THE NATIONAL EXAMINATIONS COUNCIL OF TANZANIA

CANDIDATES' ITEM RESPONSE ANALYSIS REPORT FOR THE CERTIFICATE OF SECONDARY EDUCATION EXAMINATION (CSEE) 2015

082-ELECTRICAL ENGINEERING SCIENCE
(For School Candidates)

CANDIDATES' ITEM RESPONSE ANALYSIS REPORT FOR THE CERTIFICATE OF SECONDARY EDUCATION EXAMINATION (CSEE) 2015

082 ELECTRICAL ENGINEERING SCIENCE (For School Candidates)

Published by
The National Examinations Council of Tanzania, P.O. Box 2624, Dar es salaam, Tanzania.

© The National Examinations Council of Tanzania, 2016

All rights reserved

TABLE OF CONTENTS

FOREWORD iv
1.0 INTRODUCTION 1
2.0 ANALYSIS OF THE CANDIDATES' PERFOMANCE IN EACH QUESTION 2
2.1 SECTION A: Objective Questions 2
2.1.1 Question 1: Multiple-choice items (Various Topics) 2
2.2 SECTION B: Short Answer Questions 4
2.2.1 Question 2: Transformer 4
2.2.2 Question 3: Electromagnetism 5
2.2.3 Question 4: Conductor and Cables 7
2.2.4 Question 5: Measuring Instruments 9
2.2.5 Question 6: A.C Circuits 11
2.2.6 Question 7: Illumination 13
2.2.7 Question 8: Battery and Cells 15
2.2.8 Question 9: Transformer 16
2.2.9 Question 10: A.C Motors 17
2.2.10 Question 11: Capacitors and Capacitance. 19
2.3 SECTION C: Structured Questions 21
2.3.1 Question 12: D.C Machines 21
2.3.2 Question 13: Electric Heating 23
2.3.3 Question 14: Illumination 27
2.3.4 Question 15: Rectification 33
2.3.5 Question 16: A.C Circuits 37
3.0 PERFORMANCE OF CANDIDATES IN DIFFERENT TOPICS 41
4.0 CONCLUSION AND RECOMMENDATIONS. 43
4.1 Conclusion 43
4.2 Recommendations 43
Appendix. 45

FOREWORD

The Candidates' Items Response Analysis Report for Electrical Engineering Science subject for the Certificate of Secondary Education Examination (CSEE) 2015 is presented in order to provide feedback to secondary school students and teachers, educational policy makers and other educational stakeholders on the candidates' performance in this examination.

The Certificate of Secondary Education Examination (CSEE) is done at the end of fourth year of ordinary secondary education. It is a comprehensive evaluation which among other things exposes the effectiveness of general system of education and the mode of education delivery in Tanzania ordinary secondary schools.

The analysis of questions from various topics within the syllabus provides a deeper understanding of candidate's performance at individuadndidate, school and national level as the report highlights some factors that made the candidates perform either poorly, averagely or well. This report will help secondary school teachers, candidates, parents and other educational stakeholders to improve the candidates' performance byearning from the highlighted factors. Therefore, National Examinations Council of Tanzania (NECTA) call upon readers of this report to come up with constructive suggestions on how to improve examination processes and reports arising therein.

Moreover, this report provides some recommendations to secondary school students, teachers, and the Ministry of Education, Science, Technology and Vocational Training.

The council would like to thank all examiners and other stakeholders who participated in one way or another to process and analyze the data used in this report.

Dr. Charles E. Msonde
EXECUTIVE SECRETARY

1.0 INTRODUCTION

The Certificate of Secondary Education Examination (CSEE) 2015 for Electrical Engineering Science subject (082) comprised sections A, B and C. Section A consisted of one (1) multiple choice question with ten items drawn from various topics in accordance with the 1994 syllabus and the 2008 examination format. Section B consisted of ten (10) short answer questions while section C consisted of five (5) structured questions. Candidates were required to answer all questions in sections A and B , and three (3) questions from section C. Marks allotted for each section were 10,30 and 60 for sections A, B and C respectively.

A total of 332 candidates sat for Electrical Engineering Science examination and 168 (50.6\%) candidates passed. In 2014, a total of 299 candidates sat for Electrical Engineering Science examination and 159 (53.5%) candidates passed. Comparatively, the candidates' performance in 2015 has decreased by 2.9 percent. The analysis of the candidates' performance is categorized into three grade ranges as follows: If the percent of candidates who scored 30 percent or above of the total marks allotted in a question is between $0-29$, then the question is regarded as poorly performed. If the percentage is between 30-44 the performance is judged average and if the percentage of candidates is between 45-100, then the performance is good. In this report, data from candidates who did not attempt some compulsory questions have been ignored. (See Appendix)

The report presents a detailed analysis of the candidates' responses by indicating the task they were required to do on each question and how they performed it. Comments on the observed candidates' performance are given for each question. These are supported and illustrated by relevant extracts taken from candidates' scripts.

Therefore, the report is intended to reveal the subject overall general performance, specific areas of weaknesses and provide some recommendations for improvement. This report should be taken as an important guide to different education stakeholders including teachers, students and parents who should take appropriate measures to improve results in future examinations.

2.0 ANALYSIS OF THE CANDIDATES' PERFOMANCE IN EACH QUESTION

This part provides a detailed analysis of candidates' performance in each question. It also explains some reasons behind the candidates' performance and the challenges encountered by candidates when responding to a particular question.

