CH3
	CIT2
Car	(d) (i) · plantic polymers.
Q.	- Thu is a type of polymed which is in plastic.
	product.
_	Pro au G
2	(17) Tanzania government banned the use of polymon
	obtained from ethylene monomers, This is because
	polymed normally being in a nee of or monomed
	where by they halpeach other and ethylenems
	nomer is used to obtain polymers that why is used so as to full-All the use of the government
	themore she to some of the accommon
-	, , , , , , , , , , , , , , , , , , ,

Extract 16.1: A sample of the incorrect responses to question 6

In part (a) of the Extract 16.2, the candidate gave the reason for the observed sequence of increasing magnetic properties of complex compounds being

"ions" instead of connecting the concept of oxidation state of the central metal atom with the number of unpaired electrons in the *d* orbital. In part (b), the candidate presented issues related to the extraction of metals instead of integrating the concept of *d-d* transition of electron to account for the colour formation in the transition elements. In Part (c), the candidate lacked knowledge about the conditions that favour transition elements to exhibit catalytic property. In part (d), the candidate presented issues that do not address the demand of the question. He/she was supposed to associate the explanations with the structures of polymer and the strength of van der Waal's forces that give different behaviour and nature of polymers.

In contrast, the candidates who scored high marks in this question were conversant with the concepts of the types of polymer based on their physical properties as well as their side effects on the environment. Furthermore, they showed knowledge about the formation of colour, magnetic and catalytic properties of transition elements as shown in Extract 16.2.

06	(a) The following is the order of increasing magnetic preparties:
	[Fe.(CN)] [FeF6] [MnQ4]
	REAJON. Increase in magnetic property.
	Marganere has the ability form were unpaired electrons at the surve
	time, disonie 4 a neak ligard here course little separation
	here electrons occupy by set and togetest orbifety according to
	sufface principle forming more un paired electrons here move
	regrette drante.
	a CN is a strong ligard here course large separation and the
	electrons fill by set and try set orbitals according to Hund's mule
	home less un poise de chrons thus less magnetic purposes as
	coppared to de that is need being here from more
	unparied electrone by dufbau filling rule here more
	magnetii.

06	e Dus estatus cons cons constatutos mates and s
	become hydrated to form the complex compound
	that make it turn to light blue radulian from
	green colour.
10000	
	(ii) Zinc is not a transition element because the d-
	orbital" filled par during romachin but as
	for copper the d-orbital still contain the unprin
	orbitals when excited by supply of everyy.
	a The following are applied hims of transition elements as abelyst
	J
	· Nickel is used in cotalytic hydrogenation of undaturated
	organic compounds; This results to formation of saturated
	Example: CH2 = CH2 + H2 (g) - 2000 CH3 CH3.
	`
	o Iron is used in Haber process
	- In this reach on Iron fillings cately so the formation of amount
	from Hydrogen and vibragen gases.
	Example: M2 of 31tz cos 2 2Ntto cos AH = x KJ most.
W 330000 III	· Varadium penta oxide (Vn2O5) is used in contact
	proce is s
	In this reachin oxygen gas reach with SD2 to form
	503 which then dissomes in water to form the
	Example
	Ozy + 50zy + 50zy + H20 - 1 H2504.
	· Manganere oxide is used in the laboratory to prepo

06	(1) oxygen gas from Hydrogen peroxides: MnOzaets as a
	catalyst:
	Excube. MuOa
	H2O2 - H2O + O2(9)
	<u> </u>
	*
	, OS TI ALL STEEL ALL DIS
	d) (1) The following one the two types of polymers
	· Fibres - These are polymens with very strong interndenta
	forces of attraction between its polymenic chains. Such
	forces may be Hydrogen bonds. The fibres thus home
	high tensile strength and their chains a long.
	Example, miludo polyesters
	· Elationers - These are polymor whose molecules ha
	her cross linking such that its chains can be very
	lace cross linking such that its chains can be very
	long. At noon temperature they behave like dustice
	material.
	Exchple; vulcanized rubber.
	(ii) Robymers derived from ethylene called polyethenes are
	formed by additional polymenisation precess as the result
	they are non-biodegradable here do not decay or
	decomposed by microorganims in the soil. This means
	that They contribute to environment depradation as they
	stay langer; Include all plastics.
	3,000
	in Extent in branding
	(ii) • Extent of branching + High density polythene are less or not branched this makes
	them to be compact and hence high devisity and relatively
	brightenile strength compared to how density polythones that
	are more branched home how density and for this strength
06	(d) (iii) = since high density polytheres are less/not branched oxists as
	long polymeric chains that we very compact and completely
	insulable; This is their nature.
	but, low density polytheres are more branched and do not
	form bong chains but grobules and new be shighly whole since their nucleules are free to interest with notewes

Extract 16.2: A sample of the correct responses to question 6

In Extract 16.2, the candidate correctly presented the effects of the strength of ligands (weak ligand/strong ligand) on the arrangement of electrons in the d orbital. She/he also explained well the oxidation state of central metal atoms in relations to the magnetic property of the given complex compounds. Furthermore, the candidate wrote the correct answer on the disadvantages of polyethylene based on their polarity when they are exposed or disposed to the environment.

2.3 132/3-CHEMISTRY 3

This was an actual practical paper which was in three equivalent alternatives, namely 132/3A Chemistry 3A, 132/3B Chemistry 3B and 132/3C Chemistry 3C. The candidates were required to sit for one of the alternative papers. Each alternative paper consisted of three questions which carried a total of 50 marks. Question one weighed 20 marks, while questions 2 and 3 carried 15 marks each. The candidates were examined in the topic of *Chemical Analysis* in all of the three alternative papers. The questions were set from the subtopics of *Volumetric Analysis*, *Physical Chemistry Analysis* and *Qualitative Analysis* for question 1, 2 and 3, respectively. The candidates were required to answer all questions. The pass mark for question 1 was 7.0 while for questions 2 and 3 was 5.5.

Results shows that the overall performance was good; most candidates (80.95%) scored average marks or above. The overall performance in the practical examination was the average of the candidates' performance on questions 1, 2 and 3. The analysis of each question in the practical papers is as follows:

2.3.1 Question 1: Volumetric Analysis Chemistry 3A, 3B and 3C

Question 1 of 132/3A Chemistry 3A was as follows:

"You are provided with the following solutions:

A: 2.96 g of a mixture of sodium carbonate and sodium bicarbonate in a 500 cm³ of an aqueous solution;

B: 1.46 g of a pure hydrochloric acid in a 0.4 dm³ of an aqueous solution:

MO: Methyl orange indicator.
POP: Phenolphthalein indicator;

Procedure

- (i) Pipette 20 or 25 cm³ of A into a 250 cm³ titration flask.
- (ii) Add two drops of **POP**.
- (iii) Titrate this solution against **B** until a colour change is observed.
- (iv) Record the first titre value.
- (v) Add **MO** to the same solution.
- (vi) Continue titrating until a second colour change is observed.
- (vii) Record the second titre value.
- (viii) Repeat the titration procedures (i) to (vii) three times and record your results in a tabular form.

Summary							
	cm^3 of solution A	required _		cm^3	of so	olutio	n B
when POP	was used and	cm^3	of solution	1 B	when	MO	was
used.							

Questions

- (a) Based on the indicator used, state the colour changes during the titrations.
- (b) Calculate the concentration of solution A in moles per litre when;
 - (i) **POP** was used.
 - (ii) MO was used.
- (c) Calculate the percentage of sodium carbonate in solution A."

Question 1 of 132/3B Chemistry 3B was as follows:

"You are provided with the following:

AA: A solution of sodium oxalate, $Na_2C_2O_4$ made by dissolving 3.35 g of the salt in a 0.5 dm³ solution;

BB: A solution of potassium permanganate, KMnO₄;

CC: A solution of hydrated iron(II) ammonium sulphate, $FeSO_4(NH_4)_2SO_4.XH_2O$ made by dissolving 33.3 g of the salt in distilled water to form 1 dm³ of an aqueous solution;

DD: Dilute sulphuric acid;

Thermometer.

Theory

Standardization of **BB** solution is done by titrating it against the standard solution of **AA** in an acidic medium. The resulting reaction equation is as follows: $2MnO_4^- + 5C_2O_4^{2-} + 16H^+ \longrightarrow 2Mn^{2+} + 8H_2O + 10CO_2$.

The standardized $KMnO_4$ is then titrated against CC whose number of molecules of water of crystallization can then be calculated. The resulting equation is as follows: $MnO_4^- + 5Fe^{2+} + 8H^+ \longrightarrow Mn^{2+} + 5Fe^{3+} + 4H_2O$.

Procedure

Part I

- (i) Measure 10 cm³ of solution **AA** into a titration flask and then add 10 cm³ of solution **DD**.
- (ii) Heat the contents near boiling (about $80^{\circ}C$).
- (iii) Titrate this hot mixture against solution **BB** from the burette until there is a colour change.
- (iv) Repeat the steps (i) to (iii) to obtain three more readings and record the results in a tabular form.

Summary	
cm³ of solution AA required	cm ³ of solution
BB for a complete reaction.	

Part II

- (i) Measure 10 cm³ of solution **CC** into a titration flask and then add 10 cm³ of solution **DD**.
- (ii) Titrate the reaction mixture against solution **BB** from the burette until there is a colour change.
- (iii) Repeat the steps (i) and (ii) to obtain three more readings and record the titration results in a tabular form.

Questions

- (a) Calculate the:
 - (i) molarity of potassium permanganate.
 - (ii) concentration of potassium permanganate in gdm⁻³.
 - (iii)molarity of iron(II) salt.
 - (iv) concentration of anhydrous iron(II) salt in gdm⁻³.
- (b) Find the value of X in the formula $FeSO_4(NH_4)_2SO_4.XH_2O.$ "

Question 1 of 132/3C Chemistry 3C was as follows:

"You are provided with the following:

K: A solution of 7.45 g of an impure hydrated sodium carbonate in a 500 cm³ of an aqueous solution;

L: 1.825 g of hydrochloric acid in a 500 cm³ of an aqueous solution.

POP: Phenolphthalein indicator;

MO: Methyl orange indicator.

Procedure

- (i) Pipette 20 or 25 cm³ of a solution **K** and put it in a clean conical flask.
- (ii) Add two drops of **POP**.
- (iii) Put solution **L** into the burette.
- (iv) Titrate solution L against K using POP until the colour change is observed.
- (v) Add two drops of **MO** and continue to titrate until further colour change is observed.
- (vi) Repeat the procedures (i) (v) three times and record the results in a tabular form.

Questions

- (a) Calculate the average titre value when:
 - (i) **POP** was used.
 - (ii) MO was used.
- (b) Write a balanced chemical equation when;
 - (i) **POP** was used.
 - (ii) **MO** was used
- (c) Calculate the total overall average volume of the solution L used for complete reaction with the solution K.
- (d) Write the overall reaction equation of the L and K.
- (e) Calculate the percentage purity of the hydrated sodium carbonate.

Question 1 was attempted by all 34,735 candidates. Their performance on question 1 is summarized in Table 1.

Table 1: Candidates' Performance on Question 1

S/n	Scores	Number of Candidates	Percentage of Candidates
1	0.0 - 6.5	2,164	6.2
2	7.0 - 11.5	10,135	29.2
3	12.0 – 20.0	22,436	64.6

Their overall performance on this question was good. A total of 32,571 candidates (93.8%) scored an average mark or above (Table 1). The candidates (64.6%) who scored high marks on this question had adequate skills in volumetric standardization. In alternative A, the candidates managed to standardize the mixture of sodium carbonate and sodium bicarbonate using hydrochloric acid. In alternative B, they managed to standardize acidified potassium permanganate by using sodium oxalate. Hydrated iron(II) ammonium sulphate with an unknown number of molecules of water of crystallization, **X** was titrated by using standardized potassium permanganate. In alternative C, the candidates managed to standardize impure hydrated sodium carbonate using hydrochloric acid. Extracts 17.1, 17.2 and 17.3 are samples of the correct responses to question 1 in alternative A, B, and C, respectively.

1	TABLE OF RESULTS.					
	TITRATION	Pilo	o t	1	ð	3
	Inited readings underpop	/ cm2	0.00	0.00	15.30	0'00
	Final readings under (pop) (com	1	6.90	6.80	22.50	7,20
	Titre volume of Popla	1	6.90	6.80	7. 20	7,20
	which reading under most		6.90	6,80	22.50	7.20
	Final reading under M	1020	1 0000000000000000000000000000000000000	15.30	31.30	16.20
	Tite volume of Mic			8,50	8.80	9.00

 Everage volume when (Mo) was used
V = V, +v2
V = 8.5+8.8+9.0 (cm3)
v = 8.80 cm2
Averago volumo when (P.O.P) was
$V = 6.80 + 7.20 + 7.20 \text{ (cm}^3)$
 v = 7.10cm2.

1_	Summary.
	20 cm² of solution A required 7-10 cm3 of
	solution & when Pop were used and
	8.80 cm2 of solution B when Mo was
	8.80 cm² of tolution B when MO was
	- The pipette wed was sooms,
	- The swello used was sooms,
(a)	- When P.O.P was used to colour
	- When P.O.P was used the colour changed from PINE to whowless.
	-
	- when M.O was used the colour
	- when M.O was used the colour change of from yellow to red,
	, -
(b)	Solution
	Required: concentration of wollders
	A in moles per lite when
	(i) Prop was used
	Naz coj + Hcl POP > NaHcoj + (eq) (eq) Need
	(eq) (eq) Nead
	(94)
	No lenty (Ma) = concentration
	Molerity (Ma) = concentration moler mass
	concentration of acid= mass
	Volume
	= 1.463
	0490

1(1)	concentration = 1.46(5)
	ο·φ (dm²)
	= 2.65 g/dm2
	Asilat (Ma) - 2:6501-3
	molanty (Ma) = 2.629 cms
	Molanty (Me) = 01 mol/dm2.
	Do-last of I to (M) = 2 - s. I
	molarity of best (Ms) - ? required
	Va) = 7.1cm2.
	0 < -1
	n b = 1
	· from
	Mava - na
	MENE DE
	0-1 x 7-1 = 1
	M5 x 70
	Ms = 7.1 x0.1
	20
	MP - 0.0322 wo)/qmj
	. + 1
	P.O.P was used 11 0.0355 mol/dm
	1.0.1 mid 0.45d 11 0.0222 4.01 Jam

1(b) (11) When M.O was used
VP.O.P + VNAHCOJ =
National Holand Nad of Cozolt H200
Mara = na
Nation of Hel mo place of H20 + Co2 (eq) (q) (q) (1) (9
0.188.80 = 1
W7 X 5 0 1
Ms = 0.044 mol/dm2
i The concentration of solution A When Mio was used 12 0.044mol/dm
(c) solution
Required: lie perentage of sodium corbonate in solution A
sodium carbonate in solution d'
concentration of the mixtue
Conjugit Zi Conj
= mail
· Simme

1 (c)	concentration = 2:969
	4mb (4001)
	(1006)
	= 5,920/dm3.
	Also: concentration of sodum consons
	concentration = molenty x molormass
	= 0.0322 × 106
	= 3.762,974~4
	Tien;
-	Paradana as No. 12 - concertation us
	Percentage of Newcon = concentration of New conxider
	Concentration of
	mix/me)
	= 2.763 x100%
	5.92
	= 60.56%
	in solution A 11 63.56%.

Extract 17.1: A sample of the correct responses to question 1 in Alternative Practical A

In Extract 17.1, the candidate filled appropriately the table of results by observing the required two decimal places. The candidate correctly calculated the titre value which was within the acceptable range in comparison to the expected value (i.e., \pm 0.5 cm³). The candidate gave the correct chemical reaction between the given bases and acid; besides he/she correctly identified the colour changes during titration. Thereafter, he/she correctly performed all the required calculations to identify the percentage of sodium carbonate in the solution.

	Octo						_
			Polot		2	3	
fine	2	Volume (or		9.60	9.50	9.70	
ni	al	voune	0.00	0,00	0.00	_	
Tita	e e	Volumelos	9.40	9.60	9.50	9.70	
N		. Ft.	= 9,	(C == 3	100	3+6	2 000
Thy	ejag	o lite	= 9.	60 a)	3	och Te	1.700
-	Vol	ine			_ ১		
+-				20	. 8cm s		_
-				~0	0		
					7		
			107-107-10	=	9.60	ren ³	
-				=	9.60	scuz	
8	ımm	ωM ·		=	9.60	scu ²	
Si	ımn	ay:	tutes.		12	*	2.60
Su	rww	ay:	ulup	- AA	12	*	.60
Su	رس دسع عرم	ay:	ution B O1	- ΑΑ ,α	equi com	*	1.60 Rac
Su	رس دسع مسس	ay: of &	utos B for	AA ,a	12	*	1.60 Nac
6	203 درم3	ntrov B	utro B O1	ΑΑ ,a	12	*	1.60 Nac
Par Par	203 درم3	ay: of so	lutus B Toi	ΑΑ ,a	12	*	1.60 Nac
6	203 درم3	ntrov B	ution B for	ΑΑ ,a	12	*	1.60 Nac
6	203 درم3	ntrov B	lution B for	ΑΑ ,a	12	*	1.60 Nac
Par	zm ³	of &	Pilot	AA ,a	comp	red o	Nac
6	2003 200 200 200 200 200 200 200 200 200	solume(on)	Pilot 8.60		comp	3 0 8.4	Nac
Par	200 300 a 1	of &	Pilot 8.60 3 0.00	8.50	2 8.60 0 0.0	3 0 8.44 0 0.0	Nac
Par Fox	200 300 a 1	of so union B	Pilot 8.60 3 0.00	8.50	2 8.60 0 0.0	3 0 8.44 0 0.0	Nac

· Summary!
loems of column or natured 8.50m
· de solution BB foi a complete readies.
auostions
Required Datains Decomposite
Tare) Molarly of Potasium Permanganele
from the reaction give)
from the reaction gaves
2 Mnoz + 502042 + 16Ht - 2 Mnot + 8/20
+ 10002
0 0.002 = 2.5
- Μους • Οροφ
from
Marga- Vacque = Onogo
100
Mcson Acson Ucsons
But
Mosor = Concontrator.
Moor mass
2 262
Conc = 3.35g = 6.7 g dm
0.50m ³
Then.
M 2- = 6.79dm
TATE OF THE PROPERTY OF THE PR
$\frac{(23\times2)+(22\times2)+(16\times4)]9ma}{6.790m^{3}} = 0.05M$
6.790M3 - 0.0CM
104ama-

	Since Mozoy = 0.05M
	The
	Mnosop = Mczosp x Vczop 2- X Mnosp
	Vmor × Acrop
	= 0.05 M X 10 m x 2 9.60 m x 5
	Molartin Kmoy = 0.02M
a(ů)	80 Modath of potasium fermangarate in 9/2m-3 (concentration).
	= Molarity (molet) x notar man
	=[39+55+(16x4)] 9mo
	= 158gmd
	Constitution of the condition
	Concentration = 0.02M x 58gmol
	is convention of KMno4 is 3.169dm ³

Talu Molary of inon (11) salt.
from the equation
Mnoy- + 5fe et + 8H+ -> Mnet + 5fe et + 4 Hoc
Propor : nfe2t = 1:5
Also, from
Meer Near = Umage -
Mest - Monor-Novar-Utest
$= 0.02M \times 8.50m \times 5$ $ 0.00\% \times 1.$
= 0.085M
: Modarty of iron (II) salt is 0.025M

Iqual Concentration of mon (ii) sat (gom)
Concentration = Moderty x Molar mass
(9/0m ⁻³) morman of Fe soz (NHz) 2502.
= (56 + 32 + 64 + (14+4)2 + 32+(16x4) gard)
= 284gmo-1.
Then concentration = 0.085M × 284 gmol-1
= 24.14g/dm3.

Concentration of this 24.149d	
entiation of hydried so	r = Mahamare of high
contation of anhumn	
, , ,	drow set
Conc = mass -	$=\frac{33.39}{14m^3}=33.394m^3$
	Conc = mass =

They it becomes
$\frac{33.39 \text{Jam}^3}{24.149 \text{Jam}^3} = \frac{284 + 18x}{284}$
Now 83.3 = 284+18X 284
284 + 18X = 391.7647
 $\frac{18}{18x} = 10\cancel{1} \cdot \cancel{1}6\cancel{1}\cancel{1}$
. X = 5.98 = 6
1. Value of X is 6 Therefore the formular is written as
fe sog (NH4) 2 SQ, 2 6 H20.