2.1 SECTION A: Objective Questions

2.1.1 Question 1: Multiple-choice items (Various Topics)

In this question candidates were required to choose the correct answer from the given alternatives. The question consisted of ten (10) multiple choice items which were set from various topics.

Out of 332 candidates who were registered, 329 (99.1\%) attempted this question. Statistical data show that, $90(27.4 \%)$ of the candidates scored from 0 to 2 marks, 156 (47.4%) scored from 3 to 4 marks and 83 (25.2%) scored from 5 to 7 marks out of 10 marks allotted. The general performance of candidates in this question was good.

Nevertheless, a significant number of candidates were not successful in answering items (iv), (v) and (ix) correctly. In item (iv) candidates were required to identify the type of focusing used by a CRO from the given alternatives. The majority chose alternative A "Electromagnetic" instead of alternative B "Electrostatic". The Candidates confused between the two terms as both of them are used in the principles of operation of CRO. These results indicate that most of these candidates had inadequate knowledge of CRO concepts.

In item (v) the candidates were required to choose the correct statement regarding what is the basic requirement of D.C armature winding. Most candidates chose alternative D "it must be a wave winding" instead of alternative A "it must be a closed one". Those who opted for alternative "D" confused the types of D.C armature windings with its basic requirements. This shows that candidates lacked practical knowledge and skills on D.C armature winding.

In item (ix) the candidates were required to choose among the alternatives, the true statement about both series and parallel D.C circuits. Most candidates failed to understand that power is additive in series D.C current as well as parallel D.C circuit. Therefore, majority of them chose alternative E "voltage and current are additive" instead of alternative A "power are additive". Alternative "E" provided a very plausible distractor because current and voltage both represent Kirchhoff's law which is applicable in D.C circuits. The low score of candidates in this question might be attributed to non-attainment of the fundamental concepts of practical knowledge and skills on power D.C circuits. Figure 1 summarizes the candidates' performance of this question.

Figure 1: Performance of candidates in percentage

2.2 SECTION B: Short Answer Questions

2.2.1 Question 2: Transformer

This question was divided into two parts (a) and (b). The Candidates were required to:
(a) State the meaning of transformer; and
(b) Explain briefly the working principle of a transformer.

The question was attempted by 325 candidates whose scores were as follows: 155 (47.7%) candidates scored from 0 to 0.5 marks, 104 (31.3%) candidates scored 1 mark and the remaining 66 (21%) candidates scored from 1.5 to 3 marks out of 3 marks allotted in this question. The general performance of this question was good. Most of the candidates were able to state the meaning of a transformer and explain correctly its working principle. Extract 2.1 shows a sample of a good response.

Extract 2.1

In Extract 2.1, the candidate was able to give the meaning of a transformer and its working principle.

On the other hand, the candidates who performed poorly failed to give a correct response on the working principle of a transformer. This was due to lack of knowledge and practical skills on working principle of a transformer. Extract 2:1 shows poor response from one of the candidate.

Extract 2:2

Extract 2.2 is a sample of a poor response from a candidate who gave wrong meaning of transformer and failed to explain its working principle.

2.2.2 Question 3: Electromagnetism

The question had two parts (a) and (b) which required the candidates to:
(a) Give the meaning of the term Mutual inductance as used in electrical technology; and
(b) Calculate mutual inductance between two coils, A and B having selfinductances of $120 \mu \mathrm{H}$ and $300 \mu \mathrm{H}$ respectively; if the current of 1 A flows through coil produces flux linkage of $100 \mu \mathrm{~Wb}$ turns in coil B.

The question was attempted by 283 candidates who scored as follows: 203 (71.7%) candidates scored from 0 to 0.5 marks, 75 (26.5%) scored 1 mark and $5(1.8 \%)$ scored from 1.5 to 3 marks out of 3 marks allotted to this question. The general performance of this question was poor because majority of the candidates were not able to recall and apply the correct formula of calculating the mutual inductance of two given coils. The
analysis indicated that, the candidate had poor knowledge of the concept of electromagnetism as seen in Extract 3.1 which shows a sample of a poor response.

Extract 3.1
3@. \rightarrow Is the Jpecial machine which control the energy supply on the Jamal aver.

Extract 3.1 illustrates responses from a candidate who failed to provide the correct meaning of mutual inductance and to perform its calculations.

Despite the overall poor candidates' performance in this question; there were few candidates (1.8%) who managed to give the correct answers as illustrated in Extract 3.2

Extract 3.2
3 (a) Mute Inductance - i, the refer to tho Inducing of one $\mathrm{Co}^{\text {I }}$ by onattar con So an inductor ot by the nachern Promos' f ma'golit tux which are posposed in an inductor \& ceritsoutting tho
Nemustration. For MuTuAL inducianal

Extract 3.2 is a sample of a good response from one of the candidate who managed to define and calculate mutual inductance.

2.2.3 Question 4: Conductor and Cables

In this question the candidates were required to:
(a) State three factors which influences the force on current carrying conductor; and
(b) Determine the resistance of copper at $50^{\circ} \mathrm{C}$ if its resistance at $0^{\circ} \mathrm{C}$ is 10Ω.

A total of 321 candidates attempted this question and their scores were as follows: 126 (13.7%) candidates scored from 0 and 0.5 marks, 21 (6.5%) scored 1 mark and 174 (54.2%) candidates scored from 1.5 to 3 marks out of 3 marks allotted to this question. The candidates' performance in this question was generally good. Extract 4.1 shows a sample of a good response.