Extract 17.2: A sample of the correct responses to question 1 in Alternative Practical B

In Extract 17.2, the candidate managed to record experimental results in the table and gave the volumes in two decimal places as required. He/she arrived to the correct titre value, which was within the expected range (i.e., $\pm 0.5~\text{cm}^3$). The candidate managed to calculate the number of molecules of water of crystallization.

	r-will		1			-	
	EXPERIMENT	Phoi	I	<u>I</u>	<u>II</u> .		
	Final burrete reading underflop/las	15.10	12.40	12.60	2:50		
	Intial burthe reading unto forking		0.00	600	0.00		
	Volume weetunder Pol (cm2)		12.40	12.60	12.50		
	Final volume reading under ANO (18)	VI - 20 VOLD - 10 1		25.10	2500		
en section and the section and	Initial burdle realing wide MOKA	15.10		12.60	12.50		
	Volume used under Mojant)			12.50	12.50		
(·a)	ij Axerago titre	value i	then!	POP WA	is used		
		11 + V2					
		,	}	2	70.00 10.00		
	= (12.40 + 12-60 + 12.50) cm?						
	2						
	=	12.500	m³.	02000000	*	3 3000	
	. '. The averge Natur	titie ,	salus u	Then Po	P naruse	£	
	U 12.5 cm?,						
,	(1) Average titre value when MO was used						
	= (12.50 + 12.50 + 12.50) cm?						
	3						
			7.00				
		z 1	2.50	em³ '			
	, . The average-				was use	d	
	1 12. 50 cm ⁴	[-[Victima 1989			-	
-	1 -1						

10 iy Chemizat aquation when pop was used is
Nazcoz + Hel - Pacl + Natteos
@ Chemical equation when you was used is
Natton + Hel - Nacl + enz + 150 (ag) (ag) (ag) (g) (l)
(c) FG Total Overell average volume of the solution L Ukid For complete reaction with colution K is given by
Titre Value under (PDP) + Titre value under MO.
= 12.50cm² + 12.50cm²) = 25.00cm², The total overall average volume of the totalion L used is 25.00cm².
(d) Otorli reaction between L and K: Na CO2 + Hel - P Nacl + Nattion Talteen + tri p Nacl + co2+1420 1941 1972 (ag) (2) 761
* Mazcon + 2Hd - D 2Nacl + CB +HD (aq) (aq) (aq) (b) ds i The above equalitin to an overall equalitin between Land k

10 0 50.00	· •
1 P) Reguired: The percentage punts of the had Bodium -cartonale.	tated
- Bodjum -Cartonale',	
Gren	
Mass of hydrochloric acief = 1,825'9 (11)	
volume of the solution of hyperodolone acid = 500	icws 1
then =	
1 DMP 1000 and	
1 2m2 1000 cm2	
= 0.5dm.	
	. 0
then, ancentration of Hydrochloric a	end
Conc = mass (s) Volume(dm)	
Volume (dm?)	
Cons - 1/80 Eq	
Conc = 118259 05dm2	
Conc. = 3.656 dm.	
unc. = 3.639 dm.	
Morality = Cone (s/dm) Morality = Cone (s/dm) Moral mass (s/mol) Now, morality of (Hel) = (1 + 25.5) s/mol = 36.5 s/mol.	
Morality - Cone (Gldm)	
Merzy mars (9/mol)	
Now, merely of (Hel) = (1+25.5) g/ml	
= 36.5 gms).	
lten,	
Murality = 3.65glams 36.00mm	
36. Calmit	(0)
= 0.1 M	
1(e) Now.	
Morality of scid(Hd) (Md) = 0.1M. Notume of acid used (Va) = 25.0 cm ³ Volume of base (Nae(On)Hd) = 25.0 cm ³ Required: Murshi's of base (Mb)	
valume of acid used (Va) = 25.0 cms	
Volume of base (Naglogyth) = 25.0 cm	
Loquined: Mirality of base (Mb)	
from Overal reaction	
Nagcos + 2Hel - 2 Nacl + (0)	+ 1/20
Rb: Na	
1; 2	
from te l'ation fermula!	
Mb - Mavanb	
·Vbra'	
$Mb = 0.1 \times 25 \times 1$ 25×2	
Mb = 0.05H,	

1(e)	but, hydreted Nazcos contains 10 moles of
	water then its moral mous (Nazcon 10H20)
	= (33x5)+(15x1) +(16x3) +(18x10)
	= 286 0 mar.
W. C.	
	from morality = . Conc.
	for mass
	Gonc = morality × moref mass
10/10	= 005 MX 286 5/ml
	= 14.89 Ami
	then, man of Impure hudated Warcon = Jus
	reture to the
	tren, and = 7.450
	0.5dw
	= 14.96 dm'
	· · · · · · · · · · · · · · · · · · ·
ļ	11
	openhal hydrited Naccon - Conc. of prus x100
	1/2 00/10
	1496 (m) X108)
	= 95.979
-	. The occuptage printer of trudeted Rolling
	in The parcentage painty of trutated Education containate of 95. 779.
	13 // (8

Extract 17.3: A sample of correct responses in question 1 of the alternative practical C

In Extract 17.3, the candidate correctly recorded the results in the table by observing the required two decimal places. The candidate calculated the titre value correctly which was within the acceptable range in comparison to the expected value (i.e \pm 0.5 cm 3). The candidate wrote the correct chemical reaction between the given hydrated sodium carbonate and hydrochloric acid. Thereafter, he/she performed all the required calculations to identify the percentage purity of the hydrated sodium carbonate.

However, a few candidates (2,164 6.2%) scored low marks, from 0–6.5 in question 1 (Table 1). Their responses show that they had insufficient knowledge of the topic of *Chemical Analysis*, specifically of *Volumetric Analysis*, although it was also studied in the topic of *Volumetric Analysis and Related Calculations* in Form Three. Generally, mistakes such as failing to record and manipulate experimental data according to the requirements of the question were observed. Some of the candidates recorded titration data by using one decimal place instead of two. They also lacked accuracy in performing the titration experiment. This led to titre values which fell outside the expected value. Additionally, some of the candidates used indicators **MO** and **POP** interchangeably; as result, they observed irrelevant colours.

Additionally, some of the candidates who scored low marks used the wrong chemical equations in relation to the indicator used. For example, in alternative paper A, one of the candidates wrote the reactions that took place when MO and POP as

"
$$HCl(aq) + Na_2CO_3(aq) \xrightarrow{MO} NaHCO_3(aq) + NaCl(aq)$$

 $HCl(aq) + NaHCO_3(aq) \xrightarrow{POP} H_2O(1) + CO_2(aq) + NaCl(aq)$ "

Though the chemical equations were correct and balanced, the candidate used the indicator interchangeably. He/she was supposed to be familiar with the concept of choosing suitable indicators. Thus, he/she would have realized that the MO indicator is suitable for titration(s) involving strong acid against a strong base and POP is a suitable indicator for titration(s) involving weak acid and strong base. Thus, the correct reactions were supposed to be as follows:

$$"HCl(aq) + Na_2CO_3(aq) \xrightarrow{POP} NaHCO_3(aq) + NaCl(aq)$$

$$HCl(aq) + NaHCO_3(aq) \xrightarrow{MO} H_2O(1) + CO_2(aq) + NaCl(aq)"$$

Extracts 17.4, 17.5 and 17.6 show sample responses to question 1 of the alternative papers A, B and C, respectively.

	Solution
01	
	Table of Results.
	Experiment pilot 1 2 3
	Instial volume under pop 0.00 0.00 15.00 0.00
	Sinal volume under p.o.p 8-90 9.00 23.8 8.70
	Initial reading volume undermod 9:00 0.00 0.00 0.00
	Trinal reading volume under m. 24.5 15.00 15.00 14.8
	Stat reading little wider prop 8.90 9.00 8.8 8.7
	Second reading hills under m. o 15.5 15.00 15.00 14.8
	Avarage Whome mems) used under p.o.p =
	Experiment 1+2+3
	3
	9 + 8.8 + 8.7 26.5
	9 + 8.8 + 8.7 . 26.5 3 = 8.83 Thurston: avarage whened used under p. o.p is 8.83 cm ³
	Thursday Comment well under many is 8.83 cm ³
	THE THE COUNTY COUNTY COLD COUNTY OF 12 13 13 13
	Avera Wilmy I was ander Man
_	Avarage volumed used under M.O = Experiment 11 2 13
	experiment 11 6 13
	F 115 1/1.0 //2 //2-
	15 + 15 + 14.8 - 44.8 - 14.93
-	1 8 2 1/1 92 2
	Therefore average Whome used under M.O is 14.93cm

Summary 25 cm³ or solution A returned 8.83 cm³ or 3- Solution B when p.o.p was used and 14.93 cm³ of solution B when Mo was used If Ge of a Colour changed from purple to alouders - when p. up indicator was used Then abourchanged from g yellow to purple when M.O wed as indicator
then colourchanged from purple to colouluss -
1 Ge of a Colour changed from purple to colourless - When pup indicator was used Then colourchanged from & jellow to purple
1 Ge of a Colour changed from purple to colourless - When pup indicator was used Then colourchanged from & jellow to purple
then colourchanged from purple to colourless - Then colourchanged from & jellow to purple
of a Colour changed from purple to colourless - when pup indicator was used Then colourchanged from & jellow to purple
of a Colour changed from purple to colourless - When p. up indicator was used Then colourchanged from & jellow to purple
Then colourchanged from g jellow to purple when M'O used as indicator
Then Ostourchanged from & yellow to purple when Mio used as indicator
when mo used as indicater
when Mio used as indicator
01 b) (Conce Awhen propressed Equation Nacoz + Hel Pops Na Houz + Hzo
99 1º
Alaca I Hal Pop No Ha Alla
Maco3 + Hel -> MacHo3 + 1720
1 11 2 12 1
Naticoz + Hel -> Nacl + coz + Nach
Given n
Curen + Mass of = 2.96 Whan: = 5 count
Wlume = 5cucm3
but vilume under poupe 8:83cm
33.11
Core O.06 T.co
Conc = 2.96 = 5.92
0.5 5.92
0.00883 > ?
Conc = 0. 1045 med lam3
Therefore ancentration of A in Mc was O. LOGSmillio

Extract1 7.4: A sample of the incorrect responses to question 1 in Alternative Practical A

In Extract 17.4, although the candidate recorded the results in tabular form, some of the data are in one decimal place, instead of two. In part (a) (i) and (ii), the candidates failed to recognize the actual colour change. He/she wrote purple to colourless and yellow to purple, instead of pink to colourless and yellow to orange/red, respectively. In addition, in part (b) (i), he/she wrote incorrect balanced chemical equations. This is indicates a lack of knowledge about communicating through chemical symbols and equation.

(nitia)	Pilot	1 2 3
 Initial volum	0.00	6.00 0.00 0.00
final volume	25.06	25.04 25.00 25.02
	25.06	25.04 25.00 25.02
V7 = 1	1, + V2 +V	3
Vq=	25.04+2	3
Vç=	25.2cm3	
25 cm2 of pole	ation AA resolute leaction	quined 25.2 cm2 of volution

Extract 17.5: A sample of the incorrect responses to question 1 in Alternative Practical B

In Extract 17.5, the candidate presented the data which were out of range. Hence, he/she obtained the titre value which fell out of range. This indicates that the candidate lacked knowledge of volumetric analysis procedures.