Extract 4.1

Extract 4.1 shows a sample of response from a candidate who was able to state the factors which influence the force on current carrying conductor and managed to calculate the resistance at a given temperature.

The major weakness which has been noticed from candidates who failed this question was that; most of them were not conversant with the concepts related to current carrying conductor as used in Conductor and Cables. Consequently, they failed to recall the three factors which influence the force on current carrying conductor. They also failed to apply the correct formula of calculating resistance of material when a temperature rise factor is involved. Extract 4.2 illustrates this case.

Extract 4.2

In Extract 4.2, the candidate could not state factors which influence the force on current carrying conductor and applied a wrong formula to calculate the resistance of material at a given temperature rise.

2.2.4 Question 5: Measuring Instruments

The candidates were required to calculate the value of a shunt resistor to be connected in parallel with a meter to enable it to be used as an ammeter for measuring current up to 50 A ; provided that a moving coil instrument gives a full scale deflection when the current is 40 mA and its resistance is 25Ω.

The question was attempted by 309 candidates of whom, 95 (30.7\%) scored from 0 to 0.5 marks, 45 (14.6%) scored 1 mark and 169 (54.7%) scored from 1.5 to 3 marks of which 34.6 percent of the candidates scored all the 3 marks allotted in this question. The general performance of this question was good. Most of them were able to calculate the value of a shunt resistor to be connected in parallel with a meter. Good performance in this question suggests that the candidates had adequate knowledge and skills on measuring instruments, particularly on the extension of meter ranges. Extract 5.1 illustrates a candidate's good response.

Extract 5.1

Extract 5.1 is a sample of a good response taken from a candidate's script. The candidate was able to calculate the value of a shunt resistor

On the other hand, candidates with low scores failed to recall the correct formula for calculating the value of a shunt resistor to be connected in parallel with a meter which is given by: $R s h=\frac{V s h}{I s h}$. Extract 5.2 shows a sample of poor response from a candidate.

Extract 5.2

5.	quven
	Resistance $=25 \Omega$
	Current $=40 \mathrm{max} \times 10^{-3}$
	ammetes $=50 \mathrm{~A}$
	W5S 2 8 2 为
	$=2509 \times 103$
	$=0.001250 \times 40 m \times 4$
	0.00588
	Otmeter $=0.005080 \mathrm{mmf}$

Extract 5.2 is a sample of a poor response of one of the candidates who used a wrong formula to calculate the value of a shunt resistor by multiplying a total current and meter resistance.

2.2.5 Question 6: A.C Circuits

The candidates were required to determine the power factor of an electric motor which draws a current of 18 A from a 240 volts source when a wattmeter is connected to the circuit indicates 3024 W .

A total of 320 candidates attempted this question and their scores were as follows: 133 (41.6%) candidates scored 0 to 0.5 marks, 26 (8.1%) scored 1 mark and $161(50.3 \%)$ scored 1.5 to 3 marks out of 3 marks allotted. The candidate's performance in this question was generally good. Many candidates were able to recall and apply the correct formula for determining the power factor of an electric motor. Extract 6.1 shows a sample of a good response.

Extract 6.1

In Extract 6.1, a candidate managed to calculate the power factor of a circuit.

On the other hand, some candidates exhibited weakness in the technical aspect of computing power factor. They failed to apply the correct formula in calculating the power factor of an A.C motor. Extract 6.2 shows an example of a response from a candidate who confused the formula by dividing the voltage (240 V) by current (18 A) instead of multiplying them to obtain the apparent power which could be used to compute the power factor.

Extract 6.2

Extract 6.2 is a sample of a poor response extracted from a candidate's script. The candidate failed to apply the correct formula in calculating the power factor of the circuit.

2.2.6 Question 7: Illumination

The candidates were required to estimate the total luminous flux required to provide a service value of 120 lux in a room of 5 m by 7 m when utilization factor and light loss factors are 0.6 and 0.8 respectively.

This question was attempted by 296 candidates who scored as follows: 71 (24.0%) scored from 0 to 0.5 marks, 39 (13.2%) scored 1 mark and 186 (62.8%) scored from 1.5 to 3 marks out of 3 marks allotted. The candidate' performance in this question was generally good. Most of the candidates were able to apply the correct formulas on estimating the total illumination required as shown in Extract 7.1.

Extract 7.1

Extract 7.1 is a sample of response from one of the candidates who managed to calculate the total luminous flux as per question demand.

Few candidates demonstrated incompetence in the applications of formulae and procedures used for calculations of total luminous flux in a given room. These candidates had insufficient knowledge on illumination and particularly on the terms and their relationship that could help them to meet the question's demand. Extract 7.2 illustrates this case.

Extract 7.2

Extract 7.2 shows a poor response from a candidate who failed to compute the total luminous flux.

2.2.7 Question 8: Battery and Cells

The question had two parts (a) and (b) which required the candidates to:
(a) State why modification of a simple primary cell is done; and
(b) List two materials used as positive and negative electrodes of a Leclanch'e cell (battery) and name the instrument used to measure specific gravity of the battery.

Statistics show that, out of 257 candidates who attempted this question, 163 (63.4%) scored 0 to 0.5 marks, 44 (17.1%) scored 1 mark and 50 (19.5%) scored from 1.5 to 3 marks out of 3 marks. Only 3.1 percent scored all 3 allotted marks.

This question was averagely performed. Some candidates were not able to provide correct answers to both parts (a) and (b). They could not explain why modification of a simple cell is done, and they failed to list down the materials used as positive and negative electrodes of Le'clanche cell. Nevertheless, they failed to name the instrument used to measure specific gravity of a battery. Probably, the candidates were not adequately prepared in this topic. Extract 8.1 shows a poor response from one of the candidate's script.