1.	ABL	E OF T	HE RESULT	۲.		
	Initial Initial	Volume,	Pilot.	1 Qui	250	25.1
	Instal	reading	95, 0.00	2.5.1	25.1	249
	finel	volume.	ייט ייס	244	249	2510
(a)	used = 2	average 5 cm².	titre when	hen, j		25 Was
		(25.0	2 +24.7+ 3 re when,	24:9		5KS,

(b) Balanced chemical equation When, pop bes, Used, Nacost HCL -> Nacl+ Costlews
Nacost HCL - Nacht Costlews
When no whas used:
Naco3+HCL - Nacl, + Costro.
U The Overall average, volume, of solution, L used for complete, reaction, with, Solution,
50 (m3, -24 cg, forgus)
Le average, volume ef foliation, Le used to complete reachion, = 50,2 cm²
(d) overall reaction, equation, of the L and K
L, HCL K- Nacoz
= HCL+ pacus -> HzCustNack
(e) Dercontage, 7. Purity
= 25 (1) × 100 %
The percentage purity of Trydrate of Naco3 = 40%

Extract 17.6: A sample of the incorrect responses to question 1 in Alternative Practical C

In Extract 17.6, the candidate presented incorrect data in the table of result; he/she gave initial volumes without showing the indicator responsible. Furthermore, in parts (b), (c), (d) and (e), the candidate gave incorrect

chemical equations, formulae and calculations as required by the questions. This was contributed by the lack of knowledge about the basic principles of volumetric analysis.

2.3.2 Question 2: Physical Chemistry Analysis Chemistry 3A, 3B and 3C

Question 2 of 132/3A Chemistry 3A was as follows:

"You are provided with the following:

K1: 0.1 M sodium hydroxide;

K2: Butanedioic acid of unknown concentration;

K3: Isobutyl alcohol;

POP: Phenolphthalein indicator;

Distilled water.

Theory

Butanedioic acid $(CH_2COOH)_2$ dissolves in both water and isobutyl alcohol at constant ratio of concentration and temperature.

Procedure 1

- (i) Pipette 20 or 25 cm³ of a solution **K2** into a conical flask. Add 2 or 3 drops of **POP**.
- (ii) Put **K1** in a burette.
- (iii) Titrate **K2** against **K1** in the presence of **POP** until a colour change is observed.
- (iv) Record the volume of the pipette and the volume of **K1** used as well as the room temperature.

Procedure 2

- (i) Put 50 cm³ of **K3** into a separating funnel. Add to it 50 cm³ of distilled water.
- (ii) Measure 50 cm³ of **K2** and put it into a separating funnel in (i). Shake the mixture well.
- (iii) Run off the lower aqueous layer into a clean beaker.
- (iv) Using a measuring cylinder, measure 25 cm³ of the aqueous layer into a clean conical flask.
- (v) Titrate this aliquot against **K1** using **POP** (only one titration is enough).

Summary 2

Volume of **K1** used was _____

Questions

- (a) Write a balanced chemical equation representing the reaction taking place in the titration.
- (b) Calculate the:
 - (i) initial concentration of **K2** in water.
 - (ii) final concentration of **K2** in the aqueous layer.
 - (iii) acid concentration in the organic layer.
 - (iv) partition coefficient of **K2** between water and isobutyl alcohol".

Question 2 of 132/3B Chemistry 3B was as follows:

"You are provided with the following:

JJ: 0.05 M sulphuric acid;

MM: 0.035 M potassium iodide;

KK: 0.035 M sodium thiosulphate;

LL: 0.9 M hydrogen peroxide;

HH: Starch solution;

Stop watch.

Theory

Hydrogen peroxide reacts with iodide ions in the presence of hydrogen ions in an aqueous solution as follows: $H_2O_2 + 2I^- + 2H^+ \longrightarrow 2H_2O + I_2$. The iodine produced immediately reacts with thiosulphate ions as follows: $I_2 + 2S_2O_3^{2-} \longrightarrow 2I^- + S_4O_6^{2-}$. When all the thiosulphate ions have reacted, iodine begins to accumulate in the solution and its presence can be detected by starch.

Procedure

- (i) Using a measuring cylinder, put 100 cm³ of solution **JJ** into a conical flask and then 10 cm³ of solution **MM** into the same flask, followed by 10 cm³ of solution **HH**.
- (ii) Swirl the contents of the flask to ensure proper mixing.
- (iii) Fill the burette with the solution **KK** and adjust the level to zero mark. Run 2.0 cm³ of the solution **KK** into the mixture and again swirl the contents.

- (iv) Using a measuring cylinder, add 10 cm³ of solution **LL** into the mixture and immediately start the stop watch. Shake well the flask when the solution **LL** is running into it.
- (v) Note the time when suddenly the mixture turns blue. Without stopping the stop watch, add further 2.0 cm³ of solution **KK** and shake well the flask. Again note the time when the blue colour reappear.
- (vi) Continue this way until you have added 12 cm³ of the solution **KK**.
- (vii) Record all your readings as indicated in Table 1.
- (viii) Repeat procedure (i) to (vii) using fresh portions of the solutions, but this time use 10 cm³ of diluted solution **LL**. Dilute solution **LL** as follows; measure 10 cm³ of solution **LL** into a beaker and then add 10 cm³ of distilled water. Swirl the contents.

Results

Table 1: Undiluted LL

Volume of KK added (cm ³)	2	4	6	8	10	12
Time in seconds						

Table 2: Diluted LL

Volume of KK added (cm ³)	2	4	6	8	10	12
Time in seconds						

Questions

- (a) On the same axes, plot a graph showing the volume of sodium thiosulphate solution, **KK** against time for each experiment.
- (b) Comment on the shapes of your graphs and explain what is expected to the graph if you continue adding **KK** for a longer period of time.
- (c) Calculate the slope of each curve and deduce the order of the reaction with respect to hydrogen peroxide.
- (d) How is the amount of iodine liberated related to the amount of hydrogen peroxide consumed?"

Question 2 of 132/3C Chemistry 3C was as follows:

"You are provided with the following:

M: A solution of 0.05 M sodium thiosulphate;

N: A solution of 0.1 M nitric acid;

Stop watch;

Thermometer.

Theory

Dilute nitric acid reacts with sodium thiosulphate to form a white precipitate of sulphur according to the following equation: $S_2O_3^{2-}(aq)+2H_3O^+(aq)\longrightarrow 3H_2O(l)+SO_2(g)+S^-(s)$

The precipitate of sulphur causes the solution to become opaque. From this phenomenon, the rate of formation of sulphur precipitate can be measured.

Procedure

- (i) Draw a letter X on a sheet of white paper and place a 100 cm³ beaker on top of the letter.
- (ii) Pour about 200 cm³ of a clean water into a 250 or 300 cm³ beaker and heat gently. Use this as your water bath.
- (iii) Measure exactly 10 cm³ of **M** and 10 cm³ of **N** into separate two boiling tubes. Put the two tubes in the water bath and warm the contents to about 50 °C.
- (iv) Immediately, pour the hot solutions M and N into a 100 cm³ beaker in (i) and simultaneously start the stop watch.
- (v) Swirl the mixture in (iv) and record the time taken for the letter X to disappear completely.
- (vi) Repeat the steps (i) (v) using temperature 60 °C, 70 °C and 80 °C.
- (vii) Record your results in a tabular form.

Questions

- (a) Plot a graph of $\log \frac{1}{t} (\sec^{-1})$ against $\frac{1}{T} (K^{-1})$.
- (b) Determine the slope of the graph.
- (c) Using Arrhenius equation, determine the activation energy of the reaction".

The question was attempted by 34,735 candidates. Among them, 7,125 (20.5%) scored from 9.0–15 marks, indicating good scores. Further, 10,620 (30.6%) scored from 5.5–8.5 marks, indicating average scores and 16,990 (48.9%) scored from 0–5.0 marks, indicating weak scores.

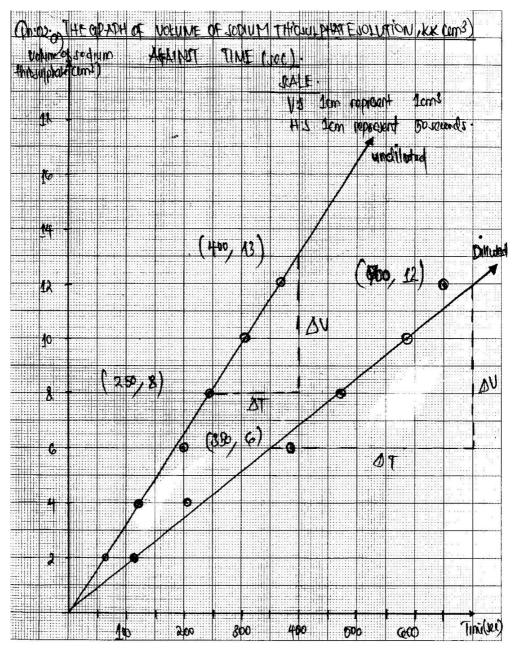
The candidates' overall performance on the question was average; the majority (51.1%) of the candidates scored a pass mark or above (\geq 5.5 marks). The candidates who performed well had mastered the subtopic of

Physical Chemistry Analysis. These candidates managed to determine partition coefficient in alternative paper A, the order of reaction in alternative paper B as well as the effect of temperature on the rate of a chemical reaction in alternative C correctly. Extracts 18.1, 18.2 and 18.3 show samples of the correct responses to question 2 in alternative A, B, and C, respectively.

2.	
	In procedure 1.
	Volume of \$1 wed was 41.3cm3.
	Room Temperature_ 26°C.
	Proceedure 2.
	volume of A was 12.7 cm3.
	no-c-CH2-Cth-c-on+2NaoH -> Nao-c-CH1Cthe-onant
	(4) (4) 2 HLOCH
	b) 7) total to in water;
	ut A - butanedion acrd B-NAOH.
	, , , , , , , , , , , , , , , , , , , ,

2.	
	Ь
) From.
	MAVA - na
	mo Vp. no
	Mg= 0.1m PA.
	V8 = 41.3cm3
w 200 16 1733	Ma = ?
	VA = 25013
	NA = 1
	hg = 2
	MA = MOVBNA
	Vans.
	MA = 0.1 M x 41.3 cm3 x1
	2 S cm ³ X Z
	MA = 0.0826 M
	alastral core 1 Kg in water in
	:. Nutral arc. of K2 in water is 0.0826M.
	p) since soon? were adobt.
	V2=50450=100cm3
	$M_1V_1 = M_2V_1$
	0.0826 X SO CM3 = M2 X 100 CM3
	M2= 0.0413M. in
	ageous layor

2.	<u>b</u>)
	a) Now,
	Mo = 0.(W
	VB = 12.7cm3
	ng = 2
	na = 1
	$M_{A} = 1$ $V_{A} = 25 \text{cm}^{3}$
	Va = 25cm3
	from, MAVA = MA
	mg Ve ne
	Ma = Mavana
	VANB.
	Mr = 0.1 m x n. 7 cm3 x 1
	25CM3 × 2
	M= 0.0254m. in ageous
	layer.
	2
	m) lutal conc = 0.0413M
	molarly = conc (gldm)
	Mr
	Modern A 1/2- A = and
	Moder man of butanedward acted by 1/89/mol
	5 (105)[MO]
	conc = Molarity x moder mans
	in the ageous (ayer.
- 184	" 12 agent (age
	1

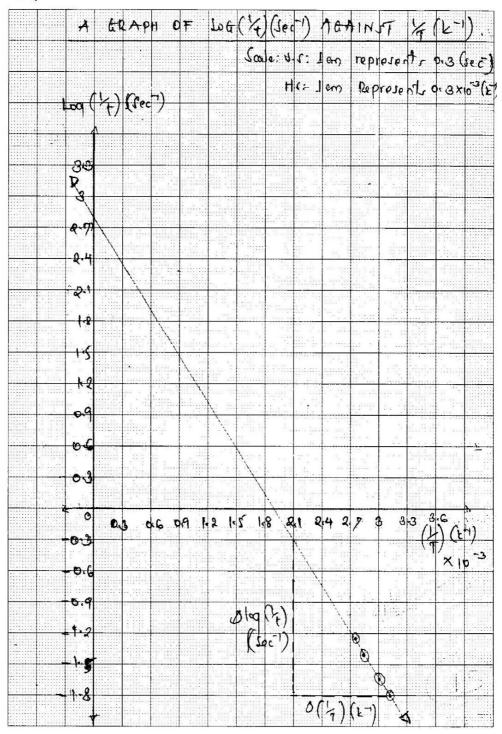

2. b) w) final cone. of to in grown layer. At conc= Molanty xmd= man
At conc= Molanty xmd= man
= 0.0254 m x1189/mol = 2.99729/dm? In agrous (ayer.
= 2.99729 dm3. To agree
layer.
In organic layer,
In organic layer; 4.87349/dn3-2.9972ddn3 1.2762gldn' in organic Pobulty alcohol layer.
= 1. 2762 gldm' in organic
Pobuly alcohol layer.
,
N) Ko = conc. of to in ageous layer
N) Ko = conc. of to in ageous layer
to = 2.997291dm3
$t_0 = 2.9972gldm^3$ 1.2762gldm
to = 1.597
father coefficient of to bethe sould and would always a 1.59
weter and water about 17 1.59

Extract 18.1: A sample of the correct responses to question 2 in Alternative Practical A

In Extract 18.1, the candidate correctly measured the volume of the solution and titrated it to obtain the titre value. He/she also correctly calculated the partition coefficient.

	Τ	RE	FORT	ØF	FXIDI	PIME	NI	NOTOS	•		
パ			RIE	OF	QE	·2511					
	Tat	de:1	undillu	el	11.						
*	-										
	Volumo	of KK	action (,cms	2	4 ^	16	8	10	12	\perp
	Time	og KK	sound	2.	65	120	200	245	305	370)
7)											
	Ta	bb:2.	Diluted	17	<u>. </u>	92					
	ļ				,	·····	1		ı		Т
	Cohime	OF KK	added 1	(cm²)	2	4	6	8	10	12	-
	Time	iu 20	orgi.		120	205	390	470	590	650	
	1. 4								111		
4	b) It we continue adding KK main II (hydrogen point will be over in the solution and the reaction										
	will be over in the solution and the reaction										
	end up to a point where the all II readed in the solution means no more it to read										
	end up to a point where the all II reaved										
	_	in' T	Le 191	opon H		an .	110 1	more	1	DICAU	
	with kk the graph will not continue										
-	c)(jx)0p4										
	Som slope = DY										
	Davis State										
	= Charge in Volume										
	change in time										
		for andilateded.									
		900 m = 13-8									
		400-250									
	= 0.0333										
		-	- 14		• 0.000	11.	1.1	. ^	0212	00/	200
			- de	VPC_	Fa	undil	1700	10.	<u> </u>	cms/	

82	Kordilling .
-0	400 my = 12-Q
	700-350
	$= 0.0171 \text{cm}^3/\text{c}$
	$\frac{1000 \text{ m}_2 = \frac{12 - 0}{200 - 3.50}}{= 0.0171 \text{ cm}_2^3 \text{ c}}$ $= 0.0171 \text{ cm}_2^3 \text{ c}$ $= 0.0171 \text{ cm}_2^3 \text{ c}$
	in the order of the roution is first (1st) order of roution since volume of KK(
	of reaction since volume on KK!
	forther time of in second which indicated that the reaction by first order.
	to the time of (in second) which indicated that
	the reaction is that order.
	J.
	d) The more the consumption of hydrogen penerials
	themon the production and liberation of lodine
***	: If the lampe amount of hydrogen penetice is consumed
	also the large amount of will be
	liberated and via vario by small amount of
	hydrogen peroxitale is consumed also
	Small amount of latine will be liberated.


Extract 18.2: A sample of the correct responses to question 2 in Alternative Practical B

In Extract 18.2, the candidate managed to fill experimental result in the table. The candidate also correctly plotted the graph of the volume of sodium thiosulphate solution against time, analyzed the data, and performed the required calculations in all parts of the question.

2.	Soln.									
3//	(i) TABLE OF REJULT,									
	مح	1000 PD	年(四)	Time (4)	4 (40)	log (1/4)				
		3 23	3.1 ×10-3				323			
	ږه	૩ ૨૩	31 X10-3	65.25	0.0153	-1.82				
	60	883	3 ×10 -3	\$5.05	0.0222	-1.65				
	of	343	2.9 X 10-3	32,95	0,0803	-1.52				
	80	८६७	2.8 X10-3	20.05	0.0500	-1.30	*			
				1107gs 120 - 20 - 20 - 20 - 20 - 20 - 20 - 20						
						201				
						· · · · · · · · · · · · · · · · · · ·				
	(5) John									
	1		of 17	le ara	, ,)	1/ =				
	Recall									
	Julian .									
	Slope = Dy . Dlog (1) (sect)									
,										
	$\delta x = \delta (Y_T)(k^T)$									
	Sope = -1.82 - (-0.3) (sec-1)									
	3.1 x10-3 - 2.1 x10.3 (k7)									
	Slope = - 2960 soc 1c"									
_	-	Giop	e: - २५६	100 'C						
	-				***					
				V.I			-1			
				Jlop	6 = - g	960 Sec7 k				

2	(c) John. Eg.
·	from k=Ae ki
	InternA = Ea
	Apply In both sides Into Int Eq.
	1 mt =
	Ink = In A + - Eq Ine
	P4
	lotz - Eg Ine + InA:
	109 k = - 89 loge + log A.
	log k = - 89 loge + log A.
	.মে
	Then
	From y2 mxtc. log k= - 89 loge + log x
	109 k = - 29 loge + 109 A
+	M
	y' e m x + c
	60.00
	M, - 80 loge.
	k (C. w.b. c
	+ 2960 , + Eaxloge
	R
	Fq = +2960 x 8.314
	109 € .
	Eq = 56,865-335/ma
	cd : 20, 003 : 00 s -1.
	Activation Energy: 56,665.33 Towler
	Activation Energy: 56,665.33 Toules
la constant	

2(9)

Extract 18.3: A sample of the correct responses to question 2 in Alternative Practical C

In Extract 18.3, the candidate correctly recorded the required experimental data and plotted the graph of $\log \frac{1}{t}(\sec^{-1})$ against $\frac{1}{T}(K^{-1})$. In addition, the candidate correctly determined the activation energy of the reaction by using the Arrhenius equation.

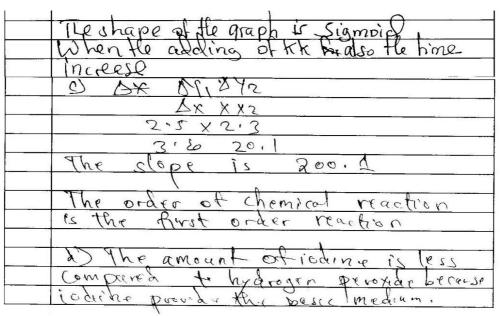
In contrast, the candidates who scored low marks on this question (48.9%) had insufficient skills in calculating the partition coefficient in alternative A. This was contributed by their incompetence in using different glassware in measurements. Nevertheless, some of them wrote unbalanced chemical equations and incorrect chemical formula in part (a). Hence, they failed to proceed to the subsequent parts of the question. In part (b) (i) and (ii), the candidates were required to use

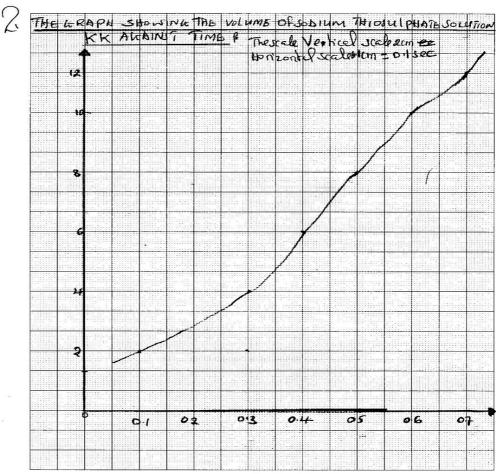
$$\frac{M_a V_a}{M_b V_b} = \frac{n_a}{n_b}$$

where; n_a = moles of acid, n_b = moles of base, V_a = volume of acid, V_b = volume of base, M_a = molarity of acid and M_b = molarity of base, but they failed to use it and hence, failed to obtain the correct concentration.

Besides, in part (b) (iii), some failed to use the dilution law in calculating the initial concentration of butanedioic acid while in part (c), others used incorrect formulae to calculate the partition coefficient (K_D).

A further analysis of the responses given by the candidates with low scores in alternative B and C indicates that they lacked graphing techniques. For example, in part (a) of the alternative B, some did not include a title of the graph; labels of axis and the choice of scale was poor. They failed to understand that each coordinate axis of a graph should be labeled with the word or symbol for the variable plotted. Every graph should have a title that clearly states which variables appear on the plot. The scales should also be chosen to ensure that the data are easy to plot and read. The candidates overlooked these important aspects. Extracts 18.4, 18.5 and 18.6 show samples of the incorrect responses to question 2 in alternative A, B and C, respectively.