Extract 8.1

In Extract 8.1, the candidate failed to provide the correct answer to this question.

Few candidates who performed well adhered to the demands of the question. They presented correct answers, showing that they had enough knowledge on battery and cells. Extract 8.2 shows the response from a candidate who performed well in this question.

Extract 8.2

(b) i) Positive elatrode - Carbon
ii) Negative electrode - Zinc.

- The instrument used to measure specific gravity. iv Hydrometer.

Extract 8.2 is a sample of a good response from a candidate who adhered to the question demands.

2.2.8 Question 9: Transformer

This question required the candidates to mention three conditions to be fulfilled when connecting the transformers in parallel.

Out of 221 candidates who attempted this question $180(81.4 \%)$ candidates scored from 0 to 0.5 marks, 15 (6.8%) candidates scored 1 mark and the remaining $26(11.8 \%)$ candidates scored from 1.5 to 3 marks out of 3 marks. Further analysis show that, a total of 111 (33.4\%) of the registered candidates did not attempt this question.

Generally, the performance of this question was poor as most of the candidates scored below average. The candidates failed to recall that in order to connect transformers in parallel, frequency, percentage impedance, phase sequence and voltage supplies must be the same. This poor performance suggests that, most of the candidates lack basic skills on parallel connection of transformer. Extract 9.1 illustrates this case.

Extract 9.1

Extract 9.1 shows a poor response from a candidate who failed to give the conditions for parallel connection of transformer.

However, there were few candidates who managed to answer the question well as seen in extract 9.2.

Extract 9.2

9. M Machine must be in phase 1
Us frequency between terminal must he Rte starve
iii/ ventage across Te Urinals nut be the same.

In Extract 9.2, a candidate was able to provide conditions to be fulfilled in order to connect transformer in parallel.

2.2.9 Question 10: A.C Motors

In this question, candidates were asked to:
(a) List two losses that occur in induction motors; and
(b) Calculate the power dissipated in the rotor of a 3-phase induction motor running at slip of 0.05 per unit, with an input power to its rotor of 10 kW .

Out of 316 candidates who attempted this question 52 (16.5\%) candidates scored from 0 to 0.5 marks, 150 (47.4%) scored 1 mark and the remaining $114(36.1 \%)$ scored from 1.5 to 3 marks out of 3 marks allotted.

The general performance of this question was good. Most candidates answered part (a) correctly. They managed to list losses that occur in an induction motor and applied the correct formula of power dissipated in the rotor. Candidates who scored low marks were poor in technical aspect of computing power dissipated in the motor .This shows that the candidates lacked knowledge on the area of motor losses. Extract 10.1 shows a sample of poor response from one of the candidates who just multiplied the number of phases, slip per unit and rotor input power in order to obtain the power dissipated.

Extract 10.1

10	b) Data given
	$p h=3$
	$\Delta=0.05$
	$P=10 \mathrm{~kW}$
	$P=10 \times 0.05 \times 3$
	$p=1.5$
	$P=1.5 \times 40 \quad$ power is 1.5

Extract 10.1 shows a poor response from a candidate who failed to compute the power dissipated in the rotor.

On the other hand, majority of the candidates were able to provide correct responses about losses found in induction motors and to calculate the power dissipated in the motor using slip per unit and rotor input power. Extract 10.2 illustrates a good response from one of the candidate.

Extract 10.2

Extract 10.2 shows good responses from one of the candidates who correctly applied the concept of slip per unit and rotor input power to calculate the power dissipated in the rotor.

2.2.10 Question 11: Capacitors and Capacitance

The question consisted of two parts, (a) and (b) which required the candidates to:
(a) Define the term "breakdown voltage of a material', ; and
(b) Calculate energy dissipated if a cloud is at the potential of $8 \times 10^{6} \mathrm{~V}$ relative to ground and a charge of 40 C is transferred in lighting stroke between the cloud and the ground.

Out of 268 candidates who attempted this question, $188(70.1 \%)$ scored from 0 to 0.5 marks, 30 (11.2%) scored 1 mark and $50(18.7 \%)$ scored from 1.5 to 3 marks out of 3 marks allotted in this question. Statistical data show that, $64(19.3 \%)$ of the registered candidates did not attempt this question.

The general performance of this question was poor because majority of the candidates failed to define the term 'breakdown voltage of a material'. They also failed to correlate the information given in the question to calculate the energy dissipated. This is an indication that, most of the
candidates had inadequate knowledge and skills on capacitors and capacitance. Extract 11.1 is a sample of a candidate's poor response.

Extract 11.1

In Extract 11.1, the candidate failed to define "breakdown voltage of a material" and failed to calculate the energy dissipated.

However, few candidates managed to define the term "breakdown voltage of a material" and applied the correct formula to calculate energy dissipated. Extract 11.2 is an example of a good response provided by one of the candidates.

Extract 11.2

In Extract 11.2, the candidate was able to give correct definition of breakdown voltage and used the correct formula to calculate the energy dissipated.

2.3 SECTION C: Structured Questions

2.3.1 Question 12: D.C Machines

This question comprised parts (a) and (b). In part (a), candidates were required to describe four conditions under which a self-excited D.C generator can fail to build up voltage. In part (b), they were required to calculate the generated voltage and the armature current for a long shunt compound generator which delivers a load current of 60 A at 45 V and has armature series field and shunt field resistances of 0.06Ω and 240Ω respectively; given that, 0.5 V per brush is allowable for contact drop.

Out of 212 candidates attempted this question and their scores were as follows: 66 percent performed poorly as they scored from 0 to 5.5 marks, other 26.5 percent performed averagely by scoring from 6 to 9 marks and the remaining 7.5 percent scored from 10 to 13 marks out of 20 marks allotted in this question. The analysis revealed that, generally the candidate's performance in this question was average because 34 percent of the candidates scored 6 marks and above.

Most of the candidates who performed poorly failed to describe the four conditions under which a self-excited D.C motor can fail to build up voltage. They also failed to calculate the generated voltage and the armature current of a long shunt compound generator. This indicates that, most candidates had little knowledge about D.C generator. Extract 12.1 is an example of a poor response extracted from one of the candidate's script.

Extract 12.1

12.	(i) Salf-axcitad dic ganarator can fail thraugh lockas
	Q.e machanical loozas, capper loosas atz.
	(if) Dic ganarator can also faid thruegh triction.
	(iii) Drc ganarator can tail to produea valtaga bacausa
	of the hystalisis loss and addy currant loss.
	(iv) DiC ganamior fail to produed tha valtagn becruse
	of the toad. load, shunt, and Armatury uhan tray
	Oparata cendar oft davalopmant
	(b) Data givan
	$I=60 \mathrm{~A}$
	$\mathrm{V}=450 \mathrm{~V}$
	$R_{a}=0.06 \Omega$
	$R_{s}=0.04 \Omega$
	$R_{L}=240 \Omega$
	a) Calculata ganarated voltaga and aumaturd currz
	$V=E_{b}-I_{a} R_{r}$
	$V=450-I_{9} R_{5}$
	$V=I_{9}=\mathrm{V} /{ }^{\text {a }}$ - 450
	T $\mathrm{R}_{5} 0.04$
	$I_{9}=H^{2} 508500$
	$V=E_{b}-I_{a} R_{G}$
	$v=4.50+7.500$
	$v=7950$
	(b) $\quad \therefore$ The generatad $9 \cdot m f=7940 \mathrm{~V}$
	(b) Armaturs currout ${ }^{\text {a }}$
	$\begin{gathered} V_{a}=E b-T_{a} R_{a} \\ I_{a}= \end{gathered}$
	$V=I R-60 \times 240=1440 \mathrm{~V}$.
	$I_{a}=E \cdot \mathrm{~V} / 2=450$
	Ia $/ L_{a} 0.06$
	$I_{a}=7500 \mathrm{~A}$

Extract 12.1 is a sample of a poor response from one of the candidates who failed to describe four conditions under which a self-excited D.C generator can fail to build up voltage. The candidate also failed to calculate the generated voltage and the armature current of a long shunt compound generator.

The candidates who performed averagely were able to describe either two or three of the four conditions under which a self-excited D.C generator can fail to build up voltage as required in part (a) but failed to perform calculations required in part (b). There were also a few candidates who performed well in this question as they managed to provide correct answers by applying appropriate formulae in calculating the generated voltage and armature current of a long shunt compound generator. Extract 12.2 is attached as a sample of good responses.

Extract 12.2

Extract 12.2 is a sample of a good response from the candidate who provided the correct calculation of the generated voltage of a long shunt compound generator.

2.3.2 Question 13: Electric Heating

This question weighed 20 marks and it consisted of three parts (a), (b) and (c). The candidates were required to:
(a) Give six properties of a good heating element.
(b) Determine the power required in this heating process given that, a ply-wood board of $0.5 \times 0.25 \times 0.02$ meter is to be heated from $25^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ in 10 minutes by dielectric heating employing a frequency
of 30 MHz . Assume specific heat of wood is $1500 \mathrm{~J} / \mathrm{kg} /{ }^{\circ} \mathrm{C}$, weight of wood $600 \mathrm{~kg} / \mathrm{m}^{3}$ and efficiency of process is 50%.
(c) Find how much did the temperature of water rise during a 30 minutes running period? Given that, the output of diesel engine was found to be 4.9 kW and a dynamometer used to check the output contained 30 kg of water. Neglect losses.

Out of 203 candidates who opted for this question 35 percent scored from 0 to 5.5 marks, 20 percent scored from 6 to 9 marks and the remaining 45 percent scored from 10 to 19 marks. The general performance for this question was good because 65 percent of the candidates scored above average. Most of the candidates were able to provide correct responses as requested in various parts of the question.

The candidates who performed well in this question managed to give the correct properties of a good heating element, determine the power required in the heating process of a ply-wood and calculating correctly the temperature of water rise. This indicates that, the candidates acquired sufficient knowledge and skills on the concept of electric heating. Extract 13.1 illustrates this case.

Extract 13.1

Extract 13.1 shows a sample of a good response from a candidate who was able to give correct properties of a good heating element, determine the power required in the heating process of a ply-wood and determine the temperature rise of water.

On the other hand, candidates with low scores (35\%) had inadequate skills and knowledge particularly on the aspect of properties of heating element and determination of power and temperature required in the heating process. They failed to recall that they were supposed to find first the volume of the wood to be heated and the weight of the wood and then use the formula $\mathrm{MC} \Delta \mathrm{t}$ to determine energy. Extract 13.2 is a sample of a poor response from one of the candidates.

Extract 13.2

In Extract 13.2, a candidate failed to give properties of good heating element. The candidate used wrong formula in calculating the power required in the heating process of a ply-wood and the temperature rise of water.