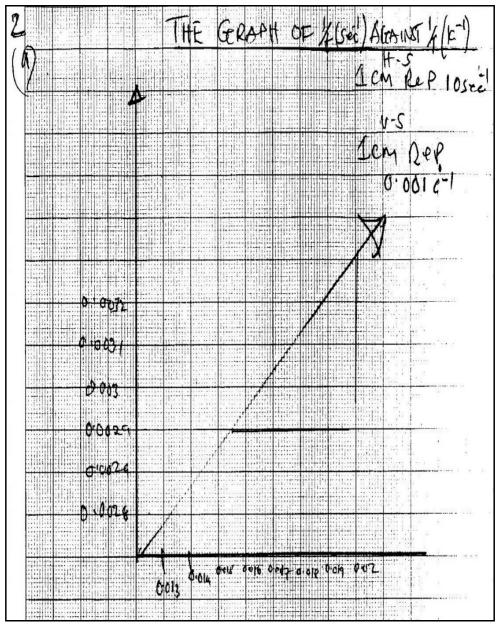

2	67 Volume up Ky med was 750m2 in procedure 1
	a) m procedure A Mort + (eth_coul) -> (eth_cook), + H20 and (1)
2	CH3 CH C = Q + MUH -> CH3 CH C = CH4+160
	67 Young 4 by Med mrs 25 cm3 to procedure
	9 Initial cense ntrahoury K in Wrater
	Volumey meter = 60 cm ³
	concentration of K, in Water = 50 cm3 - 1
	the concentration of $K_1 = 1$
	ij anant rahung K2 m agus layer Noumey agus layer = 150 cm² Volume f K2 = 60 cm²
	Concent ration = EU (M3 = U38 cmonto
	i. Lunco nt rahing to the acquis layernas 0.83
	iii) Aciel concentrations organic layer Municipal agus layer = 25 cm3 P/2/ Municipal = 150 cm² Municipal = 152 m²
	Cerro ntratus = 25/25 = 1
	= a Acial concentration in agamic layermes 1


concent rahun K on wester = 1
concentration of k2 to wobuty 21
Comontraheny Kin wabuty/
7 -1
 . the Painhis we stickent (Ka) Is 1

Extract 18.4: A sample of the incorrect responses to question 2 in Alternative Practical A

In Extract 18.4, the candidate failed to obtain the correct titre value in the experiment procedure 1 and 2. He/she wrote 75 cm³ and 25 cm³, which were very far from the expected range. The candidate also used an incorrect formula in doing the calculations, leading led to an incorrect value of the partition coefficient.

Q	Rasyl	s 1 un dilute	, Q LL					
	Volu	ne of KK.	2	4	6	8	10	12
	Time	in seconds	0.41	0.3	0.4	Dis	0.6	0.7.
		2 Fag.						
	Tollo	O KILLO	LL &	14	1	01	10!	10
	blume	of KK added	2	4	6	8	10	12
	lime i	secondr	0.7	0.6	0.5	D:4	0.3 1	2. Ω.
13	H-	11 × N	٨	1.1.				



Extract 18.5: A sample of the incorrect responses to question 2 in Alternative Practical B

In Extract 18.5, the candidate recorded the time incorrectly in both tables of diluted and undiluted **LL**. Also, in the table of diluted **LL**, the time recorded was decreasing as the volume of **KK** added, instead of increasing. Hence, the plotted graph was incorrect and the followed calculations and conclusions were incorrect. Again, he/she used a free hand to obtain the sigmoid curve instead of a straight line.

2		22									
	TEMPERATURE (°)	vol of M	Non	+(s)	14	KK					
	50	(0	10	320	0.0031	0-02					
	60	[0	10	330	0.0 030	0.017					
	70	10	10		0.0029						
	80	10	10	350	0.0028	0.013					
	5 slope.										
	slope = De Dy										
	Δ3										
	Slope = -1.2	1.45		4							
	2.55×10-3										
	Slope 387	1.42-8	<u>.</u>	-							
	6										
	O solo			_							
-	from Arrhania										
	10g k = Ea /1 + 10g x										
	7 21303 R	1	1,								
	y . M	√	<u> </u>		-						
	do to tind Ea			S. S.							
	slope 2 Ea										
	2.103	R.									
2	O do slope	Ea									
		23036	2								
	but slope 2 -	-3571	428								
	-3571.42	8 2 - E	a								
	2.308R										
	- 5a 2 - 3571.428 x 2.303 x 8 3 14										
	-Ea = -3871.428 x 19.147										
-	-Ea = -68382.6										
-	- Ea = -6 i	3332	6								
	-1										
-	Ea 263	T-1									
ļ	i. Activation er	Jeth 1	1a. 6-	8332	.6	-					
<u> </u>											

Extract 18.6: A sample of the incorrect responses to question 2 in Alternative Practical C

In Extract 18.6, the candidate obtained incorrect results. He/she presented the time of the reaction, which increase as the temperature increases. In this experiment, the time was supposed to decrease as the temperature increases. Thus, he/she failed to plot the correct graph and incorrectly calculated the activation energy.

2.3.3 Question 3: Qualitative Analysis Chemistry 3A, 3B and 3C

In 132/3A Chemistry 3A, the question was as follows:

"Substance **H** contains **two cations** and **one anion**. Use the information given in the experiments column of the experimental Table to complete the observations and inferences columns. Hence, identify the two cations and an anion in **H**.

S/n	Experiments	Observations	Inferences
(a)	Appearance of the sample H .		
<i>(b)</i>	Heat a small portion of the sample in		
	a dry test tube.		
(c)	Perform a flame test.		
(d)	Add concentrated sulphuric acid to		
	the small portion of the sample.		
(e)	To the small portion of the prepared		
	solution, add dilute sodium		
	hydroxide.		
<i>(f)</i>	To the small portion of the solution,		
	add dilute HCl followed by hydrogen		
	sulphide. Filter the precipitates to		
	obtain filtrate and residue then		
	proceed as follows:		
	(i) To the filtrate, add potassium		
	ferrocyanide(II).		
	(ii) Dissolve the residue in aqua		
	regia and then add excess 50%		
	ammonia solution.		
<i>(g)</i>	To the small portion of the solution,		
	add dilute nitric acid followed by		
	silver nitrate.		

Questions

- $(i) \quad \textit{Write the molecular formula for the sample}.$
- (ii) What are the cations and anion in the sample?

In alternative B, the question was as follows:

"Substance **T** contains **two cations** and **one anion**. Use the information given in the experiments column of the Table 3 to complete the observations and inferences columns. Hence, identify the two cations and an anion.

S/n	Experiments	Observations	Inferences
(a)	Appearance of the sample.		
<i>(b)</i>	Heat a small portion of the sample in		
	a dry test tube.		
(c)	Add concentrated sulphuric acid to		
	the small portion of the sample.		
(<i>d</i>)	Perform a flame test.		
(e)	To a small portion of a sample solution, add sodium hydroxide		
	solution.		
(f)	To a small portion of a sample solution add nitric acid followed by silver nitrate solution, then aqueous ammonia.		
(g)	To the small portion of the solution, pass hydrogen sulphide gas or ammonium sulphide solution in presence of hydrochloric acid. Filter the precipitates to obtain filtrate and residue.		
	(i) To the filtrate, add barium chloride solution.		
	(ii) Dissolve the residue, add aquea regia and then excess 50% ammonia solution.		

Questions

- (i) Write the molecular formulas for the sample.
- (ii) What are the cations and an anion in the sample?

In alternative C, the question asked as follows:

"Substance **H** contains **two cations** and **one anion**. Use the information given in the experiments column of the experimental Table to complete the observations and inferences columns. Hence, identify the two cations and an anion.

S/n	Experiments	Observations	Inferences
(a)	Appearance of the sample.		
<i>(b)</i>	Heat a small portion of the sample in		
	a dry test tube.		
(c)	Perform a flame test.		
(d)	Add concentrated sulphuric acid to		
	the dry sample.		
(e)	To the small portion of the prepared		
	solution, add dilute HCl followed by		
	barium chloride solution.		
<i>(f)</i>	To the small portion of the prepared		
	solution, add excess ammonia		
	solution and then add ammonia		
	sulphide solution or pass hydrogen		
	sulphide slowly for one minute.		
<i>(g)</i>	Perform confirmatory test for cations		
	present in the sample.		

Questions

- (i) Write the molecular formula for the sample.
- (ii) What are the cations and anion in the sample?"

The question was attempted by 34,735 candidates. Their performance on this question was good; 34,036 (89.3%) of the candidates scored 8.5 marks or above. In contrast, only a few candidates (699, 2%) scored from 0–5 marks. Their performance on this question is shown in Figure 17.

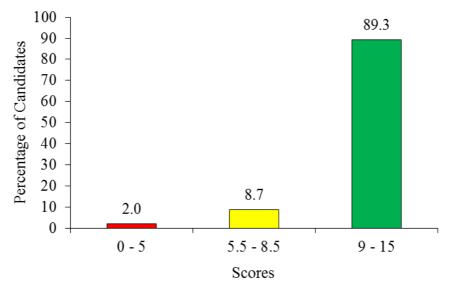


Figure 17: Candidates' Performance on Question 3

Figure 17 shows that 98.0% per cent of the candidates scored 5.5 marks or above, making the question to be one of the well performed questions.

The candidates with good performance on the question had adequate knowledge about the concept of salt analysis in all three alternatives (A, B and C). Extracts 19.1, 19.2 and 19.3 show samples of the correct responses to question 3 in alternative practical A, B, and C, respectively.

	Exp	erimental Table.		
3,		Experiments	Objervations	Inferences.
	a.	Appearance of		
		the sample H.	The sample H	Fe ²⁺ , Ni ²⁺ , G ³⁺ Cu ²⁺ might
		i Colour.	was green	Cust might
			in Colour.	be present.
		•		
		ii. Texture.	The sample H	
			was in	NO3, SO3, U, C2042, NO5
			crystalline	
			form.	and CH3 COD
		,		might be
				prosent.
-				
		ii. Od	The sample H	
		Deliquesence.	Mabsorbed	NO3, CL and
			water From	NO3, (1 and
			the atmosphere	be present
			to form a	3
			solution.	
		<u> </u>		
	Ь٠	1	A colourlass	015
		portion of the	gas evolved	Cl- might
		sample in a	which turns	be present
		dry text tube	moist litmus	
			paper from blue	
11.5			to red and tormed	
Ortho Or			dense white tumes	
		1	with ammonia gas.	

3	1/4	Experiments	Observations	Inferences.
	Ь.		.	
		,	A black	Cuat might
			residue was	be present.
			toimed.	·
			,	
		7		
	C.	lo perform a flame	0.11	-
		teA.	A blue-green	<i>t</i> 2+
			colour was	Cuat Might
			Opterned trom	be prosent
		, , , , , , , , , , , , , , , , , , , ,	Sample H.	
			Yellow	Feat, Fest
			sparks were	Might be
			observed	present.
		*		
	L	To add a	A	
	a.		A colourless	
		Concentrated	gas with	
-	-	Julphyric acid to the	irritating	
		small portion of	mell evolved which turns	11
		the sample.	moist litmus	CL might be present
				De present
			bhie to red	
		, .	and formed	
-			dense white	1.0
_			tumes with	
			am menia gas.	

3.	3/N	Experiments	Observations	Inferences.
	e.	To the small		
		partion of the	Dirty groon	
		prepared solution.	procipitate was	
		Dilute Jodium	observed which	
		Hydroxide was	turns brown	Feet Might
		added.	on exposure to	be present.
			air.	
			On addition of	
			excess NaOH.	
			insoluble	
			precipitate was	
			formed	
,				
	1.	To the small		
		portion of the		
		solution Dil.	A black	
		HCL. was added	precipitate	Cuat might
		followed by	was formed.	be present.
		hydrogen julphide.		
		Then the		
		precipitates were		
		filtrated to obtain		
		the fittrate and		
		recidue.		
		: T. 46.4	4 1 1 1 1	£.2+
		i. To the	A dark blue	Fez+ was
		filtrate,	precipitate was	confirmed.
		Potassium Ferro-	formed.	
		cranide (111) added.		