2.3.3 Question 14: Illumination

The question consisted of three parts (a), (b) and (c) and it weighed 20 marks. The candidates were required to:
(a) Define the following terms as used in illumination:
(i) Coefficient of utilization
(ii) Maintenance factor
(iii) Coefficient of reflection and
(iv) Depreciation factor.
(b) Calculate total lumen, total power and number of lamps of a room, if power rate of one lamp is 30 W . Given that a room of 25 m long by 6 m wide had to be lighted to a level of 20 lux, while the average lumen of a lamp is $251 \mathrm{~m} / \mathrm{W}$.
(c) Suggest the number of lamps and their rating required to provide an illumination on 100 lux in a factory hall of 30 m by 15 m . Assuming that; the depreciation factor is 0.8 , coefficient of utilization is 0.4 and efficiency is $141 \mathrm{~lm} / \mathrm{W}$. Given the size of lamps available is 100 W , $250 \mathrm{~W}, 400 \mathrm{~W}$ and 500 W .

This question was attempted by 203 candidates and their scores were as follows: 36.9 percent scored from 0 to 5.5 marks, 27.1 percent scored from 6 to 9 marks and 36 percent scored from 9.5 to 20 marks. The general performance of this question was good because 63.1 percent of the candidates passed by scoring from 6 to 20 marks. This indicates that, most candidates had acquired sufficient knowledge on the topic of Illumination.

Most of the candidates who performed well in this question were able to define the given terms and calculate the total lumen, total power as well as number of lamps for a room. Also, they were able to suggest the number of lamps and their rates for a factory hall. This is illustrated in Extract 14.1.

Extract 14.1
14. (y) i) Total Power.

From: $P=\Phi / 0^{\circ}$

$$
P=\frac{7580}{25}=300 \mathrm{~W}
$$

Total Power $=300 \mathrm{~W}$.
oj Number of lamps.

$$
\begin{aligned}
& \text { If:-1lamp } 30 \mathrm{~W}
\end{aligned}
$$

\therefore Number of $\operatorname{anps}=1$ lamps.
(c)

$$
\begin{aligned}
& \text { Given:- } F=10014 x \text {, fires avalablu:- } \\
& A=30 \mathrm{mxl} \mathrm{~mm} . \quad-100 \mathrm{~W} \text {. } \\
& D F=0.8 \quad-250 \mathrm{~W} \\
& C V=0.4 \quad-400 \mathrm{~W} \text { and } \\
& V=\frac{1411 \mathrm{~m} / \mathrm{T}}{} \mathrm{w} \\
& \text {-50w } \\
& N=\text { ? }
\end{aligned}
$$

From:

$$
\begin{aligned}
& \Phi=\frac{E \times A}{D \cdot F \times \cdot \cdot U}=\frac{100 \times 30 \times 15}{0.8 \times 0.4} \\
& \Phi=\frac{45000}{0.32}=140625 \mathrm{~lm} .
\end{aligned}
$$

From: $P=\Phi / n$

$$
P=\frac{140625}{141}=997.34 \mathrm{~W}
$$

Hence, Total Power $=997.34 \mathrm{~W}$ -

$$
4-\frac{4 N \angle) 16}{0.8 \times 0.5}=\frac{314}{0.4}=1 \text { begum }
$$

\therefore Total lumens is 7,500 lm .
14. (c) Now, number of lamps for the sizes is of follows:-
For 100w:-

$$
\begin{gathered}
\text { From: } \frac{1 \text { lamp }}{? x} \frac{100 \mathrm{~W}}{99.39 \mathrm{~W}} \\
x=\frac{997.34}{100}=9.97 \approx 101 \mathrm{amps} . \\
\therefore 10 \text { lamps of } 100 \mathrm{~W} \text { are needed. } \\
\text { For } 250 \mathrm{~W}:- \\
\text { From }: \frac{11 \mathrm{amp}}{x}=250 \mathrm{~W} . \\
x=\frac{997.34}{250}=3.98 \approx 4 \mathrm{~W} \text { lamps }
\end{gathered}
$$

$\therefore 4$ lamps of 250 w are needed.
For 400w:-
From:- 1 lamp 245 cor w

$$
\begin{gathered}
\frac{7 x}{}=997.34 \mathrm{~W} \\
x=\frac{997.34}{400}=2.49 \approx 3^{\text {lamps }}
\end{gathered}
$$

$\therefore 3$ lamps of 400 W are needed.
For 500w:-

$$
\begin{aligned}
& \text { From: }-\frac{11 a n p}{7 x}=9901.390 \\
& x=\frac{997.34}{500}=1.99 \approx 2 \text { lamps }
\end{aligned}
$$

\therefore Clamps of 500 W are needed.
Extract 14.1 shows a sample of a candidate's good response. The candidate managed to define the given illumination terms, calculate total lumen, total power and number of lamps for a room and suggest the number of lamps and their ratings in a factory hall.

The percentage of the candidates who performed poorly in this question is 36.9. They failed to calculate total lumen, total power and number of lamps for a room and suggest the number of lamps and their ratings in a factory hall. Other candidates knew the formula but failed to identify parameters which comply with the formula. Extract 14.2 shows a sample of a poor response from one of the candidate.

Extract 14.2

Extract 14.2 shows a sample of a candidate's poor response. The candidate failed to define the given illumination terms, calculate total lumen, total power and number of lamps for a room.