3	S/N	Experiments	Observation	Inference.
	f.			
	_	was dissolved in	A blue	
		agua regia and	precipitate	
		then excess 50%	soluble in	Cu ²⁺ was
		ammonia solution	excell ammonta	
		was added.	was formed a	
*			deep blue	
			(royal)	
			Jolution.	
	9.	To the small		
		portion of the	A White	
		solution, Oil.	precipitate	CL- was
	i	Nitric acid was	soluble in	confirmed.
		added followed	dilute ammonia	•
		follows by	solution was	
		addition of	formed.	
		Silver Nitrate.		
3	1.	Fe CL and	Cu Cla	
	-îi·	Cations are	Fezt and	Cu ^{2†}
-		Anion is	u-	

Extract 19.1: A sample of the correct responses in question 3 of Alternative Practical A

In Extract 19.1, the candidate properly followed the procedures given. Therefore, he/she identified the two cations (Fe^{2+} and Cu^{2+}) and one anion, Cl^- correctly. The candidate also correctly wrote the molecular formulas for samples $FeCl_2$ and $CuCl_2$.

57	PROCEDURE	OBSERVATION	INFFRENCE
(Ģ)	Appearance of the sample:	Groen salt:	Fe2t, Ni27, Cr3t Cu2t may be proson
		Crystalline valt:	NO3, SO42- CT, C2042-, Cr042-, NO2 CH2 (00-, Cr2072-
			may be present.
(b)	O 1	Colouilosigas which turn wet blue lithmus	ct may be
	dry fart tube and	paper to red: evolved and forms with ammonia, gas.	
		Black residue formod	Cuzt may be prosont.
			A ISTAUNI

-	PROCEDURE	OBSERVATION	INFERENCE.
(0)	0's g of substance T	A colomos gas orded	
		which turns wet lotmu	ct may be
		papa from blue to	
	then 2cm³ of conconhada	red and form white	
	sulphumic acid was		
	added into the 1est-tube	, ga.	
		W .	V-9Hartes
(b)	Flame test:	Blue groon flame	Cuzt may be
		,	present.
			1
(e)	org of substance		
	Twas dissolved in	Groon solution was	Fez, M21 Cu21
1/2004/02/02	enough amount of	formed	Cr3t may be
	arabr		prosont.
(9)	To a small portion		
-	of the solution of	Pale blue precipitate	
		formod	Cu ²⁺ may be
	was ad in a tost		praiont:
	tube, WaOH was		
	added		

03.	PROCEDURE	OBSERVATION	THI EVENUE		
(I)	lo a small portion of				
-92	the solution of substance		C1		
-			CL present		
	T in a lest-tube, HNO3	Green	and confirmed		
	was added by 3 drops	White precipitate formal	•		
	followed by 2 cm3 as	whon Ag No3 was added			
	Ag Nos and than equeou,				
	ammonia solution was				
	ummonia solution as	C	a 31 1		
	added to the tool tube.	Green precipitale formed	Cr may be		
		whon WHIGH was added	present		
(7. u 1.		-M-10-2		
(9)	To a small portion of				
	solution of substance				
	T in a lost tube (NH4) 5	Black procipitate	Cu2+ may be		
	was addoct , Hel we.	formed:	prosont.		
	added followed by		1		
	(NHy) 25 too				
	is to the filtrate was a	otition otile. All	co 3 - +		
	To the following was a	and much praphase	Confumed		
	Ball Solution	i not formed	Continued		
17.16	lands are bounds to	1(
	in a guen amount of	wed			
S0298	in a given amount of	dut Blue precipitate			
	tilled water and then the	e Soluble in excess			
			Cu²+ Confirmed		
	Content was added agu	e ammong was	Ca Tanfinasi		
	regia and then exces	s observed forming	*		
	anmonia Solution	doep blue solution			
	is The Molecular for	mula forthe sounds	cup		
	Cull and co	cl t			
	and and a	mula for the sample			
			1 No. 10 10 10 10 10 10 10 10 10 10 10 10 10		
	u) The cations are Cu2+ and Cr3+ and				
3	a) The cotions are cut	and Crit and			
-	to arise is at	and Crit and			

DESERVATION

INFERENCE .

PROCEDURE

03

Extract 19.2: A sample of the correct responses to question 3 in Alternative Practical B

In Extract 19.2, the candidate correctly followed the procedures given and identified the presence of two cations $(Cu^{2+} \text{ and } Cr^{3+})$ and one anion Cl^- . The candidate also wrote the correct molecular formulae for the samples $(CuCl_2 \text{ and } CrCl_3)$.

3.0 %N	Observation	Typevence
a		Transition Metal
	A sample H Was Whife	are abrent
	A sample It Ixlas in	Noz-, sog2-, ch-
	Cryfalline form	C2019, Crop No-
		CH2600 and cr2078-
·	A colourier gas evolver L A small portion of white subtin	Ch Mar be
(4)	A small portion of white sublin	make on NHy may
	sample It was heated the order po	at of the be present.
	on a dry test tube test tube us	as formed
	Residue we	is formed 2n2t may be
	which was	yellow present.
		1
<u> </u>	when cold	
1.	No change observed	Nat, ca 24, Kt Ba2+, 1-2+, cu2+
		Bazt, Irzt, cuzt May be absent

5	in Observation		In	terence
	No gas evolved		Soup - present	may be
			present	
e	. Khite presipitate !	xlas		
	formel		Soy 2- 6	confirmed
-				
	f White precipitate X10	21	2n2+ ma prasent	7 br
	fer mail		present	
9	3 Experiment	Obory	rahon	Interence
	About som of sample			
	Solution H what transfered	Winte	precipita	Zn2+ conti
	Solution of what transfered in the feet tube follows	+s	icial formal	rmed
	by Potassium hexacy			
	anoforrate (11) southing			
	Naot when added to			
	and sample Harl then wa	Colonde	11 gas Kihi	-
	rme L and the 1 former paper	ch tur.	red belower	NH,+
	were parent on the mouth of tout	DORE 6	we and form	Contirme
	fulc	peluto fu	me with concer	
2.12	Cahons are Zn	and	MHUT	
ļ	tube Cations are Zn24 Nation is so,			
2.1	Morecular formular			

Extract 19.3: A sample of the correct responses to question 3 in the Alternative Practical C

In Extract 19.3, the candidate performed the given tests properly and identified the two cations (Zn^{2+}, NH_4^+) and one anion (SO_4^{2-}) present in the given salt sample ${\bf H}$. Moreover, the candidate wrote correctly the molecular formulae for the sample ${\bf H}$, which are $(ZnSO_4)$ and $(NH_4)_2SO_4$.

In contrast, the candidates who scored low marks in the question (2.0%) reported incorrect observations and inferences in the first experiment which involved the physical properties of salt; hence, they failed to get the correct conclusion. Those candidates failed to understand that, making correct initial observations of the physical properties of the salt was the crucial step in identifying the salts. It was also observed that, other candidates failed to adhere to the instructions given on the tests given. This signifies a lack of basic knowledge about salt analysis. Extracts 19.4, 19.5 and 19.6 show samples of the incorrect responses to question 3 in Alternative Practical A, B, and C, respectively.

	7		1	
_3	gH _	Experment	Observation	Inference
cor	>	Heating of small pr	Brown fumes which	
		tion of the sample in a	turn blue Litmus paper	Mos may be
		dry text tube	to red and gas while	
			re-light glowing	those of Nat, KT
				and NHOT
Ĺ				
	<c7< th=""><th>To perform flume</th><th>Brown - colour</th><th>Out may be</th></c7<>	To perform flume	Brown - colour	Out may be
		test	was observed.	Present
	<d></d>	To aidd concentrated	Brow Fines-	Moz may be
	ļ	sulphune odd toa	which turn blue	present
		Small portion of	Litmus paper	
		Cumple	red and intension	
		,	anadditho of	
			Copper burning	
	æ>	To a comall portion of	Brown propitate	
		Prepared Solution, add		Agrmabbe
		dilute sodium hydrasi		
			insoluble in ex	
			CLSS NHWH	
	T 4 4 4	0.4.4.1.0.1		

Extract 19.4: A sample of the incorrect responses to question 3 in Alternative Practical A

In Extract 19.4, the observations and inferences given by the candidate contradict each other. For example, in part (c), the brown colour observed in the flame test does not infer the presence of Cu²⁺ ions. The same applies to parts (d) and (e). The candidate wrote brown fumes instead of colourless gas and brown precipitates instead dirty green precipitates, respectively.

3.	112	Experiment	opienation	Inference.
	e.	Action of Ealium hydroxide		
		saulton!		
		- In the test tube containing	Pale blue precipitale	cull may be
70.00		small pertion of salt sample,	1865 88	No.
		small amount of paoH san		
		was adoled.		
	C.	Action of Primi earl on		
	T.	sample souther		
		- In the fest tube containing	Bue precipitate	cull was
		inclupation of sample solution		confirmed.
		nimic acid is added followed		
		by sine nitrate solution,		
		then ageous ammonis.		
	9.	Action of Ammorium		
	J.	supposed to sample sautor	Bure souther which	1042 - was not
		i. In First fictrate, Barium		confirmed
		chunche souther was added	excess barrium	
			chionele	
-		ii. Residue was dissoved	white homes which	CL confirmed
		then aquea regia and		w.(a(
		excell ammonia solution		
		was added,		

Extract 19.5: A sample of the incorrect responses to question 3 in Alternative Practical B

In Extract 19.5, the candidate presented incorrect inferences as deep blue precipitates in part (f) instead of white precipitates. This implies that the candidate did not use silver nitrate solution $(AgNO_3)$ as instructed. The candidate also gave incorrect observations and inferences in parts (g) (i) and (ii) of the question.

	(6)	A small sample	A Colony 1872	
		& rustance H	gas with a	SO4 may
		was put in a	punget smell	
		dry test tube	evolves which	
	i i	and heated		
			blue Winus	
			paper redand	
			wist poltassia	
			on clicomate	
			paper green or	
03,			cleco lour zes	
יני			potassium	
			primargarate	
			solution	
	(1)	A backside	A bright	
W.54-631		odust tuse	rellow I golden	Nat May be
-		was dip in	rellow	present.
		a concetrated	colour osserve	
		Hel and	d	
		heated in a		
		non-louinon		
		flame.		

di	con-sulphuliz acid	-D Hel were	- chloride
	were add in a lest	evolved.	E(-) may
	tube with sample H.		be prosent
(e)	To a (mall portion of	-o White Ppt whi	- chloride
	The proposed solution,	ch & soluble	confirmed
	addilled was added	in Mysolution	procent.
	followed by banium		
	chloride volution		
CP)	2	.00 . ^	- 1 + v+
(1)	. To a soln added excus.	-s No apparent	Na K
	ammonia Johnson and then	change'	may be pr
	ammonium sulphale wert		, ,
	added		
2 0.	form Confinatory		

9	Perform Confimatory test for Cations prese
	nt in the sample
-	E
3	1)
3	11) The Cations and arich in the sample are
	Suphanic and barium chrotide.