2.3.4 Question 15: Rectification

The question consisted of two parts, (a) and (b) and it weighed 20 marks. In part (a), candidates were required to:
(i) Define the term 'rectification' as applied in electric circuits,
(ii) Draw the circuit diagram of a full wave rectifier using a center tape transformer; and
(iii) Draw the input and output waveform of the full wave rectifier for one period.

In part (b) candidates were required to:
(i) Give two advantages of half wave rectifier; and
(ii) Calculate the average and peak values of current in the load for a half wave rectifier which is connected in series with a load of 16Ω to a.c supply of 25 volts r.m.s value. The rectifier has a constant resistance of 2Ω in the forward direction while the reverse current is zero.

This was the least opted question as it was attempted by only 108 candidates. Of those who attempted 74 percent scored from 0 to 5.5 marks, 12 percent scored from 6 to 9 marks and the remaining 13.1 percent scored from 10 to 14 marks out of 20 marks allotted. Therefore the general performance of this question was poor.

The majority of the candidates who managed to score high marks were able to define the term "rectification" in part (a) (i) and managed to draw input and output waveforms as required in part (a) (iii) but failed to draw the circuit diagram of the full wave rectifier using a center tape transformer as asked in part (a) (ii), instead they drew either half wave or bridge rectifier diagrams which were contrary to the question's demand.

Moreover, a large number of candidates failed to give advantages of a half wave rectifier and calculate the average and peak values of the current in the load for a half-wave rectifier as required in part (b) (i) and (ii). This implies that, most of the candidates lacked sufficient knowledge and practical skills on the topic of rectification especially in calculating various electrical parameters in rectifier circuits and draw various rectifier circuits' wave forms. Extract 15.1 is an example of a poor response from one of the candidate.

Extract 15.1

Extract 15.1 shows a sample of a poor response from a candidate who failed to define rectification, draw a full wave rectifier and the input and output waveforms. The candidate also failed to give advantages of a half wave rectifier and to calculate the average and peak values of currents.

Extract 15.2 shows a sample of a good response from one of the few candidates who performed well in this question.

Extract 15.2

Extract 15.2 shows a sample of a good response from a candidate who correctly defined rectification, drew the circuit diagram of a full wave rectifier using a center tape transformer and its input and output wave forms and calculated the peak current of the load.

The overall performance of candidates in this question is summarized in Figure 2.

Figure 2: Performance of Candidates in Question 15

2.3.5 Question 16: A.C Circuits

This question consisted of parts (a) and (b) and it weighed 20 marks. In part (a) candidates were required to mention three disadvantages of the electric system to be operated at a low power factor and hence enumerate three methods in which this case can be improved or minimized.

In part (b) the candidates were given the following information: Three equal star-connected inductors take 8 kW at a power factor of 0.8 when connected across a $460 \mathrm{~V}, 3$ phase wire supply. Candidates were required to calculate:
(i) line current
(ii) phase current
(iii) impedance per phase
(iv) resistance per phase
(v) inductive reactance per phase.

The candidates who attempted this question were 209 and they scored as follows: 45.5 percent scored from 0 to 5.5 marks, 21.5 percent scored from 6 to 9 marks and the remaining 33 percent scored from 10 to 20 marks. The candidates' performance in this question was therefore good as 54.5 percent scored from 6 to 20 marks.

These candidates were able to mention disadvantages of a low power factor and enumerate methods of improving low power factor. They also applied well the tested knowledge and skills on the formulae involved in calculating line current, phase voltage, impedance per phase, resistance per phase and inductive reactance per phase. Extract 16.1 illustrates this case.

Extract 16.1
16a. dis ad vantage
i) Rating of the transformer and actornator is Inversely proportion al to the power, factor, hon K VA or K VA ratio will in crease
ii) Power loss is proportional to the square of the current, hance Inversoly proportional to the square of the power factor. There fore at low power factor, more power loss and poor officien up
iii) how lagging power factor, result In large
 regulation. Hours aldelition regulation
equipment is required to Keep the Voltage drop with permissible limit.

- Ph Poo adler factor Imp pone mont
in Phaor adkemsor
ii) By Capacitor
iii) By sychronous thostor.

16t dath giveas.
\qquad

ii In star Ceninoct+1

$P=\sqrt{3} \mathrm{VL} \operatorname{Th} \cos \theta$

Tin Hince Lint Curtertit $=12.55 \mathrm{~A}$
 tohne Ipin EIt becauk 0° Thar Connatiod

$$
\begin{array}{rl}
2 p h & =\frac{265.58}{12.55} \\
76 h & 21.162 \sqrt{2}
\end{array}
$$

$$
\therefore \text { Inperanct fanta }=21.162 \pi
$$

$$
\begin{aligned}
& \text { 7) } \frac{\mathrm{HL}}{\sqrt{3}}=\frac{\sqrt{6} V P^{2}}{\sqrt{7}} \\
& \sqrt{\text { ph }}=\frac{\sqrt{2}}{\sqrt{2}} \\
& V \overline{p h}=\frac{460}{\sqrt{3}} \\
& \text { Vpe }=26.5 .58 \mathrm{y} \\
& \text { Trace Phath Voltage }=065.58 \mathrm{x}
\end{aligned}
$$

Extract 16.1 shows the responses from one of the candidates who met the demands of the question.

However, candidates who performed poorly in this question did no attempt part (a) of the question which required them to mention disadvantages of a low power factor in the electric systems and enumerate methods of improving power factor. Most of them tried to do part (b) and majority failed to apply the correct formulae of calculating line current, phase voltage, impedance per phase and inductive reactance per phase. Extract 16.2 shows the responses of one of the candidates who performed poorly part (b) of this question.