Extract 19.6: A sample of the incorrect responses to question 3 in Alternative Practical C

In Extract 19.6, the candidate failed to identify the characteristics of the evolved gas in part (b) which could have helped him/her to obtain some clue for the cations present in the sample. The proposed incorrect characteristics of the evolved gas led to the wrong inferences. In part (c), the candidate wrote the flame test as yellow/golden yellow colour instead of writing no defined colour was observed. The candidate made wrong observations and inferences in the subsequent parts of the question.

3.0 ANALYSIS OF THE CANDIDATES' PERFORMANCE ON EACH TOPIC

The ACSEE 132 Chemistry examination in 2022 consisted 22 topics. Among them, 12 topics (*The Atom*; *Chemical Equilibrium*; *Relative Molecular Masses in Solution*; Chemical Bonding; Aliphatic *Hydrocarbons*; *Energetics*; *Environmental Chemistry*; *Gases*; *Selected Compounds of Metals*; *Aliphatic Hydrocarbons*; *Aromatic Hydrocarbons* and *Halogen Derivatives of Hydrocarbons*.) were included in Chemistry Paper 1. In Chemistry paper 2, ten topics (*Two component Liquid Systems*; *Acids, bases and salts*; *Solubility, Solubility Product and Ionic Product*; *Carboxylic Acids and its Derivative*; Amines; *Electrochemistry*; *Periodic Classification*; *Extraction of Metals*; *Polymers* and *Transition Elements*) were included. Chemistry practicals consisted of three subtopics *Volumetric Analysis*, *Physical Chemistry Analysis* and *Qualitative Analysis* which were derived from the topic of *Chemical Analysis*.

Among the topics included in Chemistry theory (Paper 1 and 2), the topic of *Chemical Equilibrium* which was covered in Question 2 was the best performed topic by the candidates (as 85.88 per cent of the candidates scored average or above average marks). Other topics on which they had good performance were *The Atom (81.92); Environmental Chemistry (67.12%); Relative Molecular Masses in Solution (67.07%); Energetics (66.78%); Chemical Bonding (61.18%) and Selected Compounds of Metals (60.80%). The candidates' performance on the topic of <i>Chemical Analysis* was good, as the majority (80.95%) of the candidates who sat for one of the alternative practical papers scored average marks or above. The performance of the candidates on the topic of *Chemical Analysis* was average on the subtopics *Qualitative Analysis* (98.0%), *Volumetric Analysis* (93.8%) and *Physical Chemistry Analysis* (51.1%) in questions 1, 2 and 3, respectively. The candidates who performed well understood the requirements of the questions. They showed appropriate competencies in the topics tested.

A further analysis indicates that the candidates had average performance on the topics of *Gases* (57.6%); *Aliphatic Hydrocarbons* (41.9%); *Electrochemistry* (39.8%), *Carboxylic Acids and its Derivative*; *Amines* (36.7%); *Periodic Classification* and *Extraction of metals* (34.8%). Although some of the candidates had adequate knowledge of the tested topics, they provided partial answers and were not keen on understanding

requirements of the questions. Thus, they performed averagely on most of the tested topics.

However, some of the candidates performed weakly in the topics of *Polymer; Transition Element* (33.35%); *Acids, bases and salts; Solubility, Solubility Product and Ionic Product* (25.57%) and *Aliphatic Hydrocarbons; Aromatic Hydrocarbons* and *Halogen Derivatives of Hydrocarbons* (21.85%).

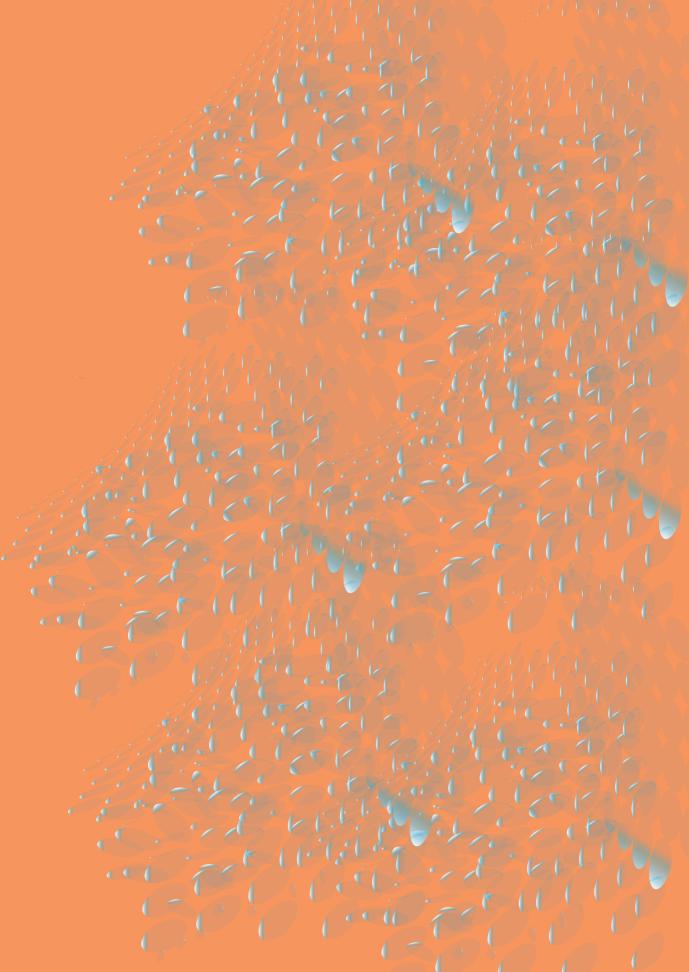
A further analysis of data indicates that the performance of the candidates in the topic of *Selected Compounds of Metals* (60.80%) and Aliphatic *Hydrocarbons* (41.9%) improved compared to the candidates' performance on the topic in 2021 (14.2%) and (32.3%), respectively. The analysis of responses given by the candidates with weak scores on these topics indicates that they had insufficient knowledge of the subject matter. Hence, they gave wrong formulae, chemical equations and followed incorrect approaches to performing calculations. A summary of the candidates' performance on different topics of theoretical and practical examinations is presented in Appendices A and B, respectively.

4.0 CONCLUSIONS

The general performance of the candidates who sat for the Chemistry examination in 2022 was good; 97.48 per cent passed. The analysis of the candidates' responses to each question from the theory and practical papers indicates that the majority of the candidates were conversant with the tested concepts. The performance in the practicals was a bit higher than in the theory paper because, as a rule of thumb, when a candidate involves more sense organs in learning, he/she builds a long term memory and remembers with ease. Therefore, teachers are advised to be more creative in integrating theory into practical work and utilize locally available materials whenever is possible. Responses from the candidates who performed weakly indicate that the candidates lacked or had insufficient knowledge of the subject matter tested.

5.0 RECOMMENDATIONS

The weak and average performance observed in the tested topics can be improved through collaborative efforts of teachers and prospective candidates during teaching and learning. Based on the analysis of the responses given by the candidates, as discussed in this report, the following measures are hereby recommended to improve candidates' future performance in the examination:


- a) Teachers and students should participate in designing and building organic compounds models during the teaching and learning of *Aliphatic Hydrocarbons* and *Hydroxyl Compounds*. This can help not only to raise learners' interest in the subject matter, but also to build a long term memory of students of structural and chemical formulae.
- b) Teachers should guide students through discussing various types of chemical reactions and their inferences using wall charts. This will help learners to grasp many concepts and build their long term memory, especially in relation to the topic of *Selected Compounds of Metals*.
- c) Teachers should guide learners through forming small groups and perform practical tasks on chemical reactions; involving the identification of *oxides*, *hydroxides*, *carbonates*, *hydrogen carbonates*, *sulphates*, *chlorides* and *nitrates*. Thereafter, the students should present their findings written on flipcharts/manila cards, to other groups, followed by the plenary discussion.
- d) Teachers should facilitate small group discussions on different types of manures and fertilizers, the importance of liming and the chemical reactions taking place in the soil; followed by the plenary discussion. This will help learners to acquire appropriate competencies in the topic of *Soil Chemistry*.
- e) During the teaching and learning processes, teachers are encouraged to use examples drawn from real life situations and to encourage learners to do the same. This will help in integrating scientific concepts into applications. As a result, teaching and learning will be more meaningful.

Appendix A: The Summary of the Performance of the Candidates Topic-wise in Theory Papers

	J J		2021		2022			
S/n	Торіс	Number of Question	The Percentage of the Candidates who Scored an average of 35 or Above	Remarks	Number of Question	The Percentage of the Candidates who Scored an Average of 35 or Above	Remarks	
1	Chemical Equilibrium	1	81.5	Good	1	85.9	Good	
2	Two Component Liquid Systems	1	69.0	Good	1	84.6	Good	
3	The Atom	1	66.4	Good	1	81.9	Good	
4	Environmental Chemistry				1	67.1	Good	
5	Relative Molecular Masses in Solution	1	53.9	Good	1	67.1	Good	
6	Energetics	1	60.5	Good	1	66.8	Good	
7	Chemical Bonding	1	74.5	Good	1	61.2	Good	
8	Selected Compounds of Metals	1	14.2	Weak	1	60.8	Good	
9	Gases	1	62.8	Good	1	57.6	Average	
10	Aliphatic Hydrocarbons	1	32.4	Weak	1	41.9	Average	
11	Electrochemistry	1	46.9	Average	1	39.8	Average	
12	Carboxylic Acids and its Derivative/ Amines	1	48.8	Average	1	36.5	Average	
13	Periodic Classification/and Extraction of metals				1	34.8	Average	
14	Polymer/ and Transition Element Acids, bases and salts/ Solubility,				1	33.4	Weak	
15	Solubility Product and Ionic Product				1	25.6	Weak	
16	Solubility, Solubility Product and Ionic Product	1	44.3	Average				
17	Aromatic Hydrocarbons/ Halogen Derivatives of Hydrocarbons.	1	51.9	Average				
18	Aliphatic hydrocarbons/Aromatic Hydrocarbons/ Halogen Derivatives of Hydrocarbons.				1	21.9	Weak	
19	Soil Chemistry	1	33.9	Weak				
20	Hydroxyl Compounds	1	26.6	Weak				

Appendix B: The Summary of the Performance of the Candidates Topic-wise in Practical Paper

		2021			2022		
S/n	Subtopic	Number of Question	The Percentage of the Candidates who Scored an average of 35 or Above	Remarks	Number of Question	The Percentage of the Candidates who Scored an Average of 35 or Above	Remarks
1	Qualitative Analysis	1	94.5	Good	1	98.0	Good
2	Volumetric Analysis	1	89.5	Good	1	93.8	Good
3	Physical Chemistry Analysis	1	86.2	Good	1	51.1	Average