Extract 16.2

16(b)	Solu
(i)	star-comneted indiedor x pauar factor
	2. k an $\times 0.8$
	$=6.4 \mathrm{kva}$
	\because Lins currsut $=6.4 \mathrm{kvol}$
(ii)	phase valtege
	$460 \times 3=1,370 \mathrm{~V}$
	Sothent $=215.625$
	1380 V
	$8 \mathrm{kwt}=172.5 \mathrm{v} / \mathrm{km}$
	-. Phase Vollage $=172.5$ Vlknd
1 ii	imptidancs per plese
	$8 \mathrm{kve}+0.8 \times 460$ 4,048
	$3-\frac{1}{3}=1349.3$
	- Impedance par place $=1349.3$ kw
(ix)	resistances perplase
	172.5 kaw - $0.8=1717$
	resistance per phase is 171.7 houl
(v)	inductancs reactance parphere
	improdancs par phese t resistancs parphas
	$12.99 .3+17.7=1521$
	6.4kexy $\quad 6.4 \mathrm{va}=237.6562 \mathrm{~s}$
	1 inductance reactane parplose $=237.66 \mathrm{kon}$

Extract 16.2 shows a sample of a poor response from a candidate who failed to calculate the line current, phase voltage, impedance per phase, resistance per phase and inductance reactance per phase in three equal star-connected inductors.

3.0 PERFORMANCE OF CANDIDATES IN DIFFERENT TOPICS

An analysis of topics which were examined in Electrical Engineering Science subject 2015 revealed that, most candidates were able to perform well in various topics included in the paper. However, in some topics the performance was either average or poor.

The analysis of individual questions indicates that there were seven topics with good performance. These include A.C Motors, Illumination, Measuring Instruments, Electric Heating, Conductors and Cables and A.C Circuits. Five topics namely Battery and Cells, Transformer, Rectification, D.C Machines and Capacitor and Capacitance were averagely performed. The analysis also reveals that most candidates performed poorly in the topic of Electromagnetism.

These results imply that, either some of the topics were not well covered by subject teachers or candidates lacked enough exercises and revision on the topics from which the questions were set.

A summary of the candidate's performance in each topic is presented in Figure 3. Green, yellow and red colors represent good, average and weak performance respectively.

Figure 3: Analysis of Students' Performance Topic-wise in Electrical Engineering Science Subject

4.0 CONCLUSION AND RECOMMENDATIONS

4.1 Conclusion

The general performance of Electrical Engineering Science for the year 2015 was good because 50.6 percent of the candidates passed the examination. However, this performance has decreased by 2.9 percent when compared to 2014.

The findings from the analysis show that the general level of performance and the quality of answers to the questions examined was satisfactory although there were few weaknesses noted. The major weaknesses noted include: candidate's inadequate knowledge and skills on the topics of Battery and Cells, Transformer, Rectification, D.C Machines, Capacitor and Capacitance and Electromagnetism. This could be due to either shortage of electrical engineering professional personnel and facilities or negligence of some candidates in putting seriously initiatives and efforts in their learning process. Another weakness observed was candidates' inability to tackle questions which involve mathematical computations and failure to identify the demands of the questions.

It is expected that the weaknesses noted and feedback provided in this report will be used as a guide by teachers and other educational stakeholders during teaching and learning process in order to raise the standard of performance in this subject.

4.2 Recommendations

On the basis of the shortcomings observed in the course of analysis of candidates' items response, this report recommends the following in order to improve performance in this subject.
(a) Candidates should make sure that they respond to the requirements of the question asked rather than answering out of the question's demand.
(b) Candidates should take serious initiatives and efforts to cover the whole syllabus through reading various materials from different recommended sources.
(c) Candidates should orient themselves with theoretical and computational type of questions by doing thorough practice in order to be able to tackle such questions accordingly.
(d) Teachers should practice a competence-based mode of material delivery to the students and they should ensure that the subject matter is well understood by students.
(e) Teachers should identify the weaknesses of their students and should equip them with sufficient knowledge and skills on the subject matter.
(f) The ministry should make an effort to provide technical text books to secondary schools which covers the whole syllabus for the required study materials.

Appendix
Comparison Analysis of Candidates' Performance in Electrical Engineering Science Subject per Question in 2014 and 2015

S/N	Topic	2014			2015		
		Number of Questions	Performance (\%)	Remarks	Number of Questions	Performance (\%)	Remarks
1	A.C Motors	-	-		1	84	Good
2	Multiple Choice from Various Topics	1	91	Good	1	73	Good
3	Illumination	1	76	Good	2	70	Good
4	Measuring Instruments	-	-	-	1	69	Good
5	Electric Heating	1	64	Good	1	65	Good
6	Conductors and Cables	-	-	-	1	61	Good
7	A.C Circuits	1	41	Average	2	57	Good
8	Battery and Cells	1	58	Average	1	37	Average
9	Transformer	1	47	Average	2	26	Average
10	Rectification	1	2	Weak	1	36	Average
11	D.C Machines	2	59	Average	1	34	Average
12	Capacitor and Capacitance	1	44	Average	1	30	Average
13	Electromagnetism	1	55	Average	1	28	Weak
14	Three Phase Systems	2	27	Weak	-	-	-
15	D.C Circuits	3	24	Weak	-	-	-

[^0]
[^0]: Key
 Weak

 Average
 Good

